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Disagreement is typical in the discipline of statistics. In the last century,

Ronald Fisher focused on the data-generating probability model known as the

null hypothesis. Jerzy Neyman and Egon Pearson generalized Fisher’s null

model with alternative data-generating probability models. Bayesians, such as

Harold Jeffries, mathematically conjugated subjective probabilities with

objective ones derived from the data. In the current century, these classical

methodologies have been supplemented with modern computer-intensive

machine learning algorithms with massive data sets that require

implementation with advanced calculus and interpretation with domain-

speci�c knowledge. This paper does not try to unify the three classical

statistical theories, forecast the future of statistical science, claim superiority

for any methodology, or call for a radical paradigm shift to textual qualitative

research methodology. This paper is focused on Fisher's pervasive statistical

signi�cance of a null hypothesis model. Computer-simulated data was used to

test a zero difference between independent means under a true null

hypothesis. Statistical signi�cance was informed by p-values, and substantive

signi�cance was evaluated with Cohen’s “effect size index d.” The results

demonstrate that statistical signi�cance remains a viable tool for �ltering out

false effect sizes (effect size errors) that might otherwise be misinterpreted as

substantively signi�cant.

Corresponding author: Eugene Komaroff, komaroffeugene@gmail.com

Cox[1]  opined that criticism of statistical signi�cance �lls volumes. See

https://en.wikipedia.org/wiki/Statistical_hypothesis_test for an overview of the

controversy. Some have taken an extreme position and called for a ban on

statistical signi�cance[2][3]. This author acknowledges the misuse and abuse

catalogued by Greenland et al.[4]; However, this is not an attempt to unify the

three classical statistical theories[5]  nor call for a radical paradigm shift to

textual, qualitative research methods. The purpose here is to demonstrate with

graphs and a few numbers that Fisher’s[6]  statistical signi�cance needs to be

understood as a viable screening tool for substantive signi�cance when working

with relatively small sample sizes (e.g., n < 2,000).

Student[7] stated three underlying assumptions to ensure valid t-test results: (1)

independent observations, (2) homogeneity of variances, and (3) normally

distributed dependent variables. Independent observations are determined by

research design, but the other two can be evaluated with statistical methods. For

example, normality can be tested with the Shapiro-Wilks test, and homogeneity

of variance can be evaluated with Levene's test or an F-Max ratio. If an
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assumption is violated, nonparametric tests, such as the Wilcoxon Rank Sums

test, can be used instead. Typically, textbooks discuss statistical signi�cance by

telling the reader, “assume the null hypothesis is true.” However, unlike t-test

assumptions, violating the “true null hypothesis ” assumption is desirable. This

may be counterintuitive for those who do not understand Fisher’s sampling

distribution theory.

Fisher’s paradigm was motivated by Student[7]: “Any experiment may be

regarded as forming an individual of a ‘population’ of experiments which might

be performed under the same conditions. A series of experiments is a sample

drawn from this population. Now, any series of experiments is only of value

insofar as it enables us to form a judgment as to the statistical constants of the

population to which the experiments belong. In a greater number of cases, the

question �nally turns on the value of a mean, either directly or as the mean

difference between the two quantities.”(pp 1-2). Fisher[6]  echoed the idea: “The

entire result of an extensive experiment may be regarded as but one of a possible

population of such experiments” (p. 2). The “populations” for Student and Fisher

were not social or physical phenomena, but were bell-shaped, or normal

distribution of means that existed only in statistical/probability theory.

A histogram of a human trait, such as height, is relatively easy to understand.

Counts (percentages) of people are classi�ed into intervals of heights according

to a graduated measurement scale, such as feet and inches, or meters and

centimeters. However, histograms of sample means were derived with complex

mathematical theorems: The Central Limit Theorem and the Law of Large

Numbers[8]. The mathematical proofs can be found in textbooks, e.g.,

Schaeffer[9], and online (e.g., https://online.stat.psu.edu/stat414/lesson/24/24.2).

Here, empirical sampling distribution histograms were created and do not

require calculus to be appreciated.

