
13 February 2025, Preprint v2  ·  CC-BY 4.0 PREPRINT

Commentary

Why Should P-Values Be Abandoned in
Scientific Research?

Hening Huang1

1. Independent researcher

This paper provides a comprehensive analysis of the two-sample one-tailed z-test and the p-value it

generates. We reveal the true p-value and its meaning, demonstrate that the usual p-value (i.e. the

p-value we obtain in practice) is merely an estimate of the true p-value, and derive the theoretical

distribution and coverage interval of the usual p-value. Our findings highlight the inherent

limitations of p-values and support the argument that their use should be abandoned in scientific

research.
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1. Introduction

P-values generated by null hypothesis significance testing (NHST) procedures have long played an

important role in scientific research. In recent decades, however, p-values and the related NHST

paradigm have faced increasing criticism. This criticism stems primarily from the reproducibility

crisis, wherein many published findings cannot be replicated by other researchers, calling the

reliability of scientific results into question. Halsey et al.[1] argued that a major factor contributing to

the lack of repeatability is the wide sample-to-sample variability in p-values. They explained “why P

is fickle to discourage the ill-informed practice of interpreting analyses based predominantly on this

statistic.” In response to concerns about the reproducibility crisis, many authors have strongly

opposed the use of p-values and NHST and have suggested abandoning them (e.g. Amrhein et al.[2];

McShane et al.[3]; Halsey[4]; Wasserstein & Lazar[5]; Wasserstein et al.[6]) and using estimation

statistics instead (e.g. Claridge-Chang & Assam[7]; Berner & Amrhein[8]; Elkins et al.[9]; Huang[10]).

Huang[11]  argues that the p-value is not an appropriate probabilistic measure in scientific decision-

making because it can be easily hacked through N-chasing, and the p-hacking problem cannot be
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solved unless p-values and NHST are abandoned. Halsey’s[4]  states, “The reign of the p-value is

over.” Recently, Trafimow et al.[12]  proposed using the gain-probability (G-P) analysis to replace

NHST and p-values. The G-P analysis is essentially equivalent to the exceedance probability

analysis[11]. Nevertheless, some authors continue to defend p-values and NHST (e.g. Lu & Belitskaya-

Levy[13]; Verhulst[14]; Benjamini et al.[15]; Hand[16]; Lohse[17]; Chén et al.[18]). For example, Chén et al.

[18]  argue that p-values and NHST form a useful probabilistic decision-making system and that p-

values will continue to play an important role in scientific research.

While many scientists and statisticians continue to debate whether to completely abandon p-values

and NHST or to persist in using them, both sides of the debate generally acknowledge that p-values

are often and easily misunderstood, misinterpreted, and misused. Common misconceptions include

that the p-value measures the probability that the research hypothesis is true and that the p-value

measures the probability that observed data are due to chance[18]. Goodman[19]  identified twelve p-

value misconceptions raised from a two-group randomized experiment. Moreover, misinterpretation

of p-values and NHST results even persists among people with substantial statistical education and

those working in statistics[20]. However, Goodman[19] stated,

It is not the fault of researchers that the P value is difficult to interpret correctly. The

man who introduced it as a formal research tool, the statistician and geneticist R.A.

Fisher, could not explain exactly its inferential meaning. He proposed a rather informal

system that could be used, but he never could describe straightforwardly what it meant

from an inferential standpoint.

Mathematically, the p-value is defined as the tail probability calculated using a test statistic (e.g.[18]).

However, the critical question is, what does this tail probability really mean in practical applications?

This question is central to the debate over the validity of using p-values in scientific research. We

argue that a correct interpretation of p-values will provide common ground in this debate. Once we

have a clear understanding of what p-values represent, we can decide whether to continue using them

or to abandon them, ultimately resolving the ongoing debate.

It is well known that the p-value generated by a NHST procedure is a random variable because it

depends on the samples randomly drawn from the underlying population. However, it is less

commonly recognized that there exists the true (or theoretical) p-value. Lazzeroni et al.[21]  defined

the “true population p-value” (or π value) as “the value of p when parameter estimates equal their
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unknown population values.” They also introduced p-value confidence intervals for the true p-value.

However, the Lazzeroni et al.[21]  paper did not provide the mathematical details regarding the true

population p-value or the associated p-value confidence intervals.

