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Transformers Can Navigate Mazes With
Multi-Step Prediction

Niklas Nolte1
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Despite their remarkable success in language modeling, transformers trained to predict the next

token in a sequence struggle with long-term planning. This limitation is particularly evident in

tasks requiring foresight to plan multiple steps ahead such as maze navigation. The standard next

single token prediction objective, however, o�ers no explicit mechanism to predict multiple steps

ahead—or revisit the path taken so far. Consequently, in this work we study whether explicitly

predicting multiple steps ahead (and backwards) can improve transformers’ maze navigation. We

train parameter-matched transformers from scratch, under identical settings, to navigate mazes of

varying types and sizes with standard next token prediction and MLM- , an objective explicitly

predicting multiple steps ahead and backwards. We �nd that MLM-  considerably improves

transformers’ ability to navigate mazes compared to standard next token prediction across maze

types and complexities. We also �nd MLM-  training is 4  more sample e�cient and converges 2

 faster in terms of GPU training hours relative to next token training. Finally, for more complex

mazes we �nd MLM-  bene�ts from scaling to larger transformers. Remarkably, we �nd

transformers trained with MLM-  outperform larger transformers trained with next token

prediction using additional supervision from A* search traces. We hope these �ndings underscore

the promise of learning objectives to advance transformers’ capacity for long-term planning. The

code can be found at https://github.com/facebookresearch/maze_navigation_MLMU

Corresponding author: Niklas Nolte, nolte@meta.com

1. Introduction

Transformers trained to predict the next token in a sequence have become the de facto approach in

today’s best language models[1][2]. Despite their remarkable success, such transformers encounter
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challenges when tasked with planning and decision-making over extended horizons. This limitation

becomes particularly evident in tasks requiring foresight such as maze navigation.

To e�ectively navigate a maze, a model must have the foresight to plan ahead multiple steps. The de

facto next token prediction training approach, however, o�ers no explicit mechanism to predict

multiple steps ahead or revisit the path taken so far. The model is trained to only predict the next step

in the input sequence given the previous steps. Prior work has shown next token prediction can fall

prey to shortcuts in navigation tasks, particularly as path complexity increases[3]. Consequently, we

ask: Can explicitly learning to predict multiple steps ahead (and backwards) improve transformers’ ability to

navigate mazes?

To answer this question, we isolate the e�ect of learning objectives by training transformers from

scratch to navigate mazes. Inspired by prior work to remedy shortcomings of next token prediction[3]

[4], we explore the the MLM-   objective from[5]  as an alternative to next token prediction. MLM-

 proposes masking arbitrary subsets of the input sequence to explicitly predict a variable number of

steps ahead and backward as shown in Figure 1. We then assess whether MLM-   by explicitly

predicting multiple-steps during training can improve transformers’ performance on maze

navigation.

Figure 1. MLM-  predicts multiple steps ahead and backward. Standard autoregressive training only

(explicitly) predicts the next step. We compare 8M parameter transformer models trained with

autoregressive next token prediction versus MLM-  training objectives. Maze complexity is de�ned in

terms of the maze grid size.
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We operate with a collection of mazes with varying levels of grid-size complexities. Two common

types of mazes generation approaches are studied that di�er in shortest path solution lengths as well

as maze text representations. For one setting, we train transformer models for both objectives,

standard next token prediction and MLM- . In the other setting, we compare MLM-   against

published results on next token training from[6]. Finally, we compare learning objectives across

several transformer model sizes by measuring maze navigation, data sample e�ciency, as well as

training e�ciency in terms of GPU hours to convergence.

Our results indicate MLM-  can improve maze navigation accuracy and training e�ciency compared

to standard next token prediction. Remarkably, we �nd a transformer trained with MLM-

  outperforms larger transformers trained with next token prediction using additional supervision

from A* search traces[6]. Speci�cally, relative to standard next token prediction training, we �nd that:

1. MLM-  considerably improves transformers’ ability to navigate mazes.

MLM-  outperforms comparable next token transformer models across every maze type and

grid size complexity tested. For example, an 8M parameter transformer trained with MLM-

 can perfectly solve all mazes of grid sizes up to 20x20, whereas next token training peaks at

20.6% navigation accuracy on held-out 20x20 test mazes (shown in Figure 1).

MLM-   outperforms next token transformers trained with additional A* search trace

supervision on complex mazes. For example, on 30x30 mazes an 8M parameter transformer

reaches 85.5% navigation accuracy with MLM- , improving on the 70.2% navigation

accuracy of a 175M parameter transformer trained with next token prediction and additional

A* search trace supervision.

2. MLM-  training is 4x more data-e�cient in terms of training samples. For simpler mazes (5x5)

solved by both MLM-   and next token prediction, MLM-   is 2x more e�cient in GPU hours

needed for convergence.

3. MLM-   bene�ts from scaling to larger transformers for more complex mazes. For example

scaling MLM-   from a 3M to an 8M parameter transformer boosts performance from 85% to

perfect navigation on 20x20 mazes.

