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Commentary

Why Should P-Values Be Abandoned in
Scienti�c Research?

Hening Huang1

1. Independent researcher

It is widely acknowledged in the scienti�c community that the p-values generated by null hypothesis

signi�cance testing (NHST) procedures can be easily misunderstood, misinterpreted, and/or

misused. This paper provides an in-depth analysis of the two-sample one-tailed z-test and the p-

value it generates. We explore why p-values should be abandoned in scienti�c research.
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1. Introduction

P-values generated by null hypothesis signi�cance testing (NHST) procedures have played an

important role in scienti�c research for a long time. In recent decades, however, p-values and the

related NHST paradigm have faced increasing criticism because many published scienti�c �ndings

cannot be replicated by other researchers, leading to a concern known as the "reproducibility crisis,"

where the reliability of scienti�c �ndings is questioned. Halsey et al.[1] argued that a major cause of

the lack of repeatability is the wide sample-to-sample variability in p-values. They explained “why P

is �ckle to discourage the ill-informed practice of interpreting analyses based predominantly on this

statistic.” To address the "reproducibility crisis," many authors strongly oppose the use of p-values

and NHST and suggest abandoning them (e.g., Amrhein et al.[2]; McShane et al.[3]; Halsey[4];

Wasserstein & Lazar[5]; Wasserstein et al.[6]) and using estimation statistics (e.g., Claridge-Chang &

Assam[7]; Berner & Amrhein[8]; Elkins et al.[9]; Huang[10]). Huang[11] argues that the p-value is not an

appropriate probabilistic measure in scienti�c decision-making because it can be easily hacked

through N-chasing; unless p-values and NHST are abandoned, the p-hacking problem caused by N-

chasing cannot be solved. Halsey’s[4] states, “The reign of the p-value is over.” Recently, Tra�mow et
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al.[12]  proposed using the gain-probability (G-P) analysis to replace NHST and p-values. The G-P

analysis is essentially the same as the exceedance probability analysis[11]. However, some authors

defend p-values and NHST (e.g., Lu & Belitskaya-Levy[13]; Verhulst[14]; Benjamini et al.[15]; Hand[16];

Lohse[17]; Chén et al.[18]). For example, Chén et al.[18]  argue that p-values and NHST form a useful

probabilistic decision-making system and that p-values will continue to play an important role in

scienti�c research.

While many scientists and statisticians are still debating whether to completely abandon NHST and p-

values or to continue using them, both sides of the debate generally acknowledge that p-values are

often and easily misunderstood, misinterpreted, and/or misused. Common misconceptions about p-

values include that the p-value measures the probability that the research hypothesis is true and that

the p-value measures the probability that observed data are due to chance[18]. Goodman[19] discussed

twelve p-value misconceptions raised from a two-group randomized experiment. Moreover,

misinterpretation of p-values and NHST results even persists among people with substantial

statistical education and working in statistics[20]. However, Goodman[19] stated,

It is not the fault of researchers that the P value is di�cult to interpret correctly. The

man who introduced it as a formal research tool, the statistician and geneticist R.A.

Fisher, could not explain exactly its inferential meaning. He proposed a rather informal

system that could be used, but he never could describe straightforwardly what it meant

from an inferential standpoint.

Mathematically, the p-value is de�ned as the tail probability calculated using a test statistic[18]. But

the question is, what does the p-value (the tail probability) really mean in practical applications? This

is a key question about the validity of using p-values in scienti�c research. We argue that the correct

answer to this question will be common ground in the p-value debate. If we can �gure out what p-

values   really mean, we can decide whether we should continue to use p-values or whether we should

abandon them. In this way, the debate about p-values will end.

It is well known that the p-value generated by a NHST procedure is a random variable because it

depends on the samples randomly drawn from the population of interest. However, it seems less

known that there is a true (or theoretical) p-value and a theoretical distribution of the p-value (the

usual p-value). Lazzeroni et al.[21] de�ned the “true population p-value” or π value as “the value of p

when parameter estimates equal their unknown population values.” They also introduced p-value
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con�dence intervals for the true p-value. However, the Lazzeroni et al.[21]  paper did not include

mathematical details about the “true population p-value” and p-value con�dence intervals.