This paper provides a comprehensive analysis of the two-sample one-tailed z-test and the p-value it

generates. In the following sections, Section 2 discusses the true p-value of the two-sample one-

tailed z-test and its meaning. Section 3 demonstrates that the usual p-value (i.e. the p-value we obtain

in practice) is merely an estimate of the true p-value. Section 4 derives the theoretical distribution and

coverage intervals of the usual p-value. Section 5 gives a numerical example. Sections 6 and 7 presents

discussion and conclusion, respectively.

2. The true p-value of the two-sample one-tailed z-test and its

meaning

Consider a controlled experiment with two groups of individuals: treatment group (denoted by A) and

control group (denoted by B). This experiments yields two independent samples (datasets) for a

measurable quantity X: {xA,1, xA,2, …, xA,n} and {xB,1, xB,2, …, xB,n}, where n is the sample size. We

assume that these two datasets are randomly drawn from two independent normal distributions, 

 and  , respectively. For simplicity and without loss of generality, we

further assume that    and that    is known. Let    and    denote the calculated sample

means of the treatment and control groups, respectively. The observed (treatment) effect size is given

by  , which represents the difference between the two sample means.

The usual z-score for the two-sample equal-variance z-test is

where   is the standardized sample effect size, often referred to as Cohen’s d.

Note that   is an unbiased estimate of the population mean   and   is an unbiased estimate of the

population mean  . When   and   are known, we can write the true z-score as

where   is the standardized population effect size, or true effect size.

∼ N( , )XA μA σA ∼ N( , )XB μB σB

= = σσA σB σ x̄̄̄A x̄̄̄B
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Assuming that  ,  . We can calculate the true p-value for the two-sample one-tailed z-

test as

where    is the cumulative distribution function (CDF) of the standard normal distribution Z

, and Z is the standardized difference between the two sample-means, which can be written

as

where    and    are the sample means (random variables) that are normally distributed, 

  and  , respectively. Note that    is the theoretical

sampling distribution of the sample mean   and   is the theoretical sampling distribution

of the sample mean  .

Substituting the expressions for Z and   into Eq. (3), we obtain

which can be rewritten as

Therefore, the true p-value,  , is the theoretical probability that the sample mean    is smaller

than the sample mean  . It is important to note that    is a deterministic quantity, because it is

calculated from the theoretical sampling distributions of    and    and does not depend on any

actual sample data. As long as the population parameters of the distributions of XA and XB are known,

the true p-value can be computed using Eq. (3) or Eq. (6) for any sample size without the need for

empirical data.

3. The usual p-value is an estimate of the true p-value

Now consider the case where the population means µA and µB are unknown. In this case the theoretical

sampling distributions of the sample means are not available. But we can obtain the corresponding

>μA μB > 0ztrue
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empirical sampling distributions,    and  ), using the datasets {xA,1,

xA,2, …, xA,n} and {xB,1, xB,2, …, xB,n}, respectively. Similar to Z, we can write the statistic   as,

which is also the standard normal distribution.

Assuming that  ,  . The usual p-value of the two-sample one-tailed z-test can be

calculated as

Substituting Eq. (7) and Eq. (1) into Eq. (8), we obtain

which can be rewritten as

Therefore, the usual p-value is the estimated probability that the sample mean   is smaller than the

sample mean  . In other words, the usual p-value is an estimate of the true p-value,  ; it is a

random variable that can be described by a probability distribution.

4. The theoretical distribution and coverage intervals of the usual

p-value

Equation (8) demonstrates that the usual p-value generated by the two-sample one-tailed z-test is a

function of the Z statistic that follows the standard normal distribution. Consequently, the

distribution of the usual p-value is directly related to the distribution of the Z statistic. For simplicity,

we will refer to the usual p-value as the p-value from here on. The probability density function (PDF)

of the p-value can be determined by

∼ N( , )X
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( − )− ( − )X
¯ ¯¯̄

′

A X
¯ ¯¯̄

′

B x̄̄̄A x̄̄̄B

σ 2/n
− −−√

(7)

>x̄̄̄A x̄̄̄B z > 0

p = Pr( < −z) = Φ(−z) = Φ(− d) .Ẑ
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where    is the PDF of the p-value,    is the PDF of the random variable  , which

follows the shifted standard normal distribution  ,1). The validity of Eq. (11) can be easily

verified by Monte Carlo simulations.

