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Controversy is not new in Statistics. Since the start of the 20th Century, proponents of three theories

have claimed superiority. Bayesian theorists mathematically mix subjective theoretical probabilities

with the probability of the data. R.A. Fisher reenvisioned Bayes’ theory by eliminating subjective

probability and inventing a data-generating probability model called the null hypothesis. With this

approach, only the probability of the data can be computed. Subsequently, Neyman-Pearson

supplemented Fisher’s null model with alternative data-generating probability models. In this

century, massive “omics” data are analyzed with a complex amalgam of computer science, advanced

mathematics, statistics, and domain-speci�c knowledge. This paper does not attempt to predict the

future of statistics, unify the three classical statistical theories, argue the superiority of one of the

others, propose a new theory, or call for a radical shift to a new paradigm (e.g., qualitative or mixed

methods research). The statistical analyses in this paper are grounded in Fisher’s paradigm.

Independent samples t-tests were run with simulated data under a true and a false null hypothesis.

Statistical signi�cance was evaluated with p-values and substantive signi�cance was determined

using Cohen’s “effect size index d.” It is shown with graphs and a few numbers that statistical

signi�cance is a viable tool for �ltering out effect size errors that would otherwise be misinterpreted

as substantively signi�cant. Finally, it is shown that increasing sample size does not improve power

under a true null hypothesis – that happens only under a false null hypothesis.

Corresponding author: Eugene Komaroff, komaroffeugene@gmail.com

Tra�mow and Marks[1], editors of Basic and Applied Social Psychology (BASP) stated, “analogous to how

null hypothesis testing fails to provide the probability of the null hypothesis, which is needed to provide a

strong case for rejecting it, con�dence intervals do not provide a strong case for concluding that the
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population parameter of interest is likely to be within the stated interval.” Bayesian procedures were

neither required nor banned from BASP, but “strong descriptive statistics, including effect sizes” were

required. This paper demonstrates that evaluating effect sizes for substantive signi�cance with small

sample sizes but ignoring statistical signi�cance produces many spurious effect sizes (effect size errors)

under a true null hypothesis. Fricker et al.[2] reviewed 31 quantitative research articles published by BASP

after the ban on statistical signi�cance and ”found multiple instances of authors overstating conclusions

beyond what the data would support if statistical signi�cance had been considered” (p. 374)

Cox[3]  stated that criticism of signi�cance testing �lls volumes. An overview of the controversies is at

https://en.wikipedia.org/wiki/Statistical_hypothesis_test. Some authors believe that misunderstanding

and abuse of statistical signi�cance are inherent to the method, so they recommend a paradigm shift:

Benjamin & Berger[4]; Benjamin et al.[5]; Goodman[6]; McShane et al.[7]; Tra�mow & Marks[1]; Wellek[8];

Westover et al.[9]. Others believe that continuous p-values are �ne but want to retire the dichotomization

into statistical signi�cance: Andrade[10]; Amrhein & Greenland[11]; Amrhein et al.[12]; Blakeley et al.[13];

Greenland et al.[14]; Greenland et al.[15]; Gigerenzer[16]; Haller & Krauss[17]; Imbens[18]; Utts[19];

Wasserstein et al.[20]. Finally, others acknowledged problems but argue that better education, and not a

ban, is the solution: Begg[21]; Benjamini et al.[22]; Chen et al.[23]; Haller & Krauss[17]; Lane-Getazis[24];

Harrington et al.[25]; Komaroff[26]; Laken’s[27]; Lytsy et al.[28]; Mayo & Hand[29]; Nickerson[30]; Spence &

Stanely[31]; Wasserstein & Lazar[32]; Vidgen & Yasseri[33]. This paper does not attempt to unify the three

classical statistical theories (Bayes, Fisher, or Neyman-Pearson), argue for supremacy, propose a new

theory, or encourage a radical paradigm shift. This author agrees with the last group that proper

education is the solution. With computer-simulated data, the results from many independent sample t-

tests are graphed and tabulated, demonstrating that statistical signi�cance should not be banned or

retired: it is still a viable tool for decision-making when working with small sample sizes.

The independent samples t-test has three underlying assumptions that must be satis�ed to ensure the

results are valid: independent observations, homogeneity of variances, and normally distributed

dependent variable. The assumptions can be evaluated with statistical tests. For example, normality can

be tested with the Shapiro-Wilk or Kolmogorov-Smirnov tests, and homogeneity or equality of variance

can be tested with Levene's test or an F-Max ratio. If one or more assumptions are suspected,

nonparametric tests, such as the Wilcoxon Rank Sums test, Mann-Whitney U test, or Sign test, can be

used instead. Typically, textbooks and tutorial papers start a discussion of statistical signi�cance by
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“assuming the null hypothesis is true.” However, unlike the violation of t-test assumptions, a researcher

should rejoice if this assumption is untenable. This is counterintuitive and may be a reason for the

misunderstanding of statistical signi�cance. In this paper, the t-test assumptions were satis�ed, but

there was no need to assume the “null hypothesis is true.” The null hypothesis was true, the foundation

upon which R.A. Fisher[34] built his signi�cance testing paradigm.