This paper provides an in-depth analysis of the two-sample one-tailed z-test and the p-values it

generates. In the following sections, Section 2 shows the true p-value of the two-sample one-tailed z-

test and its meaning. Section 3 shows that the p-value (i.e., the usual p-value) is an estimate of the

true p-value. Section 4 presents the theoretical distribution of the usual p-value. Section 5 presents a

numerical example. Sections 6 and 7 present discussion and conclusion, respectively.

2. The true p-value of the two-sample one-tailed z-test and its

meaning

Consider a controlled experiment with two groups of individuals: the treatment group (denoted by A)

and the control group (denoted by B), which gives two independent samples (datasets for a

measurable quantity X): {xA,1, xA,2, …, xA,n} and {xB,1, xB,2, …, xB,n}, where n is the sample size. We

assume that the two datasets are randomly sampled from two independent normal distributions 

 and  , respectively. For simplicity and without loss of generality, we

further assume that   and   is known. Let   and   denote the calculated sample means

from the two datasets, respectively. The observed (treatment) e�ect size is  , the di�erence of

the two sample means.

The usual z-score for the two-sample equal-variance z-test is

where   is the standardized sample e�ect size, often referred to as Cohen’s d.

Note that   is an unbiased estimate of the population mean   and   is an unbiased estimate of the

population mean  . When   and   are known, we can write the true z-score as

where   is the standardized population e�ect size, or true e�ect size.

Assuming that  ,  . We can calculate the true p-value for the two-sample one-tailed z-

test as

∼ N( , )XA μA σA ∼ N( , )XB μB σB

= = σσA σB σ x̄̄̄A x̄̄̄B
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where    is the cumulative distribution function (CDF) of the standard normal distribution 

, and Z is the standardized di�erence between the two sample means, which can be

written as

where    and    are the sample means (random variables) that are normally distributed as 

  and  , respectively. Note that    is the theoretical

sampling distribution of the sample mean   and   is the theoretical sampling distribution

of the sample mean  .

Substituting the expressions for Z and   into Eq. (3), Eq. (3) can be rewritten as

which can be rewritten as

Therefore, the true p-value   is the theoretical probability that the sample mean   is smaller than

the sample mean  . It is important to note that the true p-value is a deterministic quantity, because it

is calculated from the theoretical sampling distributions of   and   and is independent of sample

data. As long as the population parameters of the parent (population) distributions of XA and XB are

known, the true p-value can be calculated using Eq. (3) or Eq. (6) for any sample size without using

any data.

3. The usual p-value is an estimate of the true p-value

Now consider the case where the population means µA and µB are unknown. In this case, the

theoretical sampling distributions of the sample means are not available. But we can obtain the

estimated sampling distributions of the sample means   and  ) using

the datasets {xA,1, xA,2, …, xA,n} and {xB,1, xB,2, …, xB,n}. Similar to Z, we can write the statistic   as,

= Pr (Z < − ) = Φ (− ) = Φ(− ) ,ptrue ztrue ztrue
n

2

−−
√ dtrue (3)

Φ(. )

Z ∼ N(0, 1)

Z = ∼ N(0, 1),
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√
(4)
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Assuming that  ,  . The p value (i.e., the usual p-value) of the two-sample one-tailed z-

test can be calculated as

Substituting Eq. (7) and Eq. (1) into Eq. (8), Eq. (8) can be rewritten as

which can be rewritten as

Therefore, the usual p-value is the estimated probability that the sample mean   is smaller than the

sample mean  . In other words, the usual p-value is an estimate of the true p-value  ; it is a

random variable that can be described by a probability distribution.

4. The theoretical distribution of the usual p-value

As shown in Eq. (8), the usual p-value generated by the two-sample one-tailed z-test is a function of

the z-score (Eq. (1)), which is a random variable following the standard normal distribution. Thus, the

distribution of the usual p-value must be related to the distribution of the z-score. For simplicity, we

will use p-value as a shorthand for the usual p-value hereafter. The probability density function (PDF)

of the p-value can be determined by

where    is the PDF of the p-value,    is the PDF of the random variable  , which follows the

shifted standard normal distribution  ,1), i.e.  . The validity of Eq. (11) can be

easily veri�ed by Monte Carlo simulations.

Since   is a constant,  . Then, Eq. (11) can be rewritten as

= ∼ N(0, 1).Ẑ
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Note that the value of p corresponding to a value of z is the CDF of Z, i.e.  . Thus,

Then, Eq. (11) can be rewritten as

In the special case where  , i.e.  , Eq. (14) reduces to

Equation (15) suggests that, when the true e�ect size is zero (or the null hypothesis is true), the p-

value is uniformly distributed between 0 and 1, regardless of the sample size involved.