These �ndings suggest that the learning objective is critical to transformer’s maze navigation

abilities, o�ering a promising direction for future research in long-horizon planning tasks.
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2. Related Work

Standard next token trained transformers struggle with navigation and planning

[7] show transformers trained on maze navigation tasks learn internal states that allow a decoding of

the entire maze. Despite this emergent state however,  [3]  shows the limits of next token prediction

objectives for basic graph navigation tasks. In particular, the work identi�es a Clever-Hans cheat

based on shortcuts in teacher forced training similar to theoretical shortcomings identi�ed in [8]. This

demonstrates that while transformers can represent world states for mazes, they may struggle in

planning that requires signi�cant foresight. A remedy found by  [3]  involves removing the teacher

forced supervision. Their view inspired us to look further into the training objective to encourage more

explicit planning.

Deep Learning approaches to maze navigation

Many deep learning approaches for maze navigation use reinforcement-learning objectives[9][10][11]

[12][13]. [14] compares the navigation strategies learned by reinforcement learning to those observed in

animals suggesting some similarities in learning dynamics. [15] study reinforcement learning reward

modeling with a di�usion objective with applications to planning tasks including maze navigation.

While reinforcement learning approaches excel at tasks involving interaction and games,

reinforcement learning has played a relatively minor role in foundation model pretraining.Outside of

reinforcement learning approaches, [6] successfully train transformers with the next token objective

to perform maze navigation. Crucially, they can vastly improve performance via additional

supervision. By exposing the model to a trace of an A* algorithm solving the maze, they gain

signi�cant performance and data e�ciency. Interestingly, just like in  [3], the remedy to failure on a

navigation task seems to involve changing the supervision structure. We directly compare this

approach with the MLM-  objective trained without any supervision from A* search traces.

Di�usion Learning Objectives

[5]  used MLM- , which can be seen as a di�usion objective[16][17], to mitigate the reversal curse in

language modelling[18], where models trained to answer questions in one way can not generalize to an

inverse, semantically equivalent formulation. They also show that MLM-  performs well in the graph
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navigation task from [3]. [19][20][16][21] incorporate di�usion objectives in masked language modeling

for general purpose language models. [22] adds a di�usion objective to further train a pretrained BERT

model showing improvements over standard BERT training in terms of perplexity and BLEU score on

language tasks.

3. The role of learning objectives in maze navigation

We examine how the standard next token learning objective manifests itself in maze navigation, a task

requiring planning multiple steps head. We contrast next token prediction with MLM- , a training

objective explicitly encouraging predicting multiple steps ahead and backward.

3.1. Predicting the next step with standard training

The de facto learning objective used to train language models is next token prediction. This objective,

which is also referred to as an autoregressive (AR) or causal-masked prediction objective, when paired

with the transformer architecture has shown great success in language tasks at scale. Speci�cally,

given a sequence of inputs  , the next token learning objective minimizes

where   indicates the index of the input sequence. This simple objective maximizing the probability of

the next token given the previous tokens in the sequence has led to remarkable �uency in language

tasks[1][2]. However, transformers trained with next token prediction exhibit limits in terms of

planning.

Standard next token prediction does not seem to encourage explicit multi-step planning.

In maze navigation, as shown in Figure 1, next token prediction amounts to predicting only the next

step given the path so far. The learning objective in Equation (1) does not explicitly encourage

predicting multiple steps ahead.[3] suggests the lack of multi-step prediction in standard next token

training limits transformers’ ability to navigate even simple graphs. One pitfall highlighted by[3]  is

that models fall prey to short-sighted shortcuts such as the Clever-Hans cheat, show because the

model does not plan far enough ahead.[23]  show similar limits for other multi-step problems,

especially as problem complexity increases.

U

, , , … ,x1 x2 x3 xn

= − log ( | )Lnext token ∑
t

Pθ xt+1 x1:t (1)

t
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3.2. Predicting multiple steps ahead and back with MLM-

One remedy discovered by[3]  avoids supervision through teacher-forcing by allowing the model to

predict the entire path before applying a gradient. However, this approach is slow to train, since it

requires the sequential generation steps.

[4]  provide an elegant way to reason multiple tokens into the future by having multiple prediction

heads. They found this method to have bene�cial e�ects on decoder models of size 13B and above

when employing up to 8 prediction heads for the 8 next tokens. Motivated by[4] we consider an explicit

objective predicting multiple tokens both ahead and backwards with a variable, rather than �xed

context size. Speci�cally, we study the MLM-  objective from[5] which predicts any subset of tokens

given any others as context, hoping to capture long-term context dependence and explicit multi-step

prediction.

MLM-  explicitly makes predictions multiple steps ahead

MLM-  proposes masking arbitrary subsets of the input sequence to explicitly encourage the model

to predict multiple steps ahead and backwards. The masking ratio, which determines the portion of

the input that is masked, is drawn uniformly from [0, 1] thereby encouraging a variable prediction

window. Speci�cally, for a uniformly sampled mask   with masking rate   over the input sequence,

the MLM-  learning objective minimizes

where    is the context used for prediction, equivalent to the complement of the masked target

elements. Incidentally, this method is reminiscent of BERT[24], but with a uniform masking rate and

without token substitution. see their Figure 2[5] argue that since the uniform masking rate exposes the

model to di�erent length sequences to be completed and to draw information from, there is no

distributional shift in a generative inference step.

