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This paper has two objectives: (1) Provide intuitive insight into statistical and substantive signi�cance

intersections with histograms, bar graphs, and crosstabs with data from independent samples t-tests.

(2) Convincingly demonstrate with graphs and a few numbers that statistically signi�cant p-values

from independent samples t-tests are valuable for screening out standardized mean differences,

known as Cohen’s d (effect size), that would otherwise be misinterpreted as substantively signi�cant.

The author hopes the empirical sampling distributions in this paper help students, applied

researchers, and science writers to properly understand and appreciate the value of statistical

signi�cance for scienti�c inference and decision-making with small sample sizes (n < 1,000) in the

face of uncertainty.
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Massive data sets in this 21st century may have thousands of variables with complex, multidimensional

structures and millions of observations requiring computer-intensive data science for their

statistical/mathematical analysis. Nonetheless, small data sets (n < 1,000) also exist, and their analysis

requires more accessible inferential statistical techniques developed at the beginning of the 20th century

(e.g., Student, 1908). These analyses are now done with statistical software on laptops that swiftly

produces many p-values for evaluating statistical signi�cance. Regrettably, the misunderstanding and

abuse of p-values and statistical signi�cance have diminished scienti�c credibility (Wasserstein & Lazar,

2016; Greenland et al., 2016; Ioannidis, 2005).

The editors of Basic and Applied Social Psychology (Tra�mow & Marks, 2015) highlighted the common

misinterpretation of a non-statistically signi�cant p-value as the probability that the null hypothesis is
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true. As a result, they banned statistical signi�cance, p-values, and con�dence intervals from articles

submitted for publication. A year later, the American Statistical Association (ASA) published six principles

about p-values to guide their appropriate use and interpretation (Wasserstein & Lazar, 2016).

Nevertheless, three years later, an editorial in a special issue of The American Statistician (TAS) called

“Moving to a world beyond p < 0.05” stated that “no p-value can reveal the plausibility, presence, truth, or

importance of an association or effect….regardless of whether it was ever useful, a declaration of

‘statistical signi�cance’ has today become meaningless.” The editors called for a ban on statistical

signi�cance by proclaiming, “Don’t say it, Don’t use it” (Wasserstein et al., 2019, p. 2).

Coining a new expression for statistical signi�cance makes sense because it has been con�ated with

substantive signi�cance. However, no consensus exists for “don’t use it” (e.g., Begg, 2020; Benjamini,

2021; Harrington et al., 2019; Mayo & Hand, 2022; Komaroff, 2020; Komaroff, 2024). This paper is focused

on sampling distributions of random p-values. Others have also considered p-value distributions (e.g.,

Bland, 2013; Verykouki & Nakas, 2023; Wang et al., 2019). This author agrees that the credibility of

statistical signi�cance is undermined by violated assumptions, poor execution of research designs,

multiple testing, data dredging or �shing, p-hacking, and p-harking (hypothesis after the results are

known). See Greenland et al. (2019) and Wasserstein and Lazar (2016) for a comprehensive discussion

about misinterpretation and abuse of p-values. This paper focuses only on the effect of random sampling

errors on sampling distributions of means, mean differences, and p-values related to statistical

signi�cance, as well as the substantive signi�cance of effect sizes as measured with Cohen’s d (1968).

Theoretical sampling distributions are foundational for understanding statistical signi�cance. However,

this concept is taught with complex mathematical/statistical theorems that are too dif�cult for students

and applied researchers who are not mathematicians. The concept is simpli�ed by showing a sparse

histogram depicting repeated summary statistics randomly sampled from a human population overlayed

with a smooth, bell-shaped, standard normal curve (e.g., Moore et al., 2021). However, such simpli�cation

does not provide any insight into statistical signi�cance. Sampling distributions are not about people but

are theoretical distributions with in�nitely many random, summary statistics that follow a predictable

form.

