
21 November 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Quantum Optimal Transport Amplitude

Method (QOTAM)

Fidele Twagirayezu1,2

1. California Coast University, United States; 2. Texas State University, United States

We propose the Quantum Optimal Transport Amplitude Method (QOTAM), a new framework in which

scattering amplitudes arise from a complex optimal-transport problem on on-shell kinematic space.

Incoming and outgoing wavepackets define probability distributions, and we introduce a complex

kernel   whose modulus squared transports   to   while its phase encodes the classical

action. The physical amplitude is obtained from the variational principle  , where 

 includes a transport cost, an   phase term, and regularizers enforcing locality and

factorization. Tree amplitudes emerge from linear response of the optimal kernel, and the formulation

admits efficient numerical realization via entropically regularized optimal transport. QOTAM offers a

geometric–variational approach to scattering with potential applications to high-multiplicity and

non-perturbative regimes.
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I. Introduction

Scattering amplitudes provide the fundamental bridge between quantum field theories (QFTs) and

experimentally measurable observables. In recent years, remarkable progress has emerged from

recasting amplitudes in terms of geometric, algebraic, or combinatorial structures, including the

amplituhedron  [1][2], celestial holography  [3], color–kinematics duality, and the use of    and 

 algebras [4]. These developments share a common theme: the analytic and symmetry properties of

the S-matrix  [5]  often become more transparent when amplitudes are embedded in an auxiliary

geometric or variational framework.
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In this work we propose a new such framework, based on complex optimal transport on on-shell kinematic

space  [6]. The central idea is to treat incoming and outgoing multi-particle wavepackets as probability

distributions on the mass shell, and to associate to each scattering process a complex-valued transport

kernel    that maps the incoming distribution    to the outgoing distribution  . The

modulus squared   plays the role of a probability-conserving transport plan, while the phase of 

 encodes classical action data and quantum corrections. We define scattering amplitudes through the

variational principle 

where    is a complex optimal-transport functional whose real part describes a transport cost on

kinematic space and whose imaginary part contains an    phase term. Additional regularization

terms impose the familiar structural properties of amplitudes, including locality, factorization at physical

poles, and invariance under crossing.

This Quantum Optimal Transport Amplitude Method (QOTAM) provides a geometric–variational

interpretation of the S-matrix. At weak coupling, tree-level amplitudes arise from the linear response of

the optimal transport kernel to perturbations of the interaction. Loop corrections correspond to

deformations of the regularizer, giving a systematic route to non-perturbative structure in the transport

functional.

A key advantage of QOTAM is computational. Because optimal transport problems admit efficient

numerical solutions—most notably via entropic regularization and Sinkhorn-type algorithms  [7]—

QOTAM converts amplitude construction into a constrained complex optimization problem. This enables

the use of tensor-network parametrizations, machine-learned phase ansätze, and scalable computational

tools developed in modern optimal transport theory.

The goal of this paper is to formulate QOTAM precisely, establish its basic properties, and illustrate how

familiar scattering amplitudes emerge from the extremization of the complex transport functional. We

conclude with prospects for high-multiplicity scattering, curved backgrounds, and potential applications

to non-perturbative regimes.

II. Kinematic Space and Wavepacket Distributions

In the Quantum Optimal Transport Amplitude Method (QOTAM), scattering processes are formulated on

the on-shell mass shell in momentum space. For a particle of mass  , the on-shell manifold is 
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equipped with the Lorentz-invariant measure 

In QOTAM, incoming and outgoing states are described not by exact momentum eigenstates but by

wavepacket distributions on  . For an  -particle incoming state we define a normalized probability

distribution 

An analogous distribution   characterizes the outgoing measurement wavepacket.

The wavepacket formulation serves two purposes: (i) it provides a natural probabilistic interpretation for

the modulus   of the transport kernel introduced below, and (ii) it gives access to finite-time and

IR-improved observables without requiring the LSZ asymptotic limit at intermediate stages.