For maze navigation, as shown in Figure 1, the MLM-   objective in Equation (2) amounts to

predicting multiple steps at various points in the navigation path thereby explicitly planning ahead

and back multiple steps.

We study the role of the learning objective in maze navigation by comparing standard next token

prediction to MLM- . We ask: can modifying only the learning objective to predict multiple steps ahead

and back enable transformers to navigate complex mazes?
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4. Methods

To study the role of learning objectives for maze navigation, we train transformer models from

scratch to generate the shortest navigation path for mazes of increasing complexity. We design our

experiments such that transformer models are parameter-matched and trained under identical

regimes to isolate the e�ect of next token versus MLM-   learning objectives. We assess models’

ability to accurately navigate previously unseen mazes as well as their e�ciency in terms of training

samples and GPU training hours.

Figure 2. Left: Path lengths, measured by number of traversed cells, of A* and DFS mazes for maze sizes

10x10, 20x20 and 30x30 on the validation dataset. Error bars show the standard deviation. Middle:

Example 10x10 A* maze. Right: Example 10x10 DFS maze. Both are real randomly selected examples

illustrating the di�erence between encoding walls in cells (A*) versus edges with longer paths (DFS).

4.1. Mazes and Their Representations

We consider two maze generation approaches across several levels of grid-size complexities to ensure

our �ndings are not speci�c to a single type of maze or representation, but hold more generally.

DFS mazes

First, we utilize the maze generation method from[25]  to generate 2 dimensional mazes via the

randomized Depth First Search (DFS) method. This method works by constructing a path from a

uniformly random start node in a depth-�rst manner. This generation approach yields long paths

(relative to A* mazes described below), but does not allow ambiguity: the shortest path is also the only

path that does not backtrack and thus overlap with itself. An example 10x10 DFS maze in show on the

U
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right panel of Figure 2. The mazes are serialized into strings that enumerate the edges of the maze

connection graph as a set of tuples. The start node, goal node and solution path are appended to form

the full text that the model trains with. We generate 500k mazes across �ve levels of complexity as

measured by the grid size of the maze spanning 5x5, 10x10, 20x20, and 30x30.

A* mazes

Second, we use the deterministic A* maze dataset from[6]. Start and goal cell were uniformly sampled

in a 2-dimensional grid with walls randomly placed in 30–50% of cells (see middle panel of Figure 2).

The shortest paths are discovered via the A* algorithm and added to the dataset if the shortest path is

at least of length  , where   indicates the maze grid size (for an  x  maze). In A* mazes, grid cells

are tokenized with individual tokens for x and y coordinate, which increases the input sequence length

relative to the graph tuple encoding used for DFS. In both datasets, the solution path is the last part of

the string. In contrast to the DFS mazes, however, A* mazes have many possible solutions, out of

more than one are possibly the shortest ones.  [6]  experiment with both randomly and

deterministically (heuristically) choosing the shortest path that the model sees as ground truth. We

choose 10x10, 20x20 and 30x30 mazes from the deterministic setting, see Appendix D.2 for additional

details.

Together these maze generation approaches allow us to study mazes of varying complexities (in terms

of grid size), di�ering distributions of shortest path lengths, as well as di�erent maze text encoding

approaches. In Figure 2 we show the distribution di�erences between solution path lengths for DFS

versus A* mazes across three levels of grid-size complexities. Additionally in the middle and right

panels, we show sample generations for DFS and A* mazes.

4.2. Standard Next Token Prediction and A* Search Dynamic Supervision

We evaluate the standard next token prediction learning objective for maze navigation. To do so, we

train transformers from scratch on text representations of maze solutions similar to[7]. Mirroring the

objective of modern language models the transformer predicts the next token based on the previous

tokens in the maze solution path (see Equation (1)). We investigate various transformer model sizes to

understand the e�ect of model scale. We also evaluate the standard decoder-only transformer

architecture as well as the encoder-decoder architecture from[6]. Finally, to better contextualize our
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�ndings we also report the next token model from[6]  trained with additional A* search trace

supervision for the A* maze setting.

4.3. MLM-

We contrast next token prediction with the MLM-  objective, explicitly predicting multiple steps both

ahead and backward. We closely follow the training setup in[5], including the encoder-decoder

transformer architecture with RoPE positional embeddings (see Appendices D.1 and D.3). Identical to

the next token baselines, the MLM-   objective is trained on text representations of the maze

solutions. Generation during inference is done in the same way as for the standard next token

baselines, generating one token at a time from left to right, with temperature 0 (argmax). Since the

uniform masking rate in MLM-   (see Equation (2)) exposes the model to di�erent sequence

prediction and context lengths, there is no distributional shift in a generative inference step as shown

in Figure 2 of[5]. For MLM- , we also train transformers of varying model scales ranging from 3M to

25M parameters to study the e�ect of model scale on maze navigation.