There are two key parameters in the sampling distributions of means. One is the

central value, the “mean of means” or grand mean, and the other is the standard

error. The grand mean is relatively straightforward compared to the complex

standard error. Fisher[6]  stated: “The fundamental proposition upon which the

statistical treatment of mean values is based is that – If a quantity be normally

distributed with variance σ2, then the mean of a random sample of n such

quantities is normally distributed with variance σ2/n (p. 114). Because the

population standard deviation (σ) is usually unknown in practice,

Student[7]  derived that a sample variance (s2) is an unbiased estimate of the

population variance (σ2). Remarkably, the variance of a theoretical sampling

distribution was estimated with a random sample of data (s2/n). Student’s t-test

replaced the z-test, which required the population variance. For a t-test, “assume

the null hypothesis is true” requires a researcher to assume a central value or

grand mean of a theoretical sampling distribution of means with a �xed sample

size (i.e., degrees of freedom). Assume that the standard deviation of a random

sample of data is an accurate and unbiased estimate of the population standard

deviation. Finally, assume the theoretical sampling distribution of means is

normally distributed.

Imagine a novel teaching method created to help sixth-grade elementary school

students achieve a grade-level academic skill (reading, writing, or arithmetic).

The researcher hypothesized that a novel teaching method would improve the

skill as predicted by a theory of cognitive development. However, the researcher

did not know how much improvement to expect. A statistician recommended
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designing a small (proof of concept), randomized experiment with two

independent groups: an experimental (E) and control (C). However, the

researcher was bewildered when the statistician hypothesized a zero or no

difference in means. The researcher did not understand the logic of null

hypothesis testing, but complied with the statistician. Two groups of students

took the same test at the end of the intervention sessions. In the numerator of

the independent samples t-test, there was the difference in sample means

subtracted from the difference in their respective population means: ( \

({\overline{x}}_{C})\ - \\)( . The null hypothesis was the puzzling zero

difference in the population means (H0:   = 0). Nothing was speculated

about a difference in the sample means. The results revealed that students taught

with the experimental pedagogy achieved higher test scores (   = 73) than

those taught with the traditional method (  = 43); however, the p-value for the

mean difference ( = 40) was not statistically signi�cant (p = .2114) with α
= .05. The researcher became angry when the statistician concluded the results

were promising/suggestive but not convincing. The researcher observed a

noteworthy difference of 40 points in favor of the experimental intervention.

The difference divided by the pooled (average) standard deviation was a huge

effect size (Cohen’s d = 1.57). The researcher decided to ignore the lack of

statistical signi�cance. The researcher did not understand or care about the

mysterious p-value under a “true null hypothesis” and enthusiastically

speculated about the effectiveness of the novel pedagogy in the write-up. If you

agree with the researcher, please keep reading because you may also be chasing

illusions down a dark rabbit hole.

Methodology

Sampling distributions of means were simulated using the free online statistical

software called “SAS OnDemand for Academics”[10]. Two variables (xE and xC)

were randomly sampled 1,000 times from the same normal distribution: ~ Ɲ (μ =

50, σ = 25). The process was replicated eight times with the following sample

sizes: n = 5, 15, 30, 64, 100, 250, 500, 1000 per group. The difference in population

means was tested for statistical signi�cance with independent samples t-

tests[11]. The SAS output provided descriptive summary data: sample sizes,

means, and standard deviations, as well as the inferential statistics: t-values,

degrees of freedom, and p-values. The null hypothesis of zero difference in

population means was true because    and the variances were

equal: 

Statistical Signi�cance

The level of statistical signi�cance was 5% (α = .05). An indicator variable was

used to count statistically signi�cant p-values (p < .05) in the sampling

distribution of p-values. The indicator was coded as “1” if p < α; otherwise, it was

“0.” The count (percentage) of statistically signi�cant p-values from 1,000 p-

values for each sample size was an empirical estimate of the conventional type 1

error rate of 5% under a true null hypothesis. Notice that the null hypothesis was

not merely assumed but was known to be true. As a result, all statistically

signi�cant p-values were type 1 errors (false rejections of a true null hypothesis).

−x̄̄̄E

−   )μE μC

−  μE μC

x̄̄̄E

x̄̄̄C

−x̄̄̄E x̄̄̄C

= = 50,μE μC

= = 25.σE σC
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Substantive Signi�cance

Cohen’s effect size d was computed by dividing the difference in two

independent means by the pooled (average) standard deviation.

Cohen[12] recommended the following categories for substantive signi�cance: |d|

< 0.20 was a trivial, |d| ≥ 0.20 to 0.49 was a small, |d| ≥ 0.50 to .0.79 was a

medium, and |d| ≥ 0.80 was a large effect size. The two vertical lines surrounding

d indicate that negative and positive values were computed because the t-tests

were two-sided. The percentages of substantively signi�cant effect sizes were

captured with an indicator variable coded “1” if Cohen’s |d| ≥ 0.20 (either small,

medium, or large); otherwise, it was “0.” Recognize that all substantively

signi�cant (non-trivial) d’s were “effect size errors” because the population

Cohen’s D was zero [ (50 – 50) / 25 = 0.00].