Student (1908) stated that some experiments cannot be easily repeated; therefore, the certainty of a result

must be judged with a tiny sample. Furthermore: ”Any experiment may be regarded as forming an

individual of a ‘population’ of experiments which might be performed under the same conditions

(Student, 1908, p. 1). Fisher (1970) echoed: “The entire result of an extensive experiment may be regarded
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as but one of a possible population of such experiments” (Fisher, 1970, p. 2). “Population” in these

sentences exists only in mathematical, statistical theory. Students and applied researchers easily grasp

the concept of sample and population frequency distributions because they exist in practice (reality).

However, theoretical sampling distributions exist only in theory. The author hopes the empirical

sampling distributions in this paper help students, applied researchers, and science writers to properly

understand and appreciate the value of p-values and statistical signi�cance for scienti�c inference and

decision-making in the face of uncertainty.

This paper has two objectives: (1) Provide intuitive insight into the intersection of statistical and

substantive signi�cance with histograms, bar graphs, and crosstabs of data from independent samples t-

tests. (2) Convincingly demonstrate with graphs and a few numbers that statistical signi�cance is an

essential scienti�c tool for screening out standardized mean differences known as Cohen’s d (effect size)

that would otherwise be misinterpreted as substantively signi�cant.

Methodology

Imagine a small, early-phase, randomized controlled trial (RCT) designed to determine the ef�cacy of a

novel or experimental treatment (T) to cause a desired outcome (endpoint) compared to a control

treatment (C) with a placebo or standard of care. An independent samples t-test determined whether the

difference in means was statistically signi�cant. The numerator of the t-test is the difference between the

sample means    subtracted from the difference between two population means  . A

typical null hypothesis is that the population means are equivalent, or stated another way, the difference

in population means is zero  . If the sample means are accurate estimates of the

population means, the difference in the sample means must also be zero. However, sample means differ

in statistical theory because of random sampling errors. Nevertheless, when statistical signi�cance is

detected, the null hypothesis of zero difference in population means is rejected. That eliminates the need

to consider random sampling errors as a cause of the difference in sample means. The conclusion is that

the experimental treatment will be effective in the target population exposed to the experimental

intervention.

Statistical Signi�cance

Empirical sampling distributions were simulated with SAS OnDemand for Academics statistical software

(SAS, 2014). The process started with a matrix of two random variables (X) sampled from the standard

( − )x̄T x̄C ( − )μT μC

( : − = 0)H0 μT μC
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normal distribution [X ~ N (0,1)]. Summary descriptive statistics: sample size, means, standard

deviations, and p-values from the “equal variance assumption” of the independent samples t-test (SAS,

2019) were saved into an analysis data set. The true null hypothesis stated that the difference in

population means was zero  . The process was replicated 1,000 times and repeated

with four equal sample sizes per group (n = 15, 64, 500, 1000), creating four analysis data sets.

The level of statistical signi�cance was 5% (α =.05). An indicator (binary) variable was coded as “1” if the

p-value was statistically signi�cant; otherwise, it was “0.” The percentage of statistically signi�cant p-

values out of 1,000 was an empirical estimate of the theoretical type 1 error rate of 5% under a true null

hypothesis. Please recognize that the null hypothesis of zero difference in the population means was not

merely assumed to be true. It was known to be true because all the independent and identically

distributed random variables were sampled from a standard normal population (mu = 0, sigma = 1).

An additional data set with a medium effect size of 0.50 was added to each observation in the

experimental treatment condition to demonstrate testing a false null hypothesis. The results revealed the

probability of a statistically signi�cance p-value when the null hypothesis is false:   and the

alternative hypothesis is true:  . In statistical literature, this is called a power analysis,

where the alternative hypothesis is assumed to be true.

Substantive Signi�cance

Cohen’s d (effect size) was computed as the difference between two sample means divided by a pooled

standard deviation. Cohen’s (1968) effect size categories were used to evaluate the substantive

signi�cance of a standardized difference in means: small |d| ≥ 0.20 to 0.49, medium |d| ≥ 0.50 to.0.79,

large |d| ≥ 0.80. To compute the percentages of substantively signi�cant effect sizes (small + medium +

large), an indicator (binary) variable was coded “1” if Cohen’s |d| ≥ 0.20. When Cohen’s |d| < 0.20, the

indicator variable was coded as “0” and labeled as “none-effect size.” Just as all statistically signi�cant p-

values were false (type 1 errors) under the true null hypothesis, all substantive effect sizes were false

(effect size errors) because the population effect size (Cohen’s D) was known to be equal to 0.00 under the

true null hypothesis.