Since   is a constant,  . Then, Eq. (11) can be rewritten as

Note that the value of p corresponding to a value of z is the CDF of Z, i.e.  . Thus,

where   is the PDF of Z. Then, Eq. (11) can be rewritten as

In the special case where  , i.e.  , Eq. (14) reduces to

Equation (15) suggests that, when the true effect size is zero (or the null hypothesis is true), the p-

value is uniformly distributed between 0 and 1, regardless of the sample size involved.

Furthermore, we can use the theoretical distribution of the p-value and its relationship with the z-

score to construct coverage intervals for the p-value. For a coverage probability of 90%, the 90% z-

score coverage interval centered on   can be expressed as

where  ​ is the 90th percentile of the standard normal distribution (approximately 1.645).

It is easy to show that

where    is the p-value corresponding to the lower bound    of the 90% z-score

coverage interval, and    is the p-value corresponding to the upper bound  .

Therefore, the 90% coverage interval for the p-value is
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The p-value coverage interval will not be centered around the true p-value,  , because, unless the

effect size is zero, the p-value distribution is not symmetric about  . This asymmetry is evident in

the example below. It is important to note that the p-value coverage interval is a probability interval

with fixed bounds; it is not a confidence interval with random bounds.

5. Numerical example

As a numerical example, we consider the two-sample one-tailed  -test applied to samples with  =10,

30, 50, and 100 randomly drawn from normal distributions of XA and XB with    and the

true effect size  . Table 1 shows the results for the true p-value, the 90% p-value

coverage interval, and the false positive effect rate. The false positive rate is defined as the cumulative

probability of obtaining p-values smaller than the critical p-value of 0.05. In this example, the true

standardized effect size (Cohen’s d) is 0.15, which is considered a “trivial effect” according to Cohen’s

effect size categories. Consequently, all z-tests should yield p-values greater than 0.05, indicating

non-significant results, regardless of the sample size.

Sample size n The true p-value The 90% p-value coverage interval False positive rate

10 0.369 (0.0238, 0.9048) 9.77%

30 0.281 (0.0130, 0.8563) 14.71%

50 0.227 (0.0083, 0.8146) 18.94%

100 0.144 (0.0034, 0.7205) 28.46%

Table 1. Results of the two-sample one-tailed z-tests applied to samples randomly drawn from the normal

distributions of XA and XB (  and  )

It can be seen from Table 1 that, as the sample size increases, both the true p-value and the p-value

coverage interval decrease. In contrast, the false positive rate increases with the sample size.

Figure 1 shows the theoretical distributions of the p-value produced by the two-sample one-tailed z-

tests applied to samples of sizes n=10, 30, 50, and 100, randomly drawn from the normal distributions

ptrue

ptrue

z n

= = 1σA σB

− = 0.15μA μB

− = 0.15μA μB = = 1σA σB
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of XA and XB.
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Figure 1. Theoretical distributions of the p-value produced by the two-sample one-

tailed z-tests with the true effect size 0.15: (a) n=10, (b) n=30, (c) n=50, and (d)

n=100. On each diagram, the true p-value is indicated by a red dot, while the 90% p-

value coverage interval is represented by the two vertical bars.

As can be seen from Figure 1, the distribution of the p-value varies substantially with sample size. The

p-values span nearly the entire range from 0 to 1, reflecting significant sample-to-sample variability.

Therefore, it is wrong to claim that the p-value reliably shows the degree of evidence against the null

hypothesis[1].

6. Discussion

By decomposing the formulas for the two-sample one-tailed z-test, we have revealed that the p-value

produced by the test represents the estimated probability that the sample mean ( ) of the treatment

group is smaller than the sample mean (   of the control group. Conversely, (1-p) represents the

estimated probability that    is greater than  . For example, if an experiment yields a p-value of

0.1, then (1-p)=0.9, which suggests there is a 90% chance (estimated) that the mean score of the

X
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)X
¯ ¯¯̄

B

X
¯ ¯¯̄

A X
¯ ¯¯̄

B

qeios.com doi.org/10.32388/3SYVEJ.2 10

https://www.qeios.com/
https://doi.org/10.32388/3SYVEJ.2


treatment group exceeds that of the control group. This analysis indicates that the two-sample one-

tailed z-test essentially compares the two groups at the “sample mean level.” In other words, the p-

value provides information about the difference between the sampling distributions of the sample

means   and  , not about the difference between their underlying population distributions. This

is an inherent limitation of the p-value.