We denote the corresponding incoming and outgoing wavefunctions by 

with    and similarly for  . These wavefunctions allow us to express amplitudes as

bilinear pairings weighted by the transport kernel.

Momentum conservation will be imposed through a distributional constraint acting on the transport

kernel, 

ensuring support only on kinematically allowed transitions.

Having established the geometric setting and probabilistic interpretation, we now introduce the

complex-valued transport kernel and the variational principle that defines the scattering amplitude

within QOTAM.

III. Complex Transport Kernel and Variational Principle

The central object in QOTAM is a complex-valued transport kernel 
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  which maps incoming kinematic configurations to outgoing ones. The kernel plays a dual role: its

modulus squared defines a probability-conserving transport plan on kinematic space, while its complex

phase encodes the dynamical information of the scattering process.

A. Probability conservation and support constraints

We impose that the modulus of the kernel transports the incoming probability distribution to the

outgoing one: 

Furthermore, physical processes must satisfy exact momentum conservation. We enforce this via a

distributional constraint on the kernel: 

where   contains the dynamical content of the scattering.

B. S-matrix element from the kernel

Given incoming and outgoing wavepacket wavefunctions   and  , the scattering amplitude is

defined by 

In the limit of sharply peaked wavepackets, this reduces to the usual momentum-eigenstate S-matrix

element.

C. Complex optimal-transport functional

To determine the physical kernel, we introduce a complex functional

The terms have the following interpretation:

 is a real transport cost on kinematic space, chosen to reflect locality and causal propagation.

  is the classical action (or Hamilton–Jacobi functional) for a trajectory connecting the

configurations   and  , supplying the correct classical phase.
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  is a regularizer encoding structural properties of amplitudes: locality, factorization at poles,

crossing symmetry, and analyticity.

 controls quantum and loop-level corrections.

D. Variational principle

The physical scattering kernel is defined as a stationary point of the functional  (11), subject to the

probability-conservation constraint (8) and the support condition (9): 

Solutions   of (12) define the physical scattering amplitude via (10). At weak coupling, the response

of   to perturbations of the interaction produces standard tree-level amplitudes; deformations of the

regularizer   capture loop corrections and non-perturbative structures.

This establishes the variational foundation of QOTAM. In the next section we analyze the linearized

stationarity equations and show how conventional tree-level amplitudes emerge from the optimal

transport kernel.

IV. Tree-Level Amplitudes from Linear Response

Tree-level scattering arises in QOTAM from the first-order response of the optimal transport kernel to a

perturbation of the interaction. Let    denote the optimal kernel of the free theory, obtained by

minimizing    with all interactions switched off. In this case the transport cost is minimized when

momenta are preserved, giving 

 corresponding to trivial propagation and the identity S-matrix.

A. Perturbative expansion

We now introduce an interaction parameter   (coupling constant) and expand the kernel as 

Inserting this expansion into the stationarity condition    yields a perturbative hierarchy of

equations. To first order in   we obtain 

R[K]

λ

δS[K] = 0, with constraints (8) and (9). (12)

Kphys
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where   is the part of the functional that depends explicitly on the interaction.

Equation (15) is a linear integral equation for  , with kernel determined by the second variation of the

cost and regularizer at  . This equation plays the role of a transport analogue of the inhomogeneous field

equation in conventional perturbation theory.

B. Tree-level amplitude

Substituting the expansion (14) into the amplitude definition (10), we find 

The free contribution vanishes for nontrivial processes, and the tree-level term is 

Thus, the tree-level scattering amplitude is determined entirely by the solution    of the linearized

variational equation  (15). As we now show,    reproduces exactly the familiar tree-level kernels of

ordinary quantum field theory.

C. Example: scalar   theory

Consider the interaction 

with coupling constant  . To first order in  , the variation of the classical-action term contributes 

where   represents the four-point vertex insertion.