4.4. Experimental setup

To isolate the e�ect of training objectives, MLM-  versus next token prediction, we train all models

from scratch using an identical setup.

Training

We train transformers for up to 3000 epochs on 100,000 mazes for each setup. The performance of

each model is evaluated on a held-out test set of 2000 mazes with the same con�guration as the

training set. To ensure the baseline comparisons for next token prediction are competitive, we

conduct a sweep over learning rate choices and weight decay values (shown in Appendix B). We select

the best choice of hyperparameters based on held-out shortest path accuracy for 10x10 DFS mazes.

The architecture used to train MLM-  is an encoder-decoder (as in[5], detailed in Appendix D.3), but

for next token training in DFS mazes we found a decoder-only architecture to be superior to the MLM-

 encoder-decoder, see Appendix A.2. For A* mazes, we report the best available numbers from[6] for

next token prediction.
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Evaluation axes

We evaluate models in terms of maze navigation accuracy, data e�ciency as measured by the number

of training mazes, and training e�ciency in terms of GPU training hours needed for convergence. To

assess the correctness of a generated path similar to[6] we compare whether the full path matches the

shortest path. We additionally compare the token-wise accuracy in Appendix A.1 to assess navigation

paths that only slightly deviate from the shortest path. Finally, to complement the overall maze

navigation accuracy, we assess training dynamics by comparing convergence curves on training and

held-out tests mazes.

5. Results: Learning to Navigate Mazes with MLM-  Training

We compare the next token and MLM-   objectives via maze navigation accuracy across three

dimensions: maze complexity, training data e�ciency and computational e�ciency. We also

investigate scaling laws as well as analyze the training dynamics of MLM- .

Maze Navigation (Accuracy) 5x5 10x10 15x15 20x20 30x30

Autoregressive 45.2 24.4 20.6 18.8

MLM-

Table 1. MLM-  compared to next token training for 8M parameter transformer-based models trained on

100k maze, solution pairs. We report shortest path accuracy (exact match of all path tokens) for held-out

maze of varying complexities based on their grid size. See Table 3 for per token accuracy.

5.1. MLM-  and standard next token training in DFS mazes

MLM-  outperforms next token prediction for DFS generated mazes.

First, we compare the objectives in the setting with DFS generated mazes described in the �rst part of

Section 4.1. We train 8M parameter transformer models across mazes with grid sizes ranging from 5x5

to 30x30. We �nd MLM-  is able to perfectly navigate mazes of up to a grid size of 20x20 and achieve

nearly 3x the performance of next token training on more complex 30x30 mazes as shown in Table 1.
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For example, even on comparatively small mazes of size 10x10 we �nd next token performance

saturates below 50% accuracy. In contrast, a model of the same size can navigate 30x30 mazes with

over 90% accuracy when trained with MLM- .

MLM-  is more data e�cient

To evaluate the data e�ciency of MLM-   relative to that of next token, we train 8M parameter

transformer models while varying the number of mazes seen during training. We operate on maze

sizes of 5x5 and 10x10 and train both models for 2000 epochs. As shown in Figure 3, we �nd MLM-  is

able to navigate both 5x5 and 10x10 mazes with only 25k training samples, while next token requires

all 100k mazes to reach full accuracy in 5x5 and reaches a peak performance of less than 50% with 75k

training samples, suggesting MLM-  is 4  more data e�cient.

Figure 3. Training Data Sample E�ciency. We compare 8M parameter model next token versus MLM-

 held-out accuracy as we vary the number of mazes seen during training. On the left, for 5x5 mazes

which both learning objectives can solve, MLM-  is   more data e�cient. On the right, for 10x10 mazes

we see MLM-  converges to perfectly solve 10x10 mazes with 25k training samples, where next token

performance peaks below 50% accuracy.

MLM-  is more computationally e�cient on small mazes

We compare the convergence rates both on training and held-out 5x5 mazes for MLM-   and next

token prediction. We choose this small setting because this is solvable by both objectives. We �nd as

shown in Figure 4 MLM-   converges 2.17x faster in terms of the number of training epochs. We

additionally control for computational overhead in terms of GPU training hours, we �nd training on

the same data for 2k epochs using 8M parameter transformers on 8 Tesla V100 32GB GPUs takes 13.7
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hours for next token versus 17.7 hours for MLM- . Accounting for this additional 7% overhead, we

�nd as shown in Figure 4 MLM-   is    more e�cient than a comparable next token model on

small DFS mazes. As a caveat, we note that on 10x10 mazes, next token training crosses the 40%

performance threshold faster than MLM- , indicating faster initial learning before saturating at peak

of 46% accuracy on held-out test mazes.

Figure 4. Training e�ciency of next token vs. MLM-  on 5x5 mazes. While both models are able to

perfectly solve held-out 5x5 mazes, MLM-  does so 2.03x more quickly relative to next token. The shaded

region shows the standard error across the mean over three random seeds. We also observe over�tting for

next token training past 200k training steps whereas MLM-U accuracy remains at near perfect

accuracy.On the right, we show the number of GPU hours needed for each training objective to converge.