Under the pseudonym Student[35], W.S. Gosset described the fundamental concept of a sampling

distribution that undergirds the t-test he invented: “Any experiment may be regarded as forming an

individual of a ‘population’ of experiments which might be performed under the same conditions. A

series of experiments is a sample drawn from this population. Now, any series of experiments is only of

value in so far as it enables us to form a judgment as to the statistical constants of the population to

which the experiments belong. In a greater number of cases, the question �nally turns on the value of a

mean, either directly or as the mean difference between the two quantities.”(pp 1-2). R.A.

Fisher[34] echoed the idea: “The entire result of an extensive experiment may be regarded as but one of a

possible population of such experiments” (p. 2). It is essential to recognize that the “population” in these

quotes is not a social or physical phenomenon in nature. This population is a mathematical construct

about a sampling distribution of means that exists only in statistical theory.

A histogram of a human trait such as height is relatively easy to appreciate. The histogram represents

counts (percentages) of people with speci�c values on a graduated scale of measurements, such as feet

and inches or meters and centimeters. Histograms of many sample means are dif�cult to understand

because they depend on mathematical theorems: The Central Limit Theorem and the Law of Large

Numbers[36]. This paper does not present mathematical proofs found in textbooks (e.g., Schaeffer[37])

and online courses (e.g., https://online.stat.psu.edu/stat414/lesson/24/24.2). This author created the

complex mathematical/statistical phenomena of sampling distributions of means by simulating data

with known parameters.

Two parameters of a sampling distribution of means determine p-values and statistical signi�cance. One

parameter is the central value of the sampling distribution, the mean of means or the grand mean, and

the other is the standard error. Fisher[34] stated: “The fundamental proposition upon which the statistical

treatment of mean values is based is that – If a quantity be normally distributed with variance σ2, then

the mean of a random sample of n such quantities is normally distributed with variance σ2/n (p. 114).

Usually, the population standard deviation is in the notation    and is called a standard error. Theσ/ n−−√
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population standard deviation (σ) is rarely known in practice, but Gosset[35]  showed that a sample

standard deviation (s) can be used to estimate the population standard deviation. In summary, when

running a t-test, “assume the null hypothesis is true” is a statement (1) that the hypothesized central

value (grand mean) of a theoretical sampling distribution of means is correct. (2) The standard deviation

of the sample is an accurate estimate of the population standard deviation, and (3) the sampling

distribution of means is normal. (4) Differences in sample means are attributed to sampling error.

Imagine a novel teaching method created to help sixth-grade elementary school students achieve grade-

level fundamental academic skills (reading and arithmetic). The researcher hypothesized that the novel

experimental intervention would be effective as predicted by a theory of cognitive development. The

effect of the intervention was to be evaluated with a standardized test. The researcher hypothesizes that

the novel or experimental teaching method would produce higher test scores on average than traditional

pedagogy with the same content. However, unable to state how much higher, a small, proof of concept,

randomized, controlled experiment was designed. The researcher stated a null hypothesis of zero

difference between means but was confused. The researcher wanted evidence that supported the

research hypothesis that the intervention worked but was required to postulate a contrary hypothesis

that there was no difference between the experimental intervention (E) and the control intervention (C).

This is bewildering unless the foundational sampling distribution concept is understood. The

experiment was run after school hours, and both groups of students took a test at the end of the sessions.

An independent samples t-test was used to determine the statistical signi�cance of the mean difference.

The numerator of the t-test was the difference between the sample means   subtracted from the

difference between the population means  , that is  . The null

hypothesis of zero difference in population means    was “assumed to be true.”

Furthermore, the sample means were assumed to be accurate estimates of the population means. The

researcher reported the following results in a paper: Five students taught with the experimental method

had signi�cantly higher test scores (ME = 72.9, SDE = 12.51) than those taught with the traditional method

(MC = 43.3, SDC = 23.56). A two-sided independent samples t-test revealed a mean difference of about 30

points (ME-C = 29.5, SDE-C = 18.87) with a 95% con�dence interval, 2.02 to 57.06. The p-value was

statistically signi�cant [t (8) = 2.48, p = .038] because α = 0.05. Finally, the standardized mean difference,

Cohen’s d = 1.57, was a huge effect size, indicating that the experimental pedagogy effectively improved

the test scores. The researcher concluded there was only a 5% probability that the null hypothesis was

true but a hefty 95% probability that the alternative hypothesis was true and enthusiastically espoused

( − )x̄̄̄E x̄̄̄C

( −   )μE μC ( − ) − ( −   )x̄̄̄E x̄̄̄C μE μC

( : = 0)H0 μE−C
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reasons for the signi�cant effect of the experimental intervention. Finally, although the wide 95%

con�dence interval indicated poor precision, the researcher argued that this could be easily corrected by

replicating the experiment with a larger sample size.

“Signi�cant effect “is ambiguous because the researcher may have been referring to the statistically

signi�cant p-value (p = .038), the fact that the null hypothesis parameter was not contained in the

con�dence interval, the raw mean difference (30 points), or the standardized mean difference (d = 1.57).

However, there are other issues with the researcher’s conclusions. If you do not recognize them, please

keep reading; these will be discussed after the simulation results are presented.