Solving the linear equation (15) yields 

which, when inserted into (17), produces the standard tree-level amplitude 

up to overall normalization of external wavepackets.
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D. General structure

For theories with three-point or gauge interactions, the linearized variational equation naturally

generates internal propagators and on-shell factorization channels. Specifically:

The quadratic cost kernel produces the free propagator structure.

The variation of the classical phase generates the appropriate kinematic numerators.

The regularizer   ensures that poles appear only at physical values of intermediate Mandelstam

invariants.

Thus, QOTAM recovers conventional tree-level scattering amplitudes as the first-order deformation of

the optimal transport kernel in coupling space. The next section extends this analysis to loop corrections

and the structure of the regularizer.

V. Loop Corrections and Regularization Structure

In QOTAM, loop-level contributions arise from nonlinear corrections to the optimal transport kernel and

from the structure of the regularizer   in the complex functional  . While tree-level amplitudes

follow from the linear response   of the kernel, loops appear at second and higher order in the coupling

expansion, 

A. Second-order stationarity equation

Substituting the expansion (22) into the variational condition   yields, at order  , 

  This nonlinear equation couples    to the quadratic expression in the first-order kernel  . The

structure of the term    mirrors the appearance of internal propagator convolutions, and

therefore reproduces loop topologies.

B. Role of the regularizer 

The functional   plays a crucial role at loop level. We require that it impose:

1. Locality: The regularizer must penalize kernels whose support violates locality, e.g. by constraining

nonlocal couplings in momentum space.

R[K]

R[K] S[K]

K1

K(q|p) = (q|p) + g (q|p) + (q|p) + ⋯ .K0 K1 g2K2 (22)

δS[K] = 0 g2
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2. Correct pole structure:   ensures that singularities appear only when internal invariants reach

physical values, implementing the loop propagator denominators  .

3. Unitarity: Imaginary parts of    encode the Cutkosky rules through discontinuities of the

optimal kernel,  thereby generating unitarity cuts.

4. Analyticity and dispersion relations: Penalties on curvature or non-holomorphic dependence

enforce standard analyticity constraints on polylogarithms and loop integrands.

5. UV/IR behavior: Entropic or curvature-type regularizers yield controlled high-momentum behavior

and can mimic dimensional regularization or Pauli–Villars schemes.

Thus,   acts as the QOTAM analogue of the local counterterms and renormalization prescriptions of

conventional QFT.

C. Loop amplitude from 

The one-loop amplitude is given by 

Because    solves Eq.  (23), the convolution structure in    yields loop integrals of the

form 

where   is a numerator determined by the gradients of the cost and regularizer.

Thus, QOTAM reproduces standard one-loop Feynman integrals as the second-order term in the optimal

transport expansion.

D. Renormalization as kernel reparametrization

Within QOTAM, renormalization corresponds to adjusting the regularizer   and the transport cost 

  so that the optimal kernel satisfies finite physical renormalized conditions. This process is

equivalent to introducing a reparametrized kernel 

 where   arises from the counterterm structure of  . Thus, renormalization is encoded geometrically

in the variational landscape of  .

R[K]
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E. Higher-loop structure

Higher orders in the expansion generate higher-loop diagrams:

The cubic term   corresponds to two-loop topologies.

At  , the nonlinearities in   generate all  -loop diagrams.

Multi-loop unitarity follows from the multi-linear structure of  .

We conclude that loop corrections emerge entirely from the nonlinear response of the optimal transport

kernel and the structure of the regularizer. This provides a geometric and variational reinterpretation of

perturbation theory, while enabling algorithmic approaches based on complex optimal-transport solvers.

The next section illustrates these constructions in explicit examples.

VI. Examples

To illustrate how QOTAM reproduces familiar scattering amplitudes, we now study several explicit

processes. We begin with scalar theories, where the structure is simplest, and then turn to gauge-theory

amplitudes, where the variational formulation naturally reproduces kinematic numerators and

factorization channels.

