
Open Peer Review on Qeios

A conceptual introduction to ggplot2

Arindam Basu1

1 University of Canterbury

Funding: The author(s) received no specific funding for this work.

Potential competing interests: The author(s) declared that no potential competing interests exist.

Abstract

This is a conceptual introduction to ggplot2 in Rstudio. We take an available data set in R and work step by step to

identify patterns and produce publishable quality graphics using the principles of grammar of graphics.

Introduction to ggplot2

GGplot stands for grammar of graphics plotting function. This is included in the tidyverse package of Rstudio. Here, let's

learn a conceptual introduction to how to use ggplot2 in R to produce graphics and plots where you can generate insights

into your data and present the plots for publications. In general, as Hadley Wickham paraphrases in ggplot2 book, in the

grammar of graphics that Leland Wilkinson wrote a grammar that statistical graphic maps data onto aesthetic aspects of

graphics such as colour of the graphic, the shape of the graphic, and size of geometric objects mainly points, lines, and

bars. Besides this, the plot will contain statistical information and drawn on a coordinate system. If the data need to be

subsetted and viewed as such, it need to be subsetted. In this scheme, all plots consist of five elements:

1. Data must be tidy and long form

Data are the source from where you will draw the graph/plot. Regardless of what data you will deal with, for ggplot to work,

your data should be organised in tidy format and long form. Tidy format is where the data frame has one row per

observation and one column per variable under study and each cell in the data contain only one information, as follows

(Table 1):

Table 1. Organisation of tidy data for age and gender

ID Age in years Sex

Individual 1 20 Male

Individual 2 40 Female

As can be seen in the table, this data is organised such that ID as a column contains only information for one individual in

the row. 'Age in years' and 'Sex' are two variables and the cells contain only one value in them. When you plot your graphs

in ggplot2, make sure your data conform to the tidy format. For more information on tidy data format, see this entry on tidy

data

Data must also be in long format (Table 2a and Table 2b)

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 1/15

https://www.qeios.com/read/3SGTDP#reviews
https://www.qeios.com/profile/386
https://ggplot2-book.org/
https://tidyr.tidyverse.org/articles/tidy-data.html

Table 2a. Data in wide format for rate of disease D

Country 1999 2000 2001

New Zealand 20 21 22

Table 2b. Data in Table 2a organised in long format

Country Year Disease_rate

New Zealand 1999 20

New Zealand 2000 21

New Zealand 2001 22

Here you can see that the same data as in Table 2a as in Table 2b, but they are arranged differently. In the first table, some

repeated measurement of the rate of disease for New Zealand was collected and presented in the years as columns. But in

the second table (Table 2b), the same information on the rates were presented using a longer format where the name of

the country was repeated three times to indicate three years for which the data were available. For more information on

long and wide format of data, see the blog post by Karen Grace-Martin.

2. The plot will be built in layers

After the data, comes the considerations of the geometry and the statistical information that you want to see. What

geometric features, in the speak of ggplot2, geom, would you like to plot? Would you like to plot points, lines, or bars, or

polygons? These are the fundamental building blocks of building a plot. Learn more about geoms from the online ggplot2

book. All plots plot statistical information, in the language of ggplot2, these are referred to as "stat"; every geom is

associated with some stat, and every stat has a corresponding geom. For example, if you want to plot a barplot of a

categorical variable, you will first summarise the variable in counts or proportions and then you will plot these numbers.

The counts and proportions are the stat for the geom of bar. Likewise, if you want to plot a scatterplot and then

superimpose a regression line on the top of the scatter, your geom of line will have the associated stat of a smoothing

procedure, such as linear regression or ("lm") or another form of smoothing function. The following entry in the manual of

ggplot2 describes the stat function. Now we see that in this scheme, data is the FIRST layer in ggplot.

3. Plot must have scale

The word scale here means that there are data points in the database, these are now transformed as visual elements in the

plot. Scale maps the data in the data set to the visual elements in the plot, so that one can be referenced with another. This

means, using scale, you can specify the colour, size, and shape of a point, or draw the legend or axis, or set how the axis

will be drawn (will it be drawn as a continuous scale or will it undergo log transformation?). Or you can use the scale

function to modify the legend of a plot. For more information on scales, follow the link in ggplot2 book's online version

4. All plots must have coordinates

Every plot must have at least a pair of coordinates or a coordinate system. The coordinate system in ggplot2 is coord. This

provides the axes and guidelines that are drawn on the plane of the graphic.