Since the start of the 20th Century, three competing theories have dominated statistical methodology[38].

Bayesian theorists require an a priori subjective probability of a hypothesis and evaluate the probability

of an interaction between the subjective hypotheses and observed data. R.A. Fisher reenvisioned Bayes’

theory by eliminating subjective probabilities and inventing a data-generating probability model called

the null hypothesis. In Fisher’s theory, only the probability of the data can be computed, not the

probability of a hypothesis. Subsequently, Neyman-Pearson’s theory supplemented Fisher’s null

hypothesis model with alternative hypotheses. This paper is based on Fisher’s signi�cance testing

paradigm:

In order to be used as a null hypothesis, a hypothesis must specify the frequencies with

which the different results of our experiment shall occur, and that the interpretation of the

experiment consisted in dividing these results into two classes, one of which is to be judged

as opposed to, and the other as conformable with the null hypothesis. If these classes of

results are chosen, such that the �rst will occur when the null hypothesis is true with a

known degree of rarity in, for example, 5 percent or 1 percent of trials, then we have a test

by which to judge, at a known level of signi�cance, whether or not the data contradict the

hypothesis to be tested”[39].

Textbooks have cobbled Fisher’s null hypothesis paradigm with Neyman-Pearson’s alternative

hypotheses paradigm[16]. Fisher[40]  disapproved of the Neyman-Pearson paradigm as an “acceptance

procedure” and argued that one can never accept but only reject or fail to reject a hypothesis: “The simple

rejection of a hypothesis (emphasis added), at an assigned level of signi�cance…is often all that is needed,

and all that is proper, for the consideration of a hypothesis about the body of the experimental data

available” (p. 40). In textbooks like Moore et al.[36], the null hypothesis for means is presented as H0: μ =
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0, and a two-tailed alternative hypothesis as Ha: μ ≠ 0. In Fisher’s paradigm, there is no mention of the

alternative parameter. It can be any value on the number line except for the one speci�ed under the null

hypothesis. Fisher did not contemplate an alternative parameter in his signi�cance testing paradigm.

The phrase: “dividing these results into two classes” refers to statistical signi�cance where one either

rejects or fails to reject the parameter speci�ed by the null hypothesis. For power/sample size

calculations[41], a speci�c alternative parameter can be postulated, for example, with an “effect size index

“d”[42] (p. 20). However, the null parameter is tested for statistical signi�cance, not the hypothesized d.

If all assumptions are satis�ed, the Central Limit Theorem and the Law of Large Numbers guarantee that

the central value of a sampling distribution of means equals the population mean  . There is only

one population parameter (central value of the sampling distribution) under the null hypothesis, but the

sampling distribution’s standard deviation (variance) is complicated. There are three standard deviations

in statistics: one for the population distribution, another for the sample distribution, and the third for the

sampling distribution of a summary statistic like the mean. According to Fisher[34]: “The fundamental

proposition upon which the statistical treatment of mean values is based is that – If a quantity be

normally distributed with variance σ2, then the mean of a random sample of n such quantities is

normally distributed with variance σ2 / n” (p. 114). Textbooks present the standard deviation of the

sampling distribution of means as   and give it a new name, the standard error. For the independent

samples t-test, Gosset (Student)[35]  proved that the sample standard deviation (s) can be used as an

estimate of the population standard deviation (i.e.,    ). For testing a difference between two

independent means, the standard error expands to  . The standard error formulas reveal that

sample sizes (n) reduce the magnitude of the standard error.

According to Moore et al.[36]: “A test statistic calculated from the sample data measures how far the data

diverge from the expected value if the null hypothesis 𝐻0 were true (emphasis added). Unusually large

values of the statistic show that the data are not consistent with 𝐻0. The probability computed assuming

that 𝐻0 is true, (emphasis added) that the test statistic would take a value as extreme as or more extreme

than that actually observed is called the P-value of the test. The smaller the P-value, the stronger the

evidence against 𝐻0 provided by the data” (p 387). Cohen’s[42] “effect size index d” a standardized mean

difference can be used to evaluate substantive signi�cance. However, d is closely linked to the t-test

statistic:   (see Cohen[42], p. 67). With equal sample sizes, the sample size multiplier

( = μ)μx̄̄̄

σ / n−−√

s / n−−√

+  
s2

1

n1

s2
2

n2

− −−−−−−
√

t = Cohe d n
′ nEnC

nE + nC

− −−−−−
√
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simpli�es to  . Because every t-value maps to a speci�c p-value, the formula reveals that the

corresponding d-value maps to the same p-value.,

There was no need for the assumptions “null hypothesis is true” or the “standard error is true” in this

paper. The probability data generating parameters for the simulated sampling distributions were created

with several sample sizes (n) from known parameters (μ, σ) of the standard normal curve. The �fth

percentile of sampling distributions of p-values (e.g., Bland[43]; Murdoch[44]; Hung et al.[45]; Wang, et al.

[46]; Verykouki & Nakas[47]) was used to determine statistical signi�cance. Substantive signi�cance was

determined by evaluating the standardizing mean differences (d) according to Cohen’s[42]  criteria as

trivial, small, medium, or large effect size.