5.2. MLM-  and next token training with A* Mazes

MLM-  outperforms next token prediction with and without A* search supervision

In this section, we train models with MLM-   on the deterministic A* maze dataset from[6]  as

described in the second part of Section 4.1. We compare those models to the ones trained in[6] with and

without additional supervision from A* search traces. For example, a nearly 2x larger 15M parameter

transformer trained with next token prediction achieves 13.3% navigation accuracy on 30x30 mazes

whereas MLM-   reaches 85.5% navigation accuracy. The results can be found in Table 2. The 8M

parameter MLM-  trained transformer compares favorably with all models from[6]  trained on 100k

mazes. This holds true even when aiding the training with additional supervision provided by the A*

search trace, which boosts next token training by a signi�cant margin.
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Maze Navigation 10x10 20x20 30x30

MLM-  8M

Next token 15M[6]

Next token 175M[6]

+ A* trace supervision

Next token 175M[6]

Table 2. Maze navigation accuracy for MLM-  training compared to next token training with and without

A* search traces for encoder-decoder models trained on 100k A* maze and solution pairs. Baseline

numbers are all taken directly from[6]. 15M, 175M, and 8M indicate the number of parameters in the

transformer architecture used for training. Accuracies refer to an exact match of true and generated path.

See Table 4 for per token accuracies in MLM- .

5.3. Understanding the training dynamics of MLM-U Compared to next token

Next token training is more prone to over�t than MLM-

We compare the convergence rates both on training and held-out 10x10 DFS mazes for MLM-U

compared to next token parameter-matched 8M parameter models in Figure 5. Although we observe

faster training convergence for next token models as shown on the left, we see the next token model is

not able to generalize from the training data, with performance saturating at around 50%, while

MLM-U is able to perfectly solve 10x10 mazes. This suggests while next token training is susceptible to

over�tting, where MLM-  exhibits good generalization without over�tting. We attribute this to the

increased di�culty of the objective. MLM-  is tasked to predict any subset of path tokens from any

other, while next token training only ever sees the same sequence of conditionals for each maze.

U 98.5 95.2 85.5

93.6 39.0 13.3

94.9 53.5 19.3

98.5 90.4 70.2
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Figure 5. Comparing convergence rates of next token and MLM-U on 10x10 mazes. Left is training

accuracy; right is navigation accuracy on held-out mazes.

MLM-  bene�ts from scaling to larger transformers for more complex mazes

Here, we investigate the e�ect of scaling transformer model size for 20x20 DFS mazes, one the more

challenging settings where next token training yields 22% accuracy. As shown in Figure 6 MLM-

 training improves navigation accuracy from 85% to perfect navigation accuracy when transformer

model size is scaled from 3M to 8M parameters. For next token prediction, we also observe

improvements with transformer model scale, but at a relatively slower rate. A more than 8x increase

in model size, from 3M to 25M, for a model trained with the next token objective yields a 43% relative

performance improvement.

Figure 6. Left: Performance of di�erently sized models (in millions of parameters) across next token and

MLM-  training on 20x20 DFS mazes. Right: Example failure of next token training on a 10x10 maze.
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5.4. Positional encodings need more �oating point precision

As we scaled MLM-   training to more complex mazes, we found the precision of the positional

encodings to be particularly important for good maze navigation performance. Unlike the learnable

([26]) and sinusoidal encodings in the original transformer paper[27]  which are added to the input,

MLM-  uses Rotational Positional Encodings (RoPE,[28]), which bias the query and key vectors in the

attention mechanism as a function of their relative positions. To better understand the role of these

positional embedding precision we train an 8M parameter transformer MLM-  on a small set of 100

DFS mazes with increasing grid size complexities. We found with 16-bit precision positional

encodings (�oat 16 via the automatic mixed precision, AMP, package in PyTorch) as shown in Figure 7

(right), MLM-  generally predicted the correct paths, but failed get the exact positions right, skipping

some and duplicating others, resulting in low navigation accuracy on more complex (25x25 and

larger) training mazes.

With full 32-bit precision positional encodings however, we found MLM-  was able to reach perfect

navigation accuracy even on these more complex mazes. For example, as shown in Figure 7 on 30x30

mazes MLM-   only reached 50% navigation accuracy with 16-bit positional encoding precision

whereas with 32-bit positional encodings MLM-   solved 30x30 mazes perfectly. This suggests for

larger grid sizes, higher precision in the positional encoding allowed the model to properly map the

learned paths to their proper positions on the maze. We observed a similar improvement in

performance with larger training data (100k samples) on 30x30 DFS mazes. In particular, by

increasing the precision from 16 to 32-bits for positional encodings, MLM-  performance on 30x30

DFS mazes improved from 40% to 93.8% highlighting the importance of higher positional encoding

precision.

While positional encodings have been tailored to next token prediction objectives, less emphasis has

been placed on the best positional encoding strategies for masking objectives such as MLM- .