Results

Table 1 has descriptive summary data. The parameters of the data-generating

probability distribution were µ = 50 and σ = 25. The standard errors (St. Error) of

the theoretical sampling distributions differed only by sample size ( ). The

empirical standard deviations (St. Dev.) were estimates of the theoretical

standard errors. The empirical grand means differ slightly from the theoretical

grand means because of random sampling errors. The close agreement between

theoretical and empirical data validates the SAS programming and analyses.

Table 1. Theoretical and Empirical Sampling Distributions of Means

Figure 1 shows the histograms of sampling distributions of observed mean

differences by sample sizes. The grand means of the sampling distributions

closely approximate the zero difference in population means. The empirical

sampling distributions' standard deviations (standard errors) decrease with

n−−√
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increased sample size. The shrinkage in dispersion can also be discerned from

the range (maximum—minimum).

Figure 1. Sampling Distribution of Mean Differences under a True Null Hypothesis.

Figure 2 provides empirical support for Fisher’s null hypothesis paradigm: Every

p-value has an equal chance of occurring under a true null hypothesis[13]. The

empirical histograms are approximately uniform (rectangular) but would be

perfectly uniform with in�nitely countable replication.
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Figure 2. Histograms of p-values from independent samples t-tests of zero

difference in population means.

Figure 3 shows distributions of Cohen’s d as continuous effect sizes where the

statistically signi�cant d’s are in the tails. As sample sizes increase, the ds

converge (are better estimates) of the population D = 0.00. As a result, the two

reference lines denoting the substantively signi�cant effect sizes (|d| ≥ 0.20)

appear to be moving farther apart.
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Figure 3. Sampling Distributions of Continuous Cohen’s d under a True Null

Hypothesis

The bar graphs in Figure 4 were created by grouping the continuous d’s

according to Cohen’s[12] criteria: |d|’s < 0.20 are trivial, |d|’s ≥ 0.20 and < 0.49 are

small, |d|’s ≥ 0.50 and < 0.79 are medium, and |d|’s ≥ 0.80 are large effect size.

With increasing sample size, the percentage (count) of statistically signi�cant p-

values remains relatively constant at 5%, but the effect sizes become smaller.

Finally, with n = 1,000 per group, all effect sizes are statistically signi�cant, but

none are substantively signi�cant.
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Figure 4. Distributions of Effect Sizes according to Cohen’s Criteria and Statistical

Signi�cance

Table 2 provides the counts and percentages of statistically signi�cant p-values

and substantively signi�cant effect sizes (as depicted in Figure 4).
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Table 2. Count and Percentages of Statistically Signi�cant P-values and

Substantively Signi�cant Effect Sizes (Cohen’s d) under a True Null Hypothesis by

Sample Size.

With n = 5 per group, 44 (4 %) of the 1,000 p-values were statistically signi�cant

(p < .05). However, these were all type 1 errors because the null hypothesis was

true. A type 1 error is the probability of “rejecting a true null hypothesis.”

Similarly, 750 Cohen’s d were substantively signi�cant (small, medium, or large

effect sizes), but these were all “effect size errors” because Cohen’s D = 0.00. The

column labeled “Pct Sig | ES” states the percentage of statistically signi�cant p-

values given that the effect size was substantively signi�cant. Statistical

signi�cance �ltered out 94% of the effect size errors, leaving only a few (6%) for

contemplation. As sample size increased, the percentage of substantively

signi�cant effect sizes decreased, but all were statistically signi�cant until n =

250 per group. Here, only 19 were statistically and substantively signi�cant effect

sizes, but 42 statistically signi�cant effect sizes were not substantively

signi�cant. This phenomenon became more pronounced with n = 500 per group,

where only one substantive effect size was statistically signi�cant, with the

remaining 46 not substantively signi�cant. Finally, statistical signi�cance was

no help with n = 1,000 per group (total n = 2,000) because all 68 effect sizes were

statistically but not substantively signi�cant.

Statistical Signi�cance and Cohen’s d Under a False Null Hypothesis

The false null hypothesis was created by adding 20 points to the original xE
(experimental) variable. This is similar to sampling xE from a normal population

where μE = 70 and   = 25. The xC (control) variable was randomly sampled from

the previous population (μC = 50 and    = 25. The null hypothesis (H0: 

  was now false, and the alternative hypothesis was true (Ha: 

). However, the null hypothesis was tested for statistical

signi�cance, not the alternative hypothesis. Also, the population Cohen’s D =

(20/25) = 0.80 was now a large population effect size.