5. Plots can be drawn on small multiples, facets in ggplot speak

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 2/15

https://www.theanalysisfactor.com/wide-and-long-data/
https://ggplot2-book.org/individual-geoms.html
https://ggplot2.tidyverse.org/reference/stat.html
https://ggplot2-book.org/scales-guides.html

Edward Tufte introduced the concept of small multiples. Zach Gemignani in Juice Analytics blog paraphrased and cited

Edward Tufte thus:

Illustrations of postage-stamp size are indexed by category or a label, sequenced over time like the frames of a

movie, or ordered by a quantitative variablenot used in the single image itself

This means you can create the same plot and repeat over several levels of another categorical variable. This will help to

show how the relationship between two variables or say distribution of a single variable _vary_over different levels of

another categorical variable. In ggplot, this is referred to as "facets" and facets can be wrapped or be presented in the form

of a grid. We also refer to facetted charts as trellis chart or lattice chart or grid chart.

Small multiples in ggplot are referred to as "facets". In ggplot, it is not necessary that all plots will have to have facets, but if

you have to show multivariate relationships, then facetting the relationship helps to reduce clutter and makes the charts

easy to follow.

6. Plots are themed.

Themes control the appearance of the plot. For example, the background colour, the font size, whether there should be

axes etc. For more on Tufte's principles, see Rajesh Sigdel's Medium Post in Nightingale.

Implementation of these principles in ggplot2 to make your life easier

This is the first of several posts, so in this post, we will take a simple dataset already within R and we will explore some of

those principles. We will use Rstudio, tidyverse, and ggplot2 for our visualisations. If you want to work along with the codes

I have presented here, please install the following in the order I have presented:

1. R for statistical computing

2. Rstudio

3. Tidyverse

R is a free open-source software programme for statistical data analysis and graphics (indeed statistical programming).

You can obtain R from the link I indicated here. After you install R, please install Rstudio. If you do not want to install

Rstudio, then, you can access rstudio in the cloud by visiting the following site:

https://rstudio.cloud

And creating a free account there.

Finally, after you have installed Rstudio or accessed Rstudio cloud, install the tidyverse package. Tidyverse is a versatile

package that will enable you to conduct data sciene, data analysis and create graphics; it comes with ggplot2 package.

You can install tidyverse in Rstudio by visiting the console or opening a code window and typing

install.packages("tidyverse")

Now you can get started. If you need more information and need to learn about how to use Rstudio, I recommend this

dataquest.io tutorial

Step by step in creating graphics using ggplot2

Step 1. Load the packages Load tidyverse and ggplot2 as shown in the code block to get started.

load the library library(tidyverse) library(ggplot2)

Step 2. Get some data Here we will work with the mtcars data set on car brands and their performances and properties. In

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 3/15

https://www.juiceanalytics.com/writing/better-know-visualization-small-multiples/
https://medium.com/nightingale/improve-your-visualization-skills-using-tuftes-principles-of-graphical-design-3a0f40a53a2c
https://cran.r-project.org/
https://rstudio.com/
https://rstudio.cloud/
https://www.tidyverse.org/
https://www.dataquest.io/blog/tutorial-getting-started-with-r-and-rstudio/

a later tutorial, how you can import data stored elsewhere and load your own data for plotting.

start with a built in data set

head(mtcars)

mtcars is a built in data set in R # we will use mtcars data set to show ggplot

structure of mtcars str(mtcars)

Step 3. Set up a basic plot

Let’s start with a very basic plot.

basic structure of ggplot

ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() +

labs(title = "Miles per gallon for car weight",

x = "Weight of car",

y = "Miles per gallon") +

ggsave("plot01.png")

This results in the following plot:

Figure 1. First image, a basic version

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 4/15

Note,

1. First line calls the ggplot() function, it must have two required things:

2. It must have the data, in this case mtcars , and

3. It must have the mapping which is an aes() function

4. The aes() function must include the information as to the x and y variables (note that we do not have to include the

name of the dataset)

5. The first line ends with a + sign. The sign must be placed at the end of the first line, otherwise it will fail!

6. Line 2 (or Layer 2) is the second layer and specifies the geometry, given by geom_ and here we want points as this is

a scatterplot

7. The layer 3, we have added the labels that will go with the plot.

This is a minimalist plot, and it suggests that for all cars, as their weight increase, their milage drops. But there are different

types of cars in the database, is it true for all of them? Besides, what is the nature of the relationship? For this we will add a

regression line to the plot.