Huang[11]  recently proposed a fundamental principle of scientific inductive reasoning. According to

this principle, scientific claims must be based on two essential elements: (1) population information

(or statistical inference of it) about the quantity of interest, and (2) domain-specific knowledge. If the

population information (e.g. population parameters such as mean and variance) is known, there is no

need to perform statistical inference. However, in many practical situations, the population

information is unknown, and we rely on observed data to infer the population information using

statistical methods, and then use the inferred population information for scientific inductive

reasoning. For example, the population mean is one of the most important pieces of information

about a population, but it is usually unknown and estimated using the sample mean. The sample mean

is the inferred population information and its use is in line with the fundamental principle of scientific

inductive reasoning.

Although both the p-value and the sample mean are calculated from observed data, their inferential

implications differ markedly. As we have shown in Section 3, the p-value is merely an estimate of the

true p-value. However, because the true p-value does not constitute population information, the p-

value is not the inferred population information. Therefore, the use of p-values violates the

fundamental principle of scientific inductive reasoning. We contend that this is the fundamental

philosophical reason why p-values should be abandoned in scientific research.

Furthermore, it is important to distinguish between two types of sample statistics: inferential and

non-inferential. Inferential statistics estimate corresponding population parameters or provide

inferred information about the underlying population. Common examples of inferential statistics

include the sample mean, sample standard deviation, and observed effect size. In contrast, non-

inferential statistics describe characteristics of the sampling distribution rather than providing

inferred information about the underlying population. Typical examples of non-inferential statistics

include standard errors, confidence intervals, and p-values. However, these non-inferential statistics

quantify the uncertainty associated with the inferential estimates. For example, standard errors and

confidence intervals measure the uncertainty of the sample mean or the observed effect size, and p-

X
¯ ¯¯̄

A X
¯ ¯¯̄

B
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values indirectly measure the uncertainty in the observed effect size. To understand the relationship

between the p-value and the uncertainty, we rewrite Eq. (8) as follows

which suggests that the p-value is a function of the standard error   or the relative standard error 

.

A key difference between inferential and non-inferential statistics is their dependence on sample size.

Inferential statistics (such as the sample mean, sample standard deviation, and observed effect size)

do not depend on sample size, although larger samples tend to yield more precise and reliable

estimates because they better represent the population. In contrast, non-inferential statistics (such as

standard errors, confidence intervals, and p-values) are functions of sample size. They not only vary

from sample to sample due to sampling error or noise but also generally decrease as sample size

increases.

An appropriate probabilistic measure for scientific inductive reasoning is the exceedance probability,

denoted as  [22]. This measure represents the population probability that the inferred

underlying population of Group A is greater than that of Group B and it is independent of sample size.

Unlike p-values, which can be easily hacked by N-chasing and often misinterpreted, the exceedance

probability cannot be hacked by N-chasing and can be clearly interpreted. For example, if an

experiment yields a    value of 0.7, it indicates a 70% chance that a randomly picked

individual from the treatment group will score higher than one from the control group. In other

words, unlike the p-value, which measures the difference between two groups at the “sample mean

level”, the exceedance probability measures the difference at the “individual level.”

Notably, the concept of exceedance probability is equivalent to the gain-probability proposed by

Trafimow et al.[23][12]. The interpretation of   is similar to that of the common language

effect size, the probability of superiority, or the area under the receiver operating characteristic

curve[22]. Furthermore, exceedance probability analysis has been applied in various engineering

fields, such as environmental protection and water quality control (e.g., U.S. EPA[24]; Di Toro[25];

Huang & Fergen[26]). For a detailed discussion of exceedance probability analysis, the reader is

referred to Huang[22].

p = Φ(− d) = f( ) ,
n

2

−−
√

−x̄̄̄A x̄̄̄B

σ n−−√
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7. Conclusion

We have revealed that the true meaning of the p-value generated by the two sample one-tailed z-test

is the estimated probability that the mean score of the treatment group is smaller than that of the

control group. Accordingly, (1-p) is the estimated probability that the mean score of the treatment

group is greater than that of the control group. This interpretation of p-values avoids the conventional

NHST terminology and is therefore easy to understand even for those without statistical training.

When population parameters are known, the true p-value of a two-sample one-tailed z-test can be

computed. In practice, the p-value we obtain is merely an estimate of the true p-value. Importantly,

the true p-value does not represent population information, and therefore its estimate does not

constitute inferred population information. This is an inherent limitation of the p-value. Since

scientific inductive reasoning relies on inferred population information, using p-values for this

purpose is fundamentally flawed. This is the core philosophical argument for abandoning p-values in

scientific research.
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