Methodology

Sampling distributions were simulated with “do loops” on the free online statistical software called “SAS

OnDemand for Academics”[48]  (SAS, 2014, see APPENDIX). Under a true null hypothesis of a zero

difference in population means, two variables (yE and yC) were randomly sampled from the same normal

distribution [ Ɲ (50, 25)]. The two variables were randomly replicated 1,000 times under eight sample size

conditions: n = 5, 15, 30, 64, 100, 250, 500, and 1000. The difference in population means was tested for

statistical signi�cance with independent samples t-tests[49]  (SAS, 2019). The SAS output provided the

descriptive statistics: sample sizes, means, and standard deviations; and the inferential statistics: t-

values, degrees of freedom, and p-values under the “equal variance assumption.” These summary data

were concatenated into one analysis data set by sample size. The null parameter of zero was true: 

, and the “equal variance assumption” was unquestionable because the data for both

treatment groups were randomly sampled from one normally distributed parent population: YE and YC ~

Ɲ (μ = 50, σ = 25).

Statistical Signi�cance

The a priori level of statistical signi�cance was 5% (α = .05). An indicator variable was used to count

statistically signi�cant p-values (p < .05) in the sampling distribution of p-values. The indicator was

coded as “1” if p < α; otherwise, it was “0.” The percentage (count) of statistically signi�cant p-values was

an empirical estimate of the theoretical type 1 error rate of 5% as predicted by Fisher’s frequentist theory

(19under a true null hypothesis.

n

2

−−
√

: = 0.0H0  μE−C
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Substantive Signi�cance

Cohen’s d was computed by dividing the difference between two sample means by the pooled standard

deviation. Cohen’s[42]  effect size categories determined substantive signi�cance, where |d| < 0.20 was

trivial, |d| ≥ 0.20 to 0.49 was small, |d| ≥ 0.50 to .0.79 was medium, and |d| ≥ 0.80 was large. Note that the

|d| in the notation indicates negative and positive d values were relevant because two-sided t-tests were

run. To compute the percentages of substantively signi�cant effect sizes, an indicator variable was coded

“1” if Cohen’s |d| ≥ 0.20 (either small, medium, or large); otherwise, it was “0.” Under the true null

hypothesis, all statistically signi�cant p-values were type 1 errors. All substantively signi�cant (non-

trivial) d’s were “effect size errors” because the population Cohen’s D was zero, i.e. (50 – 50) / 25 = 0.00.

Results

Figure 1 displays the sample means from the “experimental” group. The tick marks on the X-axis were

kept constant to produce a visual impression of sample means converging on the “mean of means” or the

same grand mean ( .) with increasing sample size. The standard deviation of the sampling distribution

of means became smaller because dispersion around the grand mean decreased as the sample size

increased. The sampling distributions for the control group are not shown because they had essentially

the same convergence patterns.

μx̄̄̄
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Figure 1. Sampling Distribution of Means of the Experimental Group under a True Null Hypothesis.
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Table 1 has the theoretical and empirical parameters under a true null hypothesis by sample size. The top

of Table 1 shows the parameters from the data-generating probability distribution. Below the parameters

are the theoretical standard errors (St. Error) calculated as  . The treatment group means are the

“grand means” ( of the sampling distributions. The standard deviations (Std. Dev.) of the sampling

distributions of means are empirical estimates of the theoretical standard errors  .There is a close

agreement between μ and each    as well as between the theoretical standard errors and empirical

standard deviations. The consistency among the results validates the SAS simulation algorithm (see

APPENDIX).

Table 1. Theoretical and Empirical Parameters of Sampling Distributions of Means

Table 2 has the summary statistics for Figure 1, which con�rm the convergence (Std. Dev., Min and Max)

of the sample estimates on the central values of the sampling distributions with increasing sample size.

σ / n−−√

)μx̄̄̄

s / n−−√

μx̄̄̄
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Table 2. Means, standard deviations of sampling distributions by increasing sample size

Figure 2 displays Cohen’s d’s as a continuous variable on the X-axis and the corresponding p-values from

the t-tests on the Y-axis. Two perfectly monotonic relationships (Spearman |r| = 1.0) are evident between

the d’s and p’s on the left and again on the right of population Cohens’ D = 0.00. These correlations

con�rm the mathematical link between the t and d:  [42]. Consequently, the

following from Wasserstein et al.[20] is puzzling: “No p-value can reveal the plausibility, presence, truth,

or importance of an association or effect”(p. 2). Because p-values are related to Cohen’s d, they can be

used to “reveal the strength of an association,” but they are restricted to an exclusive 0.0 to 1.0 scale.

Cohen’s d is more informative because it can be any value on the real number line.