Consequently, the above observations lead us to question whether current approaches are optimal for

objectives such as MLM- . A promising path for training on more complex mazes with larger grid

sizes could stem from a better understanding of how best to encode positions for longer-term

planning objectives. Therefore, we consider the detailed study of positional bias in masking objectives

like MLM-  crucial for future work.

U

U

U

U

U

U

U

U

U

U

U

qeios.com doi.org/10.32388/3Q1XZW 15

https://www.qeios.com/
https://doi.org/10.32388/3Q1XZW


Figure 7. Left: Training accuracy of models trained with 16- versus 32-bit positional encoding precision on

mazes with di�erent grid sizes. Each model has 8M parameters and is trained on only 100 mazes. For

mazes of shape 25x25 and larger, the models cannot over�t on the 100 maze training dataset with only 16-

bit positional encoding precision. Right: Example 26x26 maze from the train dataset with solution and

predicted answer when training with 16-bit positional encoding. The red line presents the true path and

the yellow arrows depict the predicted path, generated in a next token left to right fashion. The arrows

show inconsistencies and errors on a small scale, but overall follow the correct path.

6. Discussion

By adjusting the learning objective from next token prediction to one that explicitly predicts multiple

steps ahead and back (MLM- ), we show transformers can learn to e�ectively navigate mazes.

Fortunately, training with an explicit multi-step objective is also more e�cient both in terms of

training samples as well as GPU training hours and o�ers nice model scaling bene�ts with maze

complexity. We hope these �ndings spur the research community to explore learning objectives as a

lever to address one of the main limitations of today’s best transformer models: multi-step planning.

In future work we hope to explore the role of learning objectives in a broader range of multi-step

planning tasks.

Limitations and Future Work

Of course, such an approach also comes with the typical limitations of transformers, including a �xed

context length, which can limit or degrade the training speed of transformers as maze size grows. We
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observed the importance of positional encodings in MLM-  training, particularly for more complex

mazes. We suggest that there is more understand about the role of positional encodings for planning

and identify this as important future work. Furthermore, we acknowledge the increased hardness of

the MLM-  objective. Instead of predicting the same token always with the same context, the context

is randomly sampled every time the same training data is observed. For a su�ciently long sequence,

the model will never see the same problem twice due to the exponentially increasing number of

possible contexts. We cannot say how this impacts generalization speed in general, although we saw

some favorable evidence in this work. In an e�ort to keep the comparison as straight forward as

possible, we used MLM-  exactly as described in[5]. However, multiple improvements are possible. At

inference time, it might be bene�cial to generate tokens according to some heuristic about model

certainty as opposed to left-to-right. Additionally, the uniform masking rate applied the same way to

each token is certainly the simplest, but unlikely the optimal method. A semantic heuristic could

favorably impact performance. A possible intuition here is that for many mask realizations, the

problem is too easy or too di�cult for the model, and it wastes time in those batches. Instead, over-

sampling masks that make the problem hard but solvable might yield vastly increased convergence

speeds.

In all, these �ndings shine light on a promising path forward for research to improve long-horizon

planning in transformers, with lots of potential for future work.

Appendix A. Additional Results

A.1. Per Token Results

To evaluate the possibility of the generated paths deviating only slightly from the shortest paths, we

also compute the token-wise accuracy of the generated paths compared to the shortest path. In Table

3 and Table 4 we present per-token accuracies for the experiments from Table 1 and Table 2.
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Maze Navigation (Accuracy) 5x5 10x10 15x15 20x20 30x30

Autoregressive (per token) 46.0 32.2 25.4 25.1

Autoregressive (full path) 45.2 24.4 20.6 18.8

MLM- (per token)

MLM- (full path)

Table 3. MLM-  compared to next token training for 8M parameter transformer-based models trained on

100k maze, solution pairs. We report per-token shortest path accuracy for held-out maze of varying

complexities based on their grid size. Same as Table 1, but including per token accuracies.

Maze Navigation 10x10 20x20 30x30

MLM-  8M (full path accuracy)

MLM-  8M (per token accuracy)

Table 4. Maze navigation accuracy for MLM-  training for encoder-decoder models trained on 100k A*

maze and solution pairs, per token and full path accuracies. Refer to Table 2 for baselines.

A.2. Comparing transformer models for Next Token training

We compare two choices of architecture for autoregressive training with transformers: 1) the standard

decoder architecture commonly used in modern language models, 2) the encoder-decoder

architecture used for MLM- . We train two 8M parameter transformer models with each of these

architectures on 100k DFS 10x10 mazes and evaluate performance on held-out mazes. As shown in

Figure 8, we �nd the common decoder-only architecture converges more quickly and generalizes

better than the comparable encoder-decoder architecture. We use the stronger decoder-only baseline

for our experiments.

100

100

U 100 100 100 100 95.8

U 100 100 100 100 93.8

U

U 98.5 95.2 85.5

U 99.7 97.2 96.5
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Figure 8. We compare two choices of architecture for next token training with transformers on 10x10 DFS

mazes.