Step 4. Add a regression line

ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point() +

 geom_smooth(method = "lm",

 se = F) +

 labs(title = "Miles per gallon for car weight", x = "Weight of car",

 y = "Miles per gallon") + ggsave("plot02.png")

This produces

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 5/15

Note,

1. In layer 3, we added geom_smooth() because we wanted to see how smoothing the points, what summary figure we

would be able to visualise.

2. We specified that it be linear model, hence "lm". For details, see this tutorial

3. We did not want the standard error band, so we asked se = F , F stands for false .

Step 5. Subset the data and view again

Now we want to see how are the points distributed for the gear types in the car, as we believe that cars with different gears

may have different relationships between milage and weightage. So we do:

ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(aes(color = factor(gear))) + geom_smooth(method = "lm", se = F) +

 labs(title = "Miles per gallon for car weight", x = "Weight of car",

 y = "Miles per gallon") + ggsave("plot03.png")

This produces:

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 6/15

https://www.r-bloggers.com/2018/11/how-to-plot-fitted-lines-with-ggplot2/

Note:

In Layer 2, we added an aes() in the geom_point() and there we had specified color = factor(gear) .

A few things:

First, note that the colours are best if the classifying variable, in this case gear is a categorical variable. Otherwise, you will

see a range of colours. This is fine but in this context, we want a categorical variable to bring out the difference in the

colours in the points. But because the variable gear in our dataset was a continuous variable, we had to convert the

variable to a categorical variable using the factor() function. This converted the variable to a categorical/factor variable. For

more about factors in R, read this tutorial. Second, we specified that as we colour the points, we will colour them based on

the "factorised" gear variable. This made sure that for the three categories in the factorised gear variable, they had three

colours in the points.

Step 6. View the regression line for separate groups

At this stage, we want to view the different coloured points, then the regression lines for each subset of the points, and

superimpose on that pattern a regression line for the entire set of data points.

ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(aes(color = factor(gear))) + geom_smooth(method = "lm",

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 7/15

https://www.stat.berkeley.edu/~s133/factors.html

 se = F,

 aes(color = factor(gear))) + geom_smooth(method = "lm",

 color = "black",

 se = F,

 linetype = "dashed") +

 labs(title = "Miles per gallon for car weight",

x = "Weight of car",

y = "Miles per gallon") +

ggsave("plot04.png")

This produces:

Note:

1. We have added two geom_smooth() layers! One on top of the other. The sequence does not matter

2. In Layer 3 (or line 3), in the geom_smooth() , we added an aes() ; why? this is because we wanted these lines to be at

the variable level

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 8/15

3. In layer 4 (or line 4), in the geom_smooth() was for EVERY POINTS in the scatterplot, this is why we did not use the

aes() function. But we made the line a dashed line with linetype = "dashed" .

So now you see the scatterplot changed with points, and four lines showing how the relationship between car weight and

car milage varied with the gears.

Step 7. We make these lines more prominent

By now, we are seeing that while in general, as the weight of the cars increase, there is a corresponding drop in milage,

such slope of the drop is different for different number of gears. We are interested in studying the changes in the slope, but

the gray background and colourful points are distracting us. So, now we will tidy up the graph by making the background

white, making the points somewhat fade.

So we do this:

ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(alpha = 0.2,

 aes(color = factor(gear))) + geom_smooth(method = "lm", se = F, aes(color = factor(gear))) +

 geom_smooth(method = "lm",

 color = "black", se = F, linetype = "dashed") +

 labs(x = "Weight of the car",

 y = "Miles per gallon",

 title = " Weight on Miles per Gallon") + theme_bw() +

ggsave("plot05.png")

This produces

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 9/15

Notes:

The first thing we wanted to do was to make the background grey theme magically transform into white, and this we did

with changing the theme of the plot. Hence we selected theme_bw() as the last layer

We added an alpha channel to the geom_point() such that it would apply to ALL the points in the plot the same way.