In Figure 2, the line graph for n = 5 per group (top left) has 44 (4%) statistically signi�cant d’s. Of these, 23

ranged between -3.26 and -1.46 on the far left, and 21 were between 1.46 and 2.83 on the far right of

Cohen’s D = 0.00. Although statistically signi�cant (below the α = 0.05 reference line), these are grandiose

t = Cohe d n
′ nEnC

nE + nC

− −−−−−
√
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overestimates of Cohen’s D. More important is that fact that “not statistically signi�cant” �ltered out 706

effect size errors (all d’s ≤ - 0.20 and all d’s ≥ 0.20) that otherwise would be misinterpreted as

substantively signi�cant.
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Figure 2. Line Graphs of P-Values from Independent Samples T-Tests of Differences in Means represented as

Cohen’s d Effect Sizes.
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Figure 3 shows that the empirical histograms of p-values are almost uniform (rectangular). Uniform

distributions are predicted by statistical theory under a true null hypothesis if all statistical and research

design assumptions are satis�ed[50]. In other words, in the open interval (0.00 to 1.00), every p-value has

the same chance of materializing under the true null hypothesis. Notice that the 5th percentile

(demarcated by the α reference line) contains all the statistically signi�cant p-values for every sample

size.
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Figure 3. Empirical Histograms of P-values Under a True Null Hypothesis.

qeios.com doi.org/10.32388/3QQSNC.3 15

https://www.qeios.com/
https://doi.org/10.32388/3QQSNC.3


Figure 4 shows distributions of Cohen’s d as continuous effect sizes. As the sample size increased, the ds

converged on the population D = 0.00. The same phenomenon occurred with the raw mean differences

converging on μE-C = 0.00. The software (SAS) determined the X-axis tick marks for the graphs. As a

result, the two reference lines denoting substantively signi�cant effect sizes (|d| ≥ 0.20) appear to move

farther apart with increasing sample size. This, again, is the convergence phenomenon towards the

population D = 0.00 as was evident in Figure 2. Notice that statistically signi�cant d’s are only in the tails

of the distributions.
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Figure 4. Sampling Distributions of Continuous Cohen’s d under a True Null Hypothesis

qeios.com doi.org/10.32388/3QQSNC.3 17

https://www.qeios.com/
https://doi.org/10.32388/3QQSNC.3


The bar graphs in Figure 5 were created by grouping the continuous d’s according to Cohen’s[42] criteria:

|d|’s < 0.20 are trivial, |d|’s ≥ 0.20 and < 0.49 are small, |d|’s ≥ 0.50 and < 0.79 are medium, and |d|’s ≥ 0.80

are large effect size. With increasing sample size, the percentage (count) of statistically signi�cant p-

values remained relatively constant at 5% and smaller effect sizes became statistically signi�cant.

Finally, with n = 1,000 per group, only trivial effect sizes materialized, and all were statistically

signi�cant.
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Figure 5. Distributions of Effect Size Index d according to Cohen’s Criteria

qeios.com doi.org/10.32388/3QQSNC.3 19

https://www.qeios.com/
https://doi.org/10.32388/3QQSNC.3


Table 3 provides the counts and percentages of statistically signi�cant p-values, and substantively

signi�cant effect sizes corresponding to Figures 2 to 5.

Table 3. Count and Percentages of Statistically Signi�cant P-values and Substantively Signi�cant Effect Sizes

(Cohen’s d) under a True Null Hypothesis by Sample Sizes.

For instance, with n = 5 per group, 44 (4 %) of the 1,000 p-values were statistically signi�cant (p < .05),

but these were type 1 errors because the rejected null hypothesis was true. Similarly, 750 d’s were

substantively signi�cant effect sizes (small, medium, or large) but were effect size errors because D =

0.00. Nevertheless, statistical signi�cance �ltered out 94% of the effect size errors, leaving only 6%

(44/750) for consideration as substantively signi�cant effect sizes. As the sample size increased, the

percentage of effect size errors decreased, but all were statistically and substantively signi�cant until n =

250. Only 19 statistically signi�cant effect size errors materialized, but there were 42 statistically

signi�cant p-values. The statistical signi�cance �lter now also caught trivial effect sizes. Statistical

signi�cance lost much utility as a screening tool for effect size errors. This is more evident with n = 500

per group, where only one effect size error was detected as statistically signi�cant, and the remaining 46

were trivial effect sizes. Finally, with n = 1,000 per group, all 68 statistically signi�cant p-values

corresponded to trivial effect sizes.
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Con�dence Intervals under a True Null Hypothesis

Figure 5 has subsets of 20 con�dence intervals for the raw (unstandardized) mean differences under a

true null hypothesis because the graph of 1,000 con�dence intervals was a big, incomprehensible smear.

Although con�dence intervals for d’s can be calculated[51], they were unavailable from SAS. Nevertheless,

the raw mean difference con�dence intervals display the same convergence phenomena as those for the

standardized mean differences (Cohen’s d). The precision increased (width decreased) as the sample size

increased and the intervals converged on the population parameter. Moore et al.[36]  stated that 95%

con�dence is a statement about the method's success rate in the long run and is not the probability of the

population parameter contained in any given interval. For instance, with n = 1,000 per group, two

intervals do not include the population parameter.
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Figure 5. Subsets of Con�dence Intervals Around Sample Mean Estimates of the Difference in Population
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Means.