Appendix B. Ablations for Hyperparameters

We conduct hyperparameter ablations for learning rates Figure 9 and weight decay in Table 5. We train

the next token model with 8M parameters for 500 epochs on 100k 10x10 training mazes and evaluate

per-token held-out accuracy to select the best learning rate. Based on this sweep we select 0.001 as the

learning rate we use for all our experiments. For MLM-  we found learning rates to have negligible

e�ect beyond an upper bound to ensure training stability. We select 0.001 as well. We found large

weight decay values to be detrimental for next token training, see Table 5. In MLM- , we generally

don’t see over�tting and therefore also don’t need any weight decay. We choose   for next token

and no weight decay for MLM- . We found training to be most stable with the AdamW optimizer with

beta values   and   and batch sizes of 128 and above.

We evaluate models of two di�erent sizes: 8M parameter models with a width of 128, a depth of 40 and

4 heads per attention layer. For 25M parameter models, the width is 256 with a depth of 32 and also 4

heads per attention layer. In the case of an encoder-decoder, both encoder and decoder have depth/2

layers. During development of the experiments, we found that deeper models generally do slightly

better in the 8M parameter setting, both innext token training and in MLM- .

U

U

10−4

U

= 0.9β1 = 0.999β2

U

qeios.com doi.org/10.32388/3Q1XZW 19

https://www.qeios.com/
https://doi.org/10.32388/3Q1XZW


Figure 9. Learning rate ablations for autoregressive (8M parameter) model training on 10x10 mazes for

500 epochs. The y-axis shows the accuracy on held-out 10x10 mazes.

Weight decay

Val Acc (%)

Table 5. Impact of weight decay on GPT training on DFS mazes

Appendix C. MLM-  and Next token Failure Modes

In Figure 10 we give some visual examples of MLM-  failure modes on 30x30 DFS mazes using the 8M

model from Section 5.1. Often, the general path taken is mostly correct, but it takes a wrong turn or

two and then backtracks to follow the right track, possibly ending up only a few steps short of the goal

node. Figure 11 shows example failure cases of the next token model. Often, there is a general tendency

towards the right path, but we �nd frequent backtracks, traversals through walls and often completely

wrong end points.

Figure 12 shows failures for the 8M model trained on the A* mazes, from Section 5.2. Note that in two

of those failure cases (bottom left and right), the paths predicted are equivalent shortest paths.

However, since we are checking for exact match in the deterministic A* setting from[6], those count as

10−2 10−3 10−4 10−5

41.0 41.1 43.7 43.5
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faulty. In those instances, the model does not seem to have picked up the way in which symmetry

between shortest paths is broken in the deterministic dataset. Note that there also exist other failures

that cause parsing errors and can therefore not be depicted. Those make up about half of all failure

cases in the validation dataset for this 8M MLM-  model. The failure cases in Figure 13 for the 30x30

A* maze case are conceptually similar. However, the model fails in some additional ways. For

instance, it sometimes misses –or malforms– a step, which ends up being displayed as a diagonal

move (left top and bottom). Or it predicts traversal through a wall (top right). The bottom right path is

a proper shortest path, but the model does not predict the last move correctly.

Figure 10. MLM-  failure examples on 30x30 DFS mazes.
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Figure 11. Next token failure examples on 30x30 DFS mazes.
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Figure 12. MLM-  failure examples on 20x20 A* mazes.U
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Figure 13. MLM-  failure examples on 30x30 A* mazes.

Appendix D. More details on the Experimental Setup

D.1. MLM-  training

The MLM-  models are exposed to the same maze representation, start and end cells and subsequent

solution path. Unlike the next token baselines the loss is not a next token prediction loss, but a

masking loss reminiscent of the BERT training objective. Tokens are masked with a speci�c

probability and the objective judges the model predictions on the masked tokens via the cross-

entropy. In BERT, the masking rate is �xed, but MLM-   draws masking rates uniformly for each

batch.  [5]  give an intuition for why uniform masking rates are advantageous. Since the uniform
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masking rate exposes the model to di�erent length sequences to be completed and to draw

information from, there is no distributional shift in a generative inference step, see Figure 2 in [5].

For this speci�c case of maze navigation, the only tokens that can be masked are part of the solution

path. The model is never tasked to predict the maze representation or start or goal cells. [5] report that

the MLM-   objective is best trained with a speci�c encoder-decoder architecture. The encoder has

blocks in the layout of GPT-2 with a RoPE positional bias. The decoder input is a sequence of multiple

copies of the same learnable token such that the decoder only has information about the positional

bias via RoPE. See implementation details in Appendix D.3.

D.2. Maze Generation Details

We study two di�erent kinds of mazes in this work. They have di�erent properties and are represented

in di�erent formats. With that, we aim to demonstrate that our �ndings are not speci�c to a single

type of maze or representation, but hold more generally.

DFS mazes

First, we utilize the maze generation method from  [25]  to generate 2 dimensional mazes via the

randomized Depth First Search (DFS) method. This method works by visiting all grid cells in a depth-

�rst manner. From a uniformly random start node, it uniformly picks a neighbor cell and removes

walls between both cells whenever the target cell was not previously visited. If a cell does not have

unvisited neighbors, it is declared a dead end and the algorithm backtracks until a cell with unvisited

neighbors is found, starting a new "descent", like in standard depth �rst tree search. A goal cell is

uniformly sampled. This generation algorithm makes for long paths, but does not allow ambiguity.