A. Tree-Level   Scattering

Consider the interaction 

with coupling  . The free optimal kernel is 

Turning on    generates the first-order correction    from the linearized equation 

. Solving this equation yields 

and therefore, from Eq. (17), 

which matches the standard   tree-level amplitude.
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gL S[K] L
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λ
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B. Tree-Level   and the Emergence of Propagators

For a cubic interaction 

the first-order kernel   contains terms corresponding to single-vertex insertions. At second order, the

quadratic term   generates the internal propagator structure: 

Inserting this into the amplitude formula reproduces the familiar three  -,  -, and  -channel diagrams: 

showing that QOTAM automatically generates factorization through the nonlinearities of the functional 

.

C. Yang–Mills Three-Point Amplitudes

Gauge-theory amplitudes contain nontrivial kinematic numerators. In QOTAM, these arise from the

variation of the classical-action term  . For Yang–Mills theory, the first-order kernel takes the

schematic form 

which, when inserted into the amplitude definition, yields the standard three-gluon amplitude 

with appropriate color ordering.

Thus, gauge-theory kinematic structure appears naturally from the variational derivative of the classical

part of the transport functional.

D. One-Loop Scalar Bubble

Loop integrals emerge from the nonlinear corrections to the kernel. For a scalar theory, the second-order

kernel contains the convolution 
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where    is an external momentum and    is a numerator determined by gradients of   and  .

Substituting this into the amplitude formula gives the complete scalar bubble integral, demonstrating

that QOTAM reproduces standard one-loop topologies.

E. Unitarity Cuts

Because    includes imaginary parts enforcing unitarity, the optimal kernel exhibits the correct

discontinuity structure. The one-loop cut in the  -channel arises from 

where    is the two-particle phase-space measure. Thus, the QOTAM variational framework

automatically implements unitarity via the structure of the regularizer.

F. Summary of Examples

These examples demonstrate that:

Tree-level amplitudes emerge from the linear response of the optimal transport kernel.

Propagators and factorization channels appear from quadratic terms in the variational functional.

Loop integrals and unitarity cuts arise from nonlinear corrections and the structure of the regularizer.

Gauge-theory kinematic numerators follow from the classical-action phase variation.

In the next section we turn to numerical strategies for solving the optimal transport equations and

computing amplitudes in practice.

VII. Numerical Implementation

The Quantum Optimal Transport Amplitude Method (QOTAM) translates the construction of scattering

amplitudes into a constrained complex optimization problem. This section outlines practical strategies

for computing the optimal kernel    numerically. We discuss discretization of kinematic space,

complex generalizations of entropic optimal-transport algorithms, tensor-network representations of

the kernel, and machine-learning approaches to the phase structure.

A. Discretization of Kinematic Space

We discretize the on-shell manifold   by introducing a grid 

k N c(p, q) R[K]

R[K]

s

Disc ∝ ∫ d ,K2 Φ2 K
†
1 K1 (38)

dΦ2

K(q|p)

Σm

{ | i = 1, … , }, { | j = 1, … , },pi Np qj Nq (39)
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with weights    approximating the Lorentz-invariant measure. Wavepacket distributions become

discrete vectors 

and the transport kernel becomes a complex matrix 

The probability-conservation constraint takes the discrete form 

and momentum conservation is implemented by restricting    to entries satisfying the discretized

conservation law.

B. Entropic Regularization and Complex Sinkhorn Iterations

A powerful approach to solving constrained transport problems is entropic regularization. We introduce a

term 

which smooths the optimization landscape and enables rapid convergence.

The standard Sinkhorn algorithm iteratively enforces discrete marginal constraints by left–right scaling

of a positive matrix. In QOTAM, we generalize this algorithm to complex matrices: 

where   and   adjust the magnitudes to satisfy Eq. (42), while the phases evolve according to the

complex-gradient flow of  : 

with step size  .

This yields an efficient iterative algorithm combining:

Sinkhorn-type modulus updates (enforcing probability transport),

Complex gradient descent/ascent for phase evolution,

Projected constraints for momentum conservation.