P-values, Statistical Signi�cance, and Cohen’s d Under a False Null Hypothesis

The false null hypothesis was created by adding 20 points to the original yE (experimental) variables

where μ = 50 and σ = 25 (see APPENDIX). This is similar to sampling yE from a normal population

distribution where μE = 70. The yC (control) variables were again randomly sampled from the same

population distribution (μC = 50, σC = 25) as under the true null hypothesis. The null hypothesis H0: μ(E-

C) = 0 was now false because μE-C = 20; however, the null hypothesis of zero population mean difference

was tested for statistical signi�cance. Cohen’s D = (20/25) = 0.80 is now a large population effect size

under the false null hypothesis.

Figure 6 reveals skewed p-value distributions under a false null hypothesis. As the sample size increased,

more than 5% of p-values became statistically signi�cant. The p-value histograms for n > 64 per group

are not shown because only one small interval (bar) contained all 1,000 p-values < 0.05 (see Table 4).

Figure 6. P-value Sampling Distributions Under a False Null Hypothesis
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Figure 7 shows that the sample d’s are normally distributed but are now centered at the population D=

0.80. With increasing sample size, much higher percentages (counts) of substantive effect sizes and

statistically signi�cant p-values materialized under the false null hypothesis compared to the true null

hypothesis.
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Figure 7. Sampling Distribution of Continuous Effect Sizes Overlayed with Statistically Signi�cant P-values

Under a False Null Hypothesis.

Table 4 contains the counts and percentages of statistically signi�cant p-values and substantively

signi�cant effect sizes (|d| ≥ 0.20) under the false null hypothesis. Starting with n = 100 per group, 100%

of the effect sizes were substantively signi�cant, and 100% of the p-values were statistically signi�cant.

Table 4. Statistically Signi�cant P-Values and Substantively Signi�cant Effect Sizes (|d| ≥ 0.20) Under a False

Null Hypothesis

As predicted by statistical theory, Figure 8 shows that the con�dence intervals converged on the

parameter μE-C = 20 as the sample size increased.
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Figure 8. Subsets of Con�dence Intervals for the Difference in Population Means Under a False Null
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Hypothesis.

In Figure 6, the p-value distributions are increasingly skewed right with increasing sample size. Table 3

has the minimum and maximum p-values by sample size.

Table 3. Minimum and Maximum P-values with Increasing Sample Size Under a False Null Hypothesis.

The parameter tested under the false null hypothesis was a zero difference in population means.

However, the true population difference was 20, and the sample means were now converging to 20 with

increasing sample size. As a result, more sample means were farther away (deviations) from the null

parameter of zero. Thus, t-statistics became bigger, and many smaller p-values materialized. Table 4

reveals 100% power at n = 100 per group under the false null hypothesis because the maximum p-value =

.0120. Moore et al.[36]  stated: The smaller the P-value, the more substantial the evidence against 𝐻0

provided by the data” (p 387). A similar idea is conveyed by researchers who add the adjective “very” to

statistical signi�cance. This extra information about p-values produces misunderstanding of statistical

signi�cance. Once the null hypothesis has been “knocked down” (p < α), there is nothing more to be

gained by kicking and spitting on it. For instance, with α = .05, the maximum p = .0120 with n = 100 is

statistically signi�cant as p < .000001 (p = 8.094055E-88 in scienti�c notation) with n = 1,000. There is

no need for “more substantial evidence against the null hypothesis” a p < α is necessary and suf�cient.

However, the smallness of a statistically signi�cant p-value is a crucial consideration when controlling

for alpha in�ation[52].

Conclusion

Westover et al.[9] reported the results of a short survey administered to 246 physicians at three major US

teaching hospitals. The physicians were asked: “Consider a typical medical research study designed to

test the ef�cacy of a drug in which a null hypothesis H0 (‘no effect’) is tested against an alternative
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hypothesis H1 (‘some effect’). Suppose that the study results pass a statistical signi�cance test (that is, P-

value <0.05) in favor of H1. What has been shown?” The physicians had to choose one of the following

seven response options: (1) H0 is false. (2) H0 is probably false. (3) H1 is true. (4) H1 is probably true. (5)

Both 1 and 3. (6) Both 2 and 4. (7) None of the above. Only 7% got the correct answer: "None of the above.”

However, instead of explaining why the other answers were wrong, Westover et al. encouraged readers to

study Bayesian statistical theory, where the probability of hypotheses can be computed.

The simulations in this paper reveal that the probability of a true or false null hypothesis is irrelevant in

Fisher’s frequentist paradigm. The parameter under the null hypothesis is not a random variable but is a

�xed, speci�c value that the researcher determines, e.g., H0: µE-C = 0. The t-statistic (or Cohen’s d)

probability is computed as the area under the curve of a t-sampling distribution. The null parameter is

also the hypothesized central value of the sampling distribution of the t-statistics, and the distance

(deviation) of the sample t-statistic from the central value corresponds to a speci�c p-value. The bigger

the distance, the smaller the p-value. Incidentally, the null parameter does not need to be zero. The

default parameter for the t-test in SAS is zero, but that can easily be changed to some other reasonable

value.

The simulated data demonstrated that a ban on statistical signi�cance increases the risk that many effect

size errors will be interpreted as substantively signi�cant. Although the risk is reduced under a false null

hypothesis, this is not reassuring because the alternative parameter is unknown in the Fisher frequentist

paradigm. Researchers have reported “no difference,” indicating acceptance of the null hypothesis[12]. If

the goal was to determine no difference, an independent samples t-test was the wrong statistical method.