The shortest path is also the only path that does not backtrack from dead ends. The mazes are

serialized into strings that enumerate the edges of the maze connection graph as a set of tuples. The

start node, goal node and solution path are appended to form the full text that the model trains with.

We generate 100’000 mazes for each maze dimension, spanning 5x5 to 30x30.

A* mazes

Second, we use the deterministic A* maze dataset from [6]. Start and goal cell were uniformly sampled

in a 2 dimensional grid. Mazes were generated by randomly selecting 30-50  of the cells to be walls

and A* was used to solve those mazes. For an  x  maze, the sampled problem is added to the dataset
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if the solution path is at least of length  . In contrast to the DFS mazes, these mazes have many

possible solutions, out of more than one are possibly the shortest ones.  [6]  experiment with both

randomly and deterministically (heuristically) choosing the shortest path that the model sees as

ground truth. Also unlike the DFS mazes, the text representation describes the set of walls rather than

connections and puts the goal and �nal cell before everything else. In both datasets, the solution path

is the last part of the string. Following, the setup in [6] we train on mazes of varying complexities with

grid sizes 10x10, 20x20 and 30x30. We train only 100k mazes and reserve 2k mazes each for validation.

Comparison

For a direct comparison of the maze setups, refer to Figures 14 and 15. They depict how the prompt and

response are made from maze instantiations of the A* and DFS type.

Figure 14. A* maze representation, from[6]. The maze is serialized as a list of walls and start and goal

node. All numbers and words are individual tokens.

Figure 15. DFS maze representation. The maze is serialized similarly to the A* setup, but instead of listing

walls, connections (i.e. possible movements) are listed, which comes closer to a graph representation with

an edge list. Here, each grid cell coordinate (x,y) is a unique token.
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Notably, the tokenizers for A* and DFS mazes treat cell representations di�erently. In DFS mazes each

grid cell is one distinct token. This is done to avoid making the sequences too long. In A* mazes, grid

cells are tokenized with individual tokens for x and y coordinate. We believe this presents a better

inductive bias than individual tokens for each grid cell, but also increases the sequence length

signi�cantly. Since the solution paths are generally much shorter in these mazes, the extra sequence

length is a�ordable. See Figure 2 for a comparison of path lengths between A* and DFS mazes.

D.3. Implementation of Encoder-Decoder

Here we show the exact encoder-decoder algorithm used for MLM-  training on mazes, as it di�ers

slightly from traditional models. Speci�cally, the di�erence lies in the fact that the decoder only sees a

sequence of equal embeddings and only gathers information about the mazes from the cross attention

with the encoder. Positional information is brought in via RoPE on queries and keys.
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Appendix E. Miscellaneous experiments

E.1. Ordered masks

One of our motivations for utilizing a training scheme like MLM-  is that such a scheme enables more

explicit reasoning over tokens that are further in the future than the immediate next token, hopefully

aiding longer-horizon planning. In light of this view we evaluate the following ablation: In MLM-

 each token in the solution path is masked with some (uniformly drawn) probability, independently

of other tokens. Instead, we uniformly pick a position in the solution path and mask all tokens to the

right of this position. Then we predict all of those tokens as a function of the context to the left of the
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chosen position. This method relates closer to the method used to solve the Star-Graph problem in[3].

However, we �nd that this method is far inferior to MLM-  in the 10x10 A* maze setting tested. The

maximum per-token accuracy observed is 73%, with less than 4% full path accuracy.

E.2. Generalization to smaller mazes

To see whether and how MLM-U and next token trained models perform out of their immediate

training distribution, we evaluate models trained on 20x20 DFS mazes on smaller (10x10) mazes.

Limitations in length generalization prohibit non-zero accuracies on larger mazes, but experiments

on smaller mazes yield interesting results, see Table 6. In all experiments, we tokenize the 10x10

mazes via the 20x20 tokenizer. This is important because the 10x10 and 20x20 tokenizers in our

training methods assign di�erent tokens to the grid cells. While next token trained decoders can

achieve non-trivial accuracy on smaller mazes out of the box, changing only the tokenizer, MLM-

 can not.

In order to recover good performance in MLM- , we embed the 10x10 maze into the upper left corner

of a random 20x20 maze in an e�ort to bring the smaller maze closer to the training distribution.

Con�guration Token Accuracy( ) Full Path Accuracy( )

Next Token 30 21

Next Token embedded in 20x20 maze 37 29

MLM-U 2 0

MLM-U embedded in 20x20 maze 100 100

Table 6. Generalization of models trained on 20x20 DFS mazes on 10x10 DFS mazes. Every setting has the

10x10 mazes tokenized via the 20x20 tokenizer. "Embedded in 20x20 maze" means that we put the 10x10

maze into the upper left corner of a 20x20 maze. For all experiments, the 10x10 maze was tokenized via the

20x20 tokenizer.
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