( : − = 0)H0 μT μC

− = 0μT μC

− = 0.50μT μC
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Results

N = 15 Per Group

Figure 1 is the empirical sampling distribution of 1000 random means from the experimental treatment

with n = 15 per group.

Figure 1.

The empirical distribution of treatment means is approximately symmetric as predicted by the Central

Limit Theorem and centered at the population mean (mu) zero as predicted by the Law of Large Numbers.

Figure 2 shows the sample distribution of 1000 random means from the control treatment with n = 15 per

group.
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Figure 2.

The empirical sampling distribution of control means also appears symmetric and is centered at

approximately the population mean (mu) = 0.00.

Figure 3 is the empirical sampling distribution of differences in the means. The T and C means were

indexed by each simulation run from 1 to 1,000. The �rst T mean was subtracted from the �rst C mean,

then the following T mean was subtracted from the next C mean, and so forth. This process created 1,000

mean differences.
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Figure 3.

The empirical sampling distribution of the mean differences is also approximately symmetric and is

centered at zero.

Figure 4 shows the p-values from 1,000 independent samples t-tests.
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Figure 4.

The empirical distribution of p-values is close to the uniform distribution that is predicted by statistical

theory when all assumptions are satis�ed (Bland, 2103; Westfall et al., 2011; Wang et al., 2019). The 45 p-

values to the left of the reference line at.05 are statistically signi�cant.

Figure 5 is an empirical sampling distribution of Cohen’s d as a continuous variable.
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Figure 5.

This empirical sampling distribution of Cohen’s d as a continuous variable appears symmetric and is

centered close to zero.

Figure 6 displays bar graphs of effect sizes according to Cohen’s d categories: small |d| (≥ 0.20 to 0.49),

medium |d| ≥ 0.50 to.0.79, large |d| ≥ 0.80.
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Figure 6.

Although almost half are in the no-effect size category, small, medium, and large effect sizes are evident

even though the population effect size is zero (Cohen’s D = 0.00).

Figure 7 shows the dichotomous distribution of effect sizes.
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Figure 7.

Only a few effect sizes that �t Cohen's (1968) criteria were statistically signi�cant.

Table 1 has the counts and percentages of statistical and substantive signi�cance. The lower row total

reveals that approximately 5% (45) were statistically signi�cant. Of these 45, 100% corresponded to

Cohen’s d substantively signi�cant categories. Consequently, instead of a researcher

contemplating/interpreting 576 (58%) effect sizes, statistical signi�cance markedly reduced the count to

45 (8%), which would be misinterpreted as substantively signi�cant. The population of Cohens D = 0.00.

Therefore, all effect sizes > 0.00 were effect sizes caused by random sampling errors.
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Table 1.

Figure 8 overlays the statistically signi�cant effect sizes (red) on the distribution of Cohen’s d as a

continuous variable.
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Figure 8.

The reference lines at -0.20 and +0.20 indicate the smallest effect sizes that would be considered

substantively signi�cant by Cohen’s (1968) criteria. Nonetheless, it is important to note that statistical

signi�cance was detected for medium/large effect sizes (|d| > 0.70), which is reassuring. If a type 1 error

was made, at least the effect size was worthy of consideration.

N = 64 Per Group

Figure 9 shows the empirical sampling distribution of continuous Cohen’s d with n = 64 per group.
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Figure 9.

The empirical sampling distribution of Cohen’s d appears symmetric with a central value close to zero

consistent with the known population Cohen’s D = 0.00.

Figure 10 displays the empirical sampling distribution of p-values with n = 64 per group.

qeios.com doi.org/10.32388/3QQSNC.2 14

https://www.qeios.com/
https://doi.org/10.32388/3QQSNC.2


Figure 10.