Furthermore, we can use the theoretical distribution of the p-value and the relationship between the

z-score and p-value to construct the coverage intervals for the p-value. We consider here a coverage

probability of 90%. The 90% z-score coverage interval is centered on   and can be written as

It is easy to show that

where    is the p-value corresponding to the z-score  , which is the lower

bound of the 90% z-score interval, and    is the p-value corresponding to the z-score 

, which is the upper bound of the 90% z-score interval. Therefore, the 90% coverage

interval for the p-value is

The p-value coverage interval will not be centered around the true p-value   because, unless the

e�ect size is zero, the p-value distribution is not symmetric about the true p-value  . This can be

seen from the example below. Note that the p-value coverage interval is a probability interval with

�xed bounds; it is not a con�dence interval with random bounds.
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5. Numerical example

As a numerical example, we consider the two-sample one-tailed z-test on the samples (n=10, 30, 50,

and 100) randomly drawn from two normal distributions of XA and XB with   and the true

e�ect size  . Results for the true p-value, the 90% p-value coverage interval, and the

false positive e�ect rate are shown in Table 1. The false positive rate is de�ned as the cumulative

probability of the p-values smaller than the critical p-value of 0.05. For this example, the true

standardized e�ect size Cohen’s d = 0.15, which is considered a “trivial e�ect” according to Cohen’s

e�ect size categories. Therefore, all z-tests should give p-value > 0.05, non-signi�cant results,

regardless of sample size.

Sample size n The true p-value The 90% p-value coverage interval False positive rate

10 0.369 (0.0238, 0.9048) 9.77%

30 0.281 (0.0130, 0.8563) 14.71%

50 0.227 (0.0083, 0.8146) 18.94%

100 0.144 (0.0034, 0.7205) 28.46%

Table 1. Results for the two-sample one-tailed z-tests on the samples randomly drawn from the two

normal distributions of XA and XB (  and  )

It can be seen from Table 1 that, as the sample size increases, the true p-value and the p-value

coverage interval decrease. On the other hand, the false positive rate increases with the increase of the

sample size.

Figure 1 shows the theoretical distributions of the p-value generated by the two-sample one-tailed z-

tests on the samples (n=10, 30, 50, and 100) randomly drawn from the two normal distributions of XA

and XB.

= = 1σA σB

− = 0.15μA μB

− = 0.15μA μB = = 1σA σB
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Figure 1. Theoretical distributions of the p-value generated by the two-sample

one-tailed z-tests with the true e�ect size 0.15: (a) n=10, (b) n=30, (c) n=50,

and (d) n=100. On each diagram, the true p-value is shown as a red dot. The

90% p-value coverage interval is shown between the two vertical bars, which

corresponds to the 90% z-score coverage interval.

As can be seen from Figure 1, the distribution of the p-value varies substantially with sample size. The

p-values are widely distributed between 0 and 1, indicating that there is great variation between the

samples, regardless of sample size. Therefore, it is wrong to claim that the p-value reliably shows the

degree of evidence against the null hypothesis[1].

6. Discussion

By decomposing the two-sample one-tailed z-test formulas, we have revealed that the true meaning

of the p-value generated by it is the estimated probability that the sample mean ( ) of the treatment

group is smaller than the sample mean (   of the control group. Then, the (1-p) value is the

estimated probability that the sample mean ( ) is greater than the sample mean ( . Assume that

an experiment gives a p-value of 0.1. Then, the (1-p) value is 0.9. This means that there is a 90%

chance (estimated) that the mean score of the treatment group will be higher than the mean score of

X
¯ ¯¯̄

A

)X
¯ ¯¯̄

B

X
¯ ¯¯̄

A )X
¯ ¯¯̄

B
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the control group. Therefore, the two-sample one-tailed z-test actually compares the two groups at

the “sample mean level” rather than at the “individual level.” In other words, the p-value is

information about the di�erence between the two sampling distributions of the sample means 

 and  . It is not information about the di�erence between the two population distributions of XA

and XB.