The proper analysis requires positing a margin of equivalence and running two, one-sided t-tests[27][53]

[54]. In short, failing to reject a null hypothesis does not justify a “no difference” conclusion; it merely

warrants further scienti�c investigation.

Proof of concept or pilot experiments are typically done with small sample sizes. The hypothetical study

(at the start of this paper) came from an independent samples t-test run under a true null hypothesis, H0:

μ E-C = 0.0, with n = 5 per group and produced a statistically signi�cant p-value. There cannot be much

con�dence in the results of a study with such a small sample size. As shown with sampling distributions

of Cohen’s d as a continuous measure, large effect sizes materialized by chance, and sample means varied

widely around the grand mean of the sampling distribution. Con�dence intervals become narrower with

increasing sample size, but the correct parameter is not guaranteed to be contained by either the

observed or any future con�dence interval. Finally, it is naïve for anyone working with
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Fisher’s[39]  frequentist paradigm to interpret a p-value as a probability of either a null or alternative

hypothesis (1.00 – p-value). The null parameter is �xed by design, and the alternative parameter is s

unknown.

The improved precision of the con�dence intervals with increasing sample size is understandable

because the calculation includes a standard error. However, sample size is not the only driver of precision.

The magnitude of the standard deviation also affects the standard error. As the sample size increases, a

complex mathematical relationship exists between the margins of error (standard error multiplied by a

critical t value) added and subtracted from the sample mean as the con�dence bounds. It is easier to

understand this phenomenon with simulated data where the standard deviation of the sampling

distribution of means (standard error) became smaller as more sample means became better estimates of

the grand mean of the sampling distribution

Imagine a researcher abides by BAPS’s ban on statistical signi�cance, has a small sample size, and

interprets only the effect size. The results in this paper suggest that the scienti�c research literature will

be inundated with even more irreplicable effect sizes than have already been blamed on the misuse and

abuse of statistical signi�cance[55]. Ironically, a solution for the replication crisis is reproduction and

replication[33]. The report from the National Academies of Sciences, Engineering, and

Medicine[56]  de�ned the two concepts: “Reproducibility includes the act of a second researcher

recomputing the original results, and it can be satis�ed with the availability of data, code, and methods

that makes that re-computation possible. When a new study is conducted, and new data are collected,

aimed at the same, or a similar scienti�c question as a previous one, we de�ne it as a replication” (p. 45).

Nevertheless, the report acknowledged that sampling error may prevent replication of exploratory

research �ndings with small sample sizes, as seen here with unrealistically large effect sizes.

Fisher[40] also called for replication because statistical signi�cance was a guide, not a �nal adjudication:

“An important difference is that decisions are �nal, while the state of opinion derived from a test of

signi�cance is provisional, and capable, not only of con�rmation but of revision” (p. 103). Furthermore,

Fisher believed that a level of statistical signi�cance (α cut point) is required, but “no scienti�c worker

has a �xed level of signi�cance at which from year to year, and in all circumstances, he rejects

hypotheses; he rather gives his mind to each particular case in the light of his evidence and his ideas.”[40].

Wasserstein et al.[20]  ban on statistical signi�cance, but not p-values, is reminiscent of Karl Pearson’s

objection to Fisher’s and Neyman-Pearson’s statistical signi�cance testing with the chi-square goodness

qeios.com doi.org/10.32388/3QQSNC.3 30

https://www.qeios.com/
https://doi.org/10.32388/3QQSNC.3


of �t test: “It is very unwise, in my opinion, to form tables which provide only the values of P = 0.01 and P

= 0.05, and consider 'hypotheses' which give a value of P < 0.01 as 'false,' and those with a value between

0.01 and 0.05 as 'doubtful,' and for the rest of the scale of P have no descriptive category for you must not

say that such values prove hypotheses to be true”[57].

Nonetheless, the results in this paper support the need for a cut score that separates p-values into two

classes: one class is statistically signi�cant, and the other is not. However, the cut score or level of

statistical signi�cance does not have to be 0.05. It can be of any value in the open interval (0.0 to 1.0)

consistent with the purpose of a scienti�c investigation. For instance, α ≤ 0.20 is recommended for

selecting covariates for a multiple logistic regression model[58]. Similarly, p > 0.05 is desirable when

testing assumptions such as normality or homogeneity of variance. In Structural Equation Modeling

(SEM) theory, a statistically non-signi�cant ( p ≥ 0.05) chi-square p-value indicates an acceptable �t

between the data and the theoretical model[59]. Similarly, a chi-square goodness of �t tests the null

hypothesis that a categorical variable follows a speci�c (theoretical) probability distribution. If the null

hypothesis states a probability distribution, the researcher believes it is true (for example, 7 is the most

frequent sum of two rolled fair dice). Rejecting the null hypothesis (p < α) indicates the null hypothesis is

false or the dice are loaded (biased). However, one does not accept the null if p ≥ α. According to Fisher[34],