,wi wj

(i), (j),ρin ρout (40)

≡ K( | ).Kji qj pi (41)

(j) = | (i),ρout ∑
i=1

Np

wi Kji|
2
ρin (42)

Kji

[K] = ϵ | log | ,Rent ∑
i,j

wiwj Kji|
2

Kji|
2 (43)

K ⟶ K ,Dout Din (44)

Dout Din

S[K]

= − η ,K (t+1) K (t) δS[K]

δK†
(45)

η

qeios.com doi.org/10.32388/3T78LY 12

https://www.qeios.com/
https://doi.org/10.32388/3T78LY


C. Tensor-Network Parametrization of the Kernel

For high-multiplicity scattering, the kernel    grows exponentially in dimension. To control

computational complexity, we parametrize   as a tensor network, [8]

where    represent local tensors (3-point structures) and    represent propagator-like bonds. This

mirrors the decomposition of Feynman diagrams into local vertices and propagators.

Tensor-network approaches provide:

Polynomial scaling in the number of legs,

Natural factorization properties,

Ability to enforce local constraints via local tensor updates,

Compatibility with variational optimization.

D. Neural Phase Ansatz

The complex phase of the kernel, 

 contains most of the dynamical information. We therefore parametrize   using a neural operator, [9],

and optimize the parameters   by minimizing the functional  .

The advantages include:

Efficient representation of highly oscillatory phases,

Ability to encode known physical symmetries (permutations, crossing),

Fast evaluation and backpropagation,

Synergy with tensor-network amplitude representations.

E. Algorithmic Summary

A practical QOTAM computation proceeds as follows:

1. Discretize the on-shell momentum manifold.

2. Initialize   (e.g. random phase, Gaussian magnitude).

K

K

K(q|p) = TN( , ),Av Ge (46)

Av Ge

= | | ,Kji Kji e
iθji (47)

θji

= ( , ),θji NNϑ pi qj (48)

ϑ S[K]

K
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3. Apply complex Sinkhorn iterations to satisfy marginal constraints.

4. Perform complex-gradient descent on  .

5. Optionally parametrize   by a tensor network or neural phase ansatz.

6. Iterate until convergence to a stationary point.

7. Compute the amplitude via the discrete version of Eq. (10).

These numerical tools transform QOTAM into a viable computational approach for high-multiplicity or

non-perturbative scattering, leveraging modern optimal-transport and machine-learning techniques.

The next section discusses conceptual implications and future directions.

VIII. Discussion and Outlook

The Quantum Optimal Transport Amplitude Method (QOTAM) provides a new geometric–variational

formulation of scattering amplitudes. By promoting the S-matrix kernel to a complex optimal-transport

map on on-shell kinematic space, QOTAM unifies three fundamental aspects of amplitudes: (i)

probability flow between multi-particle wavepackets, (ii) classical action phases, and (iii) locality,

factorization, and unitarity encoded as variational constraints. The examples presented in this work

demonstrate that both tree-level and loop-level amplitudes emerge directly from the perturbative

expansion of the optimal kernel.

A. Conceptual implications

Several conceptual points deserve emphasis:

Variational origin of amplitudes. Amplitudes appear as stationary points of a complex functional,

providing an alternative to Lagrangian or on-shell recursion formulations.

Geometry of kinematic space. Scattering becomes a geometric problem of transporting probability

amplitude along the mass shell, with costs and phases determined by classical dynamics.

Unitarity as transport. The optical theorem and Cutkosky rules arise from the imaginary part of the

variational functional, reflecting conservation of probability flow.

Locality and analytic structure. The regularizer    enforces physical pole structure and correct

analytic continuation, linking QOTAM to axiomatic properties of the S-matrix.

S[K]

K

R[K]
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B. Relation to existing frameworks

QOTAM connects naturally to several modern approaches to scattering:

Geometric amplitude methods (including the amplituhedron and celestial holography): these

correspond to different representations of the transport kernel or different choices of cost and

regularizer.