It is important to note that, from a philosophical perspective, the fundamental principle of scienti�c

inductive reasoning is that scienti�c claims must be based on statistical inference and domain

knowledge about the population properties (i.e., population information) of the quantity under

consideration (e.g., e�ect size)[11]. In many practical situations, however, we do not know population

information (e.g., population parameters or population e�ect size), so we must use observed data to

infer population information. Thus, statistical inference comes into play. For example, the population

(or true) mean is the most important information about a population (or population distribution). In

practical applications, since the population mean is usually unknown, the sample mean of the

observed data is often used as an estimate of the population mean in scienti�c decision-making. In

other words, the sample mean is the inferred population information (the population mean), so its use

conforms to the fundamental principle of scienti�c inductive reasoning.

Although both the p-value and the sample mean are calculated using the observed data, their

inferential implications are quite di�erent. As we have shown in Section 3, the p-value is an estimate

of the true p-value. However, the true p-value is not population information, so the p-value is not

inferred population information. Therefore, the use of p-values violates the fundamental principle of

scienti�c inductive reasoning. We argue that this is the fundamental philosophical reason why p-

values should be abandoned in scienti�c research.

Furthermore, it is important to distinguish between two types of sample statistics: inferential and

non-inferential. By de�nition, an inferential statistic is a sample statistic that can be used as an

estimate of the corresponding population parameter. Examples of inferential statistics include the

sample mean, sample standard deviation, and observed e�ect size. In contrast, a non-inferential

statistic is a sample statistic that does not infer any population parameter or provide any information

about the population (or population distribution). Instead, non-inferential statistics are merely

characteristics or information about the sampling distribution. Examples of non-inferential statistics

include standard errors, con�dence intervals, and p-values. An important distinction between

inferential and non-inferential statistics is whether a sample statistic depends on the sample size.

X
¯ ¯¯̄

A X
¯ ¯¯̄

B
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Inferential statistics are independent of sample size, although inferential statistics given by larger

sample sizes should provide more precise and reliable inferences because large samples better

represent the population. In contrast, non-inferential statistics are dependent on sample size; in fact,

they are a function of sample size. Therefore, non-inferential statistics such as standard errors,

con�dence intervals, and p-values not only vary from sample to sample due to sampling error or

noise, but also inherently decrease as sample size increases. However, standard errors and con�dence

intervals can be used as measures of uncertainty in an estimate of the population mean or observed

e�ect size.

An appropriate probabilistic measure for scienti�c inductive reasoning is the exceedance probability: 

[22]. The exceedance probability   is inferred population information that

does not depend on sample size. Therefore, unlike p-values, which can be easily hacked by N-chasing,

the exceedance probability    cannot be hacked by N-chasing. Furthermore, unlike p-

values, which can be easily misunderstood or misinterpreted, the exceedance probability 

  can be easily and clearly interpreted without causing confusion. Assume that an

experiment gives a   value of 0.7. This means that there is a 70% chance that a randomly

picked person from the treatment group will score higher than a randomly picked person from the

control group. In other words, unlike the z-test, which compares the two groups at the “sample mean

level”, the exceedance probability analysis compares the two groups at the “individual level.”

It should be mentioned that the concept of exceedance probability is essentially the same as the

concept of gain-probability proposed by Tra�mow et al.[23][12]. In addition, the meaning of 

  is essentially the same as that of the common language e�ect size, the probability of

superiority, or the area under the receiver operating characteristic[22]. Moreover, the concept of

exceedance probability and its analysis have been applied to engineering �elds such as environmental

protection and water quality control (e.g.[24][25][26]). Detailed discussions about exceedance

probability analysis can be found in Huang[22].

7. Conclusion

We have revealed that the true meaning of the p-value generated by the two-sample one-tailed z-test

is the estimated probability that the mean score of the treatment group is smaller than the mean score

of the control group. Accordingly, the (1-p) value is the estimated probability that the mean score of

Pr ( > )XA XB Pr ( > )XA XB

Pr ( > )XA XB

Pr ( > )XA XB

Pr ( > )XA XB

Pr ( > )XA XB
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the treatment group is greater than the mean score of the control group. This interpretation of p-

values does not involve the NHST setting and language and is therefore easy to understand even for

people without statistical training.

The true p-value of the two-sample one-tailed z-test can be calculated when the population

parameters are known. The usual p-value is an estimate of the true p-value. However, the true p-value

is not population information, so the usual p-value is not inferred population information. Scienti�c

inductive reasoning requires inferred population information. Therefore, it is wrong to use p-values

for scienti�c inductive reasoning. This is the fundamental philosophical reason why p-values should

be abandoned in scienti�c research.
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