Figure 10 is an approximately uniform distribution with 53 statistically signi�cant p-values from 1000 t-

tests.

Figure 11 indicates no large effect sizes under the true null hypothesis.
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Figure 11.

Figure 12 reveals that statistically signi�cant p-values were effect sizes that �t Cohen’s d substantive

signi�cance criteria.

qeios.com doi.org/10.32388/3QQSNC.2 16

https://www.qeios.com/
https://doi.org/10.32388/3QQSNC.2


Figure 12.

Table 2 has the counts and percentages at the intersection of statistical signi�cance and substantive

signi�cance.
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Table 2.

The marginal distributions in Table 2 reveal approximately 5% (53) statistically signi�cant p-values and

28% (278) substantively signi�cant effect sizes. Statistical signi�cance screened out 81% of the effect size

errors. It is again noteworthy that 100% (53) of the statistically signi�cant p-values corresponded to

Cohen’s substantive effect sizes criteria of small, medium, or large.

N = 500 Per Group

Figure 13 shows the empirical sampling distribution of Cohen’s d as a continuous variable with n = 500

per group. The range of Cohen’s d is -0.18 (none effect size) to 0.21 (barely small effect size).
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Figure 13.

Figure 14 reveals an approximately uniform distribution of p-values where 40 were statistically

signi�cant (p <.05).
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Figure 14.

Figure 15 revealed at least one statistically signi�cant effect size, but with the total sample size = 1,000, a

few non-effect sizes were detected as statistically signi�cant.
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Figure 15.

Table 3 provides the counts and percentages of the intersection of statistical signi�cance with

substantive signi�cance with n = 500 per group. The marginal distribution of statistical signi�cance

reveals that 4% (40) p-values were statistically signi�cant. Approximately 2% (1) corresponded to an

effect size �tting Cohen’s criteria, whereas the remaining 98% (39) were statistically signi�cant non-

effect sizes.
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Statistical Signi�cance Under a False Null Hypothesis with N = 64 Per Group

A medium effect size (0.50) was added to each of the 64 observations in the treatment condition, thereby

the null hypothesis was false, 

Figure 16 shows the empirical sampling distribution of the means from the Treatment condition.

: ( − ) − ( − ) = 0H0 x̄T x̄C μT μC
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Figure 16.

The distribution of treatment means is approximately symmetric but is centered at 0.49, consistent with

the induced effect size.

Figure 17 shows the empirical sampling distribution of the control means.
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Figure 17.

The empirical sampling distribution of control means is approximately symmetric and is centered at

zero.

Figure 18 displays the empirical sampling distribution of mean differences.
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Figure 18.

The distribution of mean differences appears symmetric and centered at 0.50, the true difference in

population parameters.

Figure 19 shows that the sampling distribution of p-values under the false null hypothesis is no longer

uniform, as it was under the true null hypothesis.
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Figure 19.

There are more (792) statistically signi�cant p-values than previously seen under the true null

hypothesis with n = 64 per group (see Figure 10). These statistically signi�cant p-values are not type 1

errors but are correct rejections of the tested false null hypothesis: µT - µC = 0, because the simulation

ensured that the alternative hypothesis, µT - µC ≠ 0, was true

Figure 20 has the empirical sampling distribution of Cohen’s d as a continuous variable.
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Figure 20.

The empirical sampling distribution of Cohen’s d is approximately symmetric and centered at Cohen’s d =

0.50, the simulated population effect size.

Figure 21 shows the binary split of Cohen’s d into either no effect size or a small, medium, or large effect

size.
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Figure 21.

Under the false null hypothesis, more effect sizes �t Cohen’s categories compared to n = 64 per group

under the true null hypothesis (see Figure 12).

Table 4 has the counts and percentages of statistical signi�cance and substantive signi�cance under the

false null hypothesis.
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Table 4.