If p is between .1 and .9 there is certainly no reason to suspect the hypothesis tested, but that does mean

the hypothesis has been proven. The term Goodness of Fit has caused some to fall into the fallacy of

believing that the higher the value of P the more satisfactorily is the hypothesis veri�ed. Values over .999

have sometimes been reported, which, if the hypothesis were true, would only occur once in a thousand

trials. The high p-value represents a rare event, just like p = .001, but with such a high p-value the null

hypothesis raises suspicion (see Mendelian paradox at https://en.wikipedia.org/wiki/Gregor_Mendel)

Benjamini & Hochberg[52] argued that multiple testing of the same hypothesis but selectively reporting

only small p-values is alpha in�ation: “Conducting the analysis for many subgroups and highlighting or

reaching decisions about the selected few that come out to be statistically signi�cant raises a danger that

the conclusions from the study will not be a result of a natural phenomenon but merely re�ect the

selection of the extremes among the extensively tested noise“ (p. 60). Theoretical physicists recognized

the alpha in�ation problem when running many experiments to test the same phenomenon, so they

used a 5-sigma level of statistical signi�cance[60]. Compare this to the relatively lax 2-sigma level

ubiquitous in the social sciences.
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I hope the results in this paper have convinced readers that statistical signi�cance is a viable tool with

small sample sizes because it �lters or screens out false effect sizes from further consideration under a

true null hypothesis. Nonetheless, statistical signi�cance was useless with n = 1,000 per group. With

large sample sizes, a substantively signi�cant Cohen’s d is unusual under a true null hypothesis

parameter = 0.0; therefore, it merits scrutiny regardless of statistical signi�cance. Similarly, with small

sample sizes, huge effect sizes materialize by chance, which also merits scrutiny regardless of statistical

signi�cance. In conclusion, the author guarantees that the results in this paper are reproducible and

replicable. Reproducible because the data sets were saved to a hard drive and replicable because computer

clock time initiated the random data streams. The SAS code (in the APPENDIX) can be run on the free

Internet version of SAS OnDemand for Academics[48]. Please simulate your sampling distributions of p-

values and effect sizes under a true and a false null hypothesis. You may also agree, as I do, with Mayo

and Hand[29]: “Recommendations to replace, abandon, or retire statistical signi�cance undermine a

central function of statistics in science: to test whether observed patterns in the data are genuine or due

to background variability” (p. 219).

Appendix

SAS code based on Wicklin’s[61] method simulating data under a true null hypothesis.
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libname N'/home/ekomaroff0/TRUENULL';

options VALIDVARNAME=ANY;

ODS EXCLUDE ALL;

/* True Null simulation of many random samples */

%let N = 1000;  /* sample size */

%let Mu0 = 50;   

%let Sigma=25; /* true value of parameter */

%let run = 1000; /* number of random samples */

data Simt;

call streaminit(0);

do Sample = 1 to &run;

   do i = 1 to &N;

do group = 1 to 2 by 1;   

       y = rand("Normal", &Mu0, &Sigma);

 output;     

end;

end;

end;

run;

ods exclude all;

proc ttest data=Simt alpha=0.05 H0=0 Sides=2;

   by sample;

class group;

   var y;

ods output ttests = Ttests statistics=stats;

run;

data ttests2;

set ttests;
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If method="Satterthwaite" then delete;

run;

data stats2;

set stats;

drop n Variable LowerCLStdDev UpperCLStdDev UMPULowerCLStdDev UMPUUpperCLStdDev StdErr;

If method="Satterthwaite" then delete;

If method="Pooled" then do;

es = Mean / StdDev;

end;

run;

data N.T&n;

merge ttests2 stats2;

by sample;

n = &n;

run;

SAS code simulates data under a false null hypothesis.

qeios.com doi.org/10.32388/3QQSNC.3 34

https://www.qeios.com/
https://doi.org/10.32388/3QQSNC.3


/* False Null simulation of many random samples */

libname N '/home/ekomaroff0/FALSENULL';

options VALIDVARNAME=ANY;

%let N = 26;  /* sample size */

%let MU0 = 50;   

%let Sigma=25; /* true value of parameter */

%let run = 1000; /* number of random samples */

data SimF;

call streaminit(0);

do Sample = 1 to &run;

   do i = 1 to &N;

do group = 1 to 2 by 1;   

       y = rand("Normal", &MU0, &sigma);

 output;     

end;

end;

end;

run;

Data simf2;

set simf;

if group = 1 then y = y + 20; 

/* Population Mean for Group 1 changed to 70 */

run;

ods exclude all;

proc ttest data=SimF2 alpha=0.05 H0=0 Sides=2;

   by sample;

class group;

   var y;
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ods output ttests = Ttests statistics=stats;

run;

data ttests2;

set ttests;

If method="Satterthwaite" then delete;

run;

data stats2;

set stats;

drop n Variable LowerCLStdDev UpperCLStdDev UMPULowerCLStdDev UMPUUpperCLStdDev StdErr;

If method="Satterthwaite" then delete;

If method="Pooled" then do;

ES = Mean / StdDev;

end;

run;

data F&n;

merge ttests2 stats2;

by sample;

n = &n;

run;

/*Go back to the top, change the sample size, and re-run program  */
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