The alpha controls the transparency of the points so that an alpha value of 1 is opaque and an alpha value of 0 is

transparent, and the lower the alpha value, the more transparent the points.

Step 8. Remove the gridlines and make the legend legible

At this stage, the plot is informative and shows that while there is a drop in milage with car weight, the slope varies with the

gear size of the cars. We want to make this information stand out further by:

Removing the major and minor gridlines to minimise visual distraction

Make the overall regression line (the dashed line) more transparent

So we do as follows

 ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(alpha = 0.2, aes(color = factor(gear))) +

geom_smooth(method = "lm", se = F, aes(color = factor(gear))) +

geom_line(stat = "smooth", method = "lm", color = "black", se = F, linetype = "dashed",

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 10/15

alpha = 0.4) +

labs(x = "Weight of the car", y = "Miles per gallon", title = " Weight on Miles per Gallon") + theme_bw() +

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + ggsave("plot06.png")

This produces:

Notes:

We have two themes in two different layers.

The first is a black and white theme that we selected and stays

The second theme is where we work with the major and minor grids in the panel. The element_blank() function makes

the grid elements disappear

Also, note that as before, we add an alpha = 0.4 to blur out the dashed regression line

Step 9. Make the legend legible

So far, we have achieved that

We have made the three regression lines prominent

We have faded out the data points and the overall regression line

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 11/15

The graph has highlighted the points that we wanted to highlight

However, the legend on the right hand side has the headline factor(gear) makes no sense to anyone who does not have

an appreciation of what factor means. To help the reader further:

We will change the headline there

And we will take out the border around the plot

So we do:

ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(alpha = 0.2, aes(color = factor(gear))) +

geom_smooth(method = "lm", se = F, aes(color = factor(gear))) +

geom_line(stat = "smooth",

method = "lm", color = "black", se = F, linetype = "dashed",

alpha = 0.4) +

labs(x = "Weight of the car", y = "Miles per gallon", title = " Weight on Miles per Gallon") + theme_bw() +

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank()) +

scale_color_discrete(name = "Number of Gears") + ggsave("plot07.png")

This produces:

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 12/15

Note:

Now we introduce another concept, that of scales, so

scale_color_discrete() is where we map from data space the discretised gear variable factor(gear) to the graph

aesthetic space and we change the name of the legend as the legend was based on "color" property

However, while the graph now clearly shows the three regression lines, this plot is still quite complex. It'd be useful to use

the concept of "small multiples" to see this in a panel of three plots separately side by side. So, we do this:

 ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point(alpha = 0.2, aes(color = factor(gear))) +

geom_smooth(method = "lm", se = F, aes(color = factor(gear))) +

labs(x = "Weight of the car", y = "Miles per gallon", title = " Weight on Miles per Gallon") +

theme_bw() +

theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank()) +

scale_color_discrete(name = "Number of Gears") + facet_wrap(~factor(gear)) + ggsave("plot08.png")

Now we get:

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 13/15

Note:

We have the concept of faceting where we have divided the single plot based on categorical variable into small

multiples of panels

Our categorical variable came from converting the continuous variable gear to a factor with three levels. Hence we get

to see three panels in the frame.

We used facet_wrap to wrap around the three variables. However, this is a flexible approach, where we could use

facet_grid() function if we wanted to make even more complex subdivisions of panels.

Summary

In this introduction, we have used ggplot() within tidyverse to take a dataset and started with a barebones plot of two

variables and using a step by step method, we converted that plot to a plot of three panels that clearly showed how the

relationship between the milage of a car varies with the weightage of the car but varies with the number of gears. This

example shows that ggplot() can be used to develop refined plots in preparation for testing and working for your models.

We will continue to explore this topic with other types of plotting as we discuss modelling and machine learning in data

science.

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 14/15

Qeios, CC-BY 4.0 · Article, March 11, 2021

Qeios ID: 3SGTDP · https://doi.org/10.32388/3SGTDP 15/15

	A conceptual introduction to ggplot2
	Abstract
	Introduction to ggplot2
	1. Data must be tidy and long form
	2. The plot will be built in layers
	3. Plot must have scale
	4. All plots must have coordinates
	5. Plots can be drawn on small multiples, facets in ggplot speak
	6. Plots are themed.
	Implementation of these principles in ggplot2 to make your life easier
	Step by step in creating graphics using ggplot2
	Summary