The marginal distributions in Table 4 reveal 79% (792) statistically signi�cant p-values with 95% (950)

effect sizes that �t Cohen’s criteria for substantive signi�cance. Of the 792 statistically signi�cant p-

values, 100% corresponded to substantive effect sizes. The simulation produced data consistent with

power calculations using formulae. According to G*Power (Faul et al., 2007), with n = 64 per group, 80%

power is obtained for a two-tailed independent samples t-test where Cohen’s d = 0.50, and alpha =.05 (see

Figure 22).
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Figure 22.

Conclusion

This paper was written to help students, applied researchers, and science writers better understand and

appreciate the strengths and weaknesses of statistical signi�cance. With graphs and a few numbers, this

paper showed that statistical signi�cance is a viable decision tool when working with small sample sizes

(e.g., n < 1,000) and testing for differences in means with independent samples t-tests. Whatever alpha

value is desired as the level of statistical signi�cance, under a true null hypothesis, the probability of a

statistically signi�cant p-value does not increase with increasing sample size. Fisher (1973) noted: “Small

effects will escape notice if the data are insuf�ciently numerous to bring them out, but no lowering of the
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standard of signi�cance would meet this dif�culty” (p. 44). Notice that small effect sizes became

statistically signi�cant in only the n = 500 per group analyses. With the total sample size of n = 1,000, the

utility of statistical signi�cance as a screening tool was lost. Researchers can ignore statistical

signi�cance and decide whether trivial (non-effect sizes according to Cohen’s criteria) are meaningful or

substantively signi�cant in their discipline. Similarly, statistical signi�cance is irrelevant when a large

effect size is observed with this large sample. The null hypothesis must be false because large effects are

not predicted by the “Theory of Errors, one of the oldest and most fruitful lines of statistical

investigation” (Fisher, 1970, p. 2), the foundation for the theory of sampling distributions. With a small

sample size, if a p-value is statistically signi�cant, the next step is to consider substantive signi�cance.

This could be with Cohen’s d but more compelling if the researcher’s measurement scale had a referent in

the physical world.

Imagine a researcher abides by a ban on statistical signi�cance. The results in this paper imply that the

scienti�c research literature will be inundated with more irreplicable or unreliable results (Fricker et al.,

2019). Ironically, the solution for the replication crisis may be reproduction and replication as de�ned in a

report from the National Academies of Sciences, Engineering, and Medicine (2019): “Reproducibility

includes the act of a second researcher recomputing the original results, and it can be satis�ed with the

availability of data, code, and methods that makes that re-computation possible. When a new study is

conducted, and new data are collected, aimed at the same, or a similar scienti�c question as a previous

one, we de�ne it as a replication” (p. 45). Nevertheless, the report acknowledged that replication may not

be possible with exploratory research designs.

Fisher conducted exploratory research with small data sets to determine the statistical signi�cance of the

effects of experimental interventions. However, he also explored large data sets created with

observational research designs: “At the present time, very little can be claimed to be known as to the

effects of weather upon farm crops” (Fisher, 1925, p. 1). His thoughts about developing a research

hypothesis (not null or alternative) with small data sets from experiments and large data sets from

observational research designs are clear. “A hypothesis is conceived and de�ned with all necessary

exactitude; its logical consequences are ascertained by a deductive argument.; these consequences are

compared with the available observations; if these are completely in accord with deductions, the

hypothesis is justi�ed until fresh and more stringent observations are available (Fisher, 1970, p. 8). The

following reveals a similar thought: “An important difference is that decisions are �nal, while the state of

opinion derived from a test of signi�cance is provisional, and capable, not only of con�rmation but of
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revision” (Fisher, 1973, p. 145). Regarding con�rmatory analyses, “we may say that a phenomenon is

experimentally demonstrated when we know how to conduct an experiment which will rarely fail to give

us a statistically signi�cant result” (Fisher, 1966, p. 14).

In conclusion, the author guarantees that the results in this paper are reproducible. Readers are

encouraged to request a copy of the author’s SAS program to reproduce all the results with the free

Internet version of SAS OnDemand for Academics (2014). Readers can also write programs with their

favorite statistical software to replicate the results under a true-and-false null hypothesis with different

sample sizes.

The author has no con�icts of interest to disclose.
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