Figure 5 reveals right-skewed p-value distributions that are expected under a

false null hypothesis. As the sample size increased, although α = .05, more than

σE

σC

− = 0)μx̄̄̄E
μx̄̄̄C

− = 20μx̄̄̄E
μx̄̄̄C
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5% of the p-values were statistically signi�cant, and none were type 1 errors. The

histograms with n > 64 per group are not shown because all 1,000 p-values

clustered in the 5th percentile (see Table 2).

Figure 5. P-value Sampling Distributions Under a False Null Hypothesis

The histogram of the n=64 per group (total n = 120) reveals that 99% (992/1000)

of the p-values were statistically signi�cant. This reveals that with n = 64 per

group and α = .05, there is 99% power to reject the “null hypothesis is true”

assumption. Figure 6 con�rms the empirical analysis with a formula from

G*Power[14].
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Figure 6. Power to Reject A Null Hypothesis with an Independent Samples T-Test

for an Effect Size D = 0.80 and Alpha = .05.

Conclusion

Moore et al. (2022) stated: “The smaller the P-value, the more substantial the

evidence against 𝐻0 provided by the data” (p 387). However, “more substantial”

is confusing in two ways. P-values should not be used to interpret substantive

signi�cance, and adding adjectives, like “more” to statistically signi�cant, fuels

misinterpretation. Once the parameter under the null hypothesis has been

rejected (p < α), there is nothing more to say about statistical signi�cance. The

null parameter is a �xed constant, not a random variable as in the Bayesian

paradigm. After determining statistical signi�cance, attention must shift to an

alternative sampling distribution with a similar dispersion (standard error) but a

different grand mean. Researchers presumably estimate the alternative grand

mean by putting an X% con�dence interval around the observed (sample) mean,

where X is typically 90, 95, or 99. However, that indicates precision but does not

guarantee the sample mean is an accurate estimate of the grand mean,

particularly with small sample sizes.

The data demonstrated that, without statistical signi�cance, many effect size

errors are liable to be misinterpreted as substantively signi�cant. Consequently,

the scienti�c research literature will be inundated with even more irreplicable

results than attributed to the misuse and abuse of statistical signi�cance

(Ioannidis, 2005). Ironically, replication solves the replication crisis[15] but should

not be confused with merely reproduction. The report from the National

Academies of Sciences, Engineering, and Medicine (2019) explained:

“Reproducibility includes the act of a second researcher recomputing the original

results, and it can be satis�ed with the availability of data, code, and methods
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that make that re-computation possible. When a new study is conducted, and

new data are collected, aimed at the same, or a similar scienti�c question as a

previous one, we de�ne it as a replication” (p. 45). Fisher[16]  also called for

replication because statistical signi�cance was a signpost and not the �nal

destination: “An important difference is that decisions are �nal, while the state

of opinion derived from a test of signi�cance is provisional, and capable, not only

of con�rmation but of revision” (p. 103). Furthermore, Fisher believed that a level

of statistical signi�cance is required, but “no scienti�c worker has a �xed level of

signi�cance at which from year to year, and in all circumstances, he rejects

hypotheses; he rather gives his mind to each particular case in the light of his

evidence and his ideas.”[16].

In conclusion, I hope the results in this paper have convinced the reader that,

regardless of a chosen α-level (bright line), statistical signi�cance is a viable

screening tool when working with a small sample size (total n < 2,000). If the

null hypothesis is true, many false effect sizes are excluded from further

consideration. With a large sample size (n ≥ 2,000), substantive effect sizes are

unusual under a true null hypothesis, regardless of statistical signi�cance, and

merit replication and scrutiny for scienti�c plausibility. The researcher in the

scenario at the start of this paper should have been happy with the statistical

analysis. The next step would be appropriately powering another experiment

with a strong chance of rejecting the null hypothesis.

The author guarantees that the results in this paper are reproducible and

replicable. Reproducible because the data sets were saved to a hard drive, and

replicable because the SAS program uses computer clock time to initiate the

random data streams. Please try to simulate your own sampling distributions of

mean differences (effect sizes) and their corresponding p-values under a true

null hypothesis. You may also agree with Mayo and Hand[17]: “Recommendations

to replace, abandon, or retire statistical signi�cance undermine a central

function of statistics in science: to test whether observed patterns in the data are

genuine or due to background variability” (p. 219).

Statements and Declarations

Data availability

If you would like a copy of the SAS program that produced the results in this

paper, please request a copy from komaroffeugene@gmail.com
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