On-shell recursion and factorization: factorization emerges from the quadratic terms in  [10].

Unitarity-based methods: QOTAM reproduces unitarity cuts through the imaginary part of  .

Tensor networks and machine learning: the structure of    naturally admits tensor-network

and neural representations, offering new computational strategies.

Thus QOTAM may serve as a unifying framework that organizes multiple existing insights under a single

variational principle.

C. Future directions

The formalism presented here suggests several promising directions:

High-multiplicity scattering. Tensor-network parametrizations of    may enable efficient

computation of amplitudes with many external legs.

Non-perturbative regimes. Solving the optimal-transport equation beyond perturbation theory could

provide new access to non-perturbative S-matrix information.

Curved backgrounds. Adapting QOTAM to AdS, cosmological, or black-hole backgrounds may reveal a

geometric transport interpretation of holographic correlators.

Gauge and gravitational theories. The phase structure of   may encode color–kinematics duality and

double-copy relations as variational symmetries.

Quantum simulation. The discretized transport kernel resembles quantum channels, suggesting

applications to quantum simulations of scattering.

D. Outlook

QOTAM transforms scattering theory into a problem of optimal geometric transport with complex phase

structure. This opens a new route to both conceptual understanding and numerical computation of

amplitudes. The variational perspective presented here suggests that scattering amplitudes may be

S[K]δ2

R[K]

K(q|p)

K

K
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viewed not only as analytic functions or geometric volumes, but as optimal flows of probability amplitude

governed by classical action, locality, and the intricate analytic structure of quantum field theory.

We expect this approach to provide new insights into amplitudes across particle physics, quantum

gravity, and holography, and to inspire further connections between optimal transport, geometric

analysis, and fundamental physics.

IX. Conclusion

We have introduced the Quantum Optimal Transport Amplitude Method (QOTAM), a new variational and

geometric formulation of scattering amplitudes. In this framework, incoming and outgoing wavepacket

distributions on on-shell kinematic space are connected by a complex-valued transport kernel whose

modulus defines a probability flow and whose phase encodes the classical action and quantum dynamics.

The physical S-matrix element arises as a stationary point of a complex optimal-transport functional

that enforces locality, factorization, unitarity, and analyticity.

We demonstrated how tree-level amplitudes appear from the linear response of the kernel, while loop

corrections follow from the nonlinear structure of the variational functional and the regularizer. Explicit

examples showed the emergence of propagators, factorization channels, unitarity cuts, and classical

Yang–Mills kinematic numerators. We also presented a practical computational framework based on

discretized kinematic grids, complex Sinkhorn iterations, tensor-network representations, and neural-

phase ansätze.

QOTAM suggests a unifying geometric perspective on perturbative and non-perturbative scattering, and

offers a promising numerical pathway for high-multiplicity processes, strongly coupled theories, and

scattering in curved backgrounds. We expect the methods developed here to provide fertile ground for

future research at the intersection of amplitudes, optimal transport, geometric analysis, and quantum

simulation.

Appendix A. Derivation of the Stationarity Condition

In this appendix we derive the stationarity equation    under the constraints of probability

conservation and momentum conservation.

We begin with the functional

δS[K] = 0
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and introduce Lagrange multipliers   enforcing 

The augmented functional is 

Taking the variation with respect to   yields 

Setting this to zero yields Eq. (3.16) of the main text: 

This is the Euler–Lagrange equation for the optimal kernel subject to the marginal constraint.

Appendix B. Relation to Standard Field Theory

Here we sketch the map between the QOTAM variational formulation and the conventional S-matrix

framework.

B.1. LSZ Limit

For sharply peaked wavepackets, 

the amplitude definition 

reduces to the standard S-matrix kernel 

S[K] = ∫ dpdq |K(q|p) c(p, q)|2

+ ∫ dpdqK(q|p) (p → q) + λR[K],
i

ℏ
Scl

(A1)

(q)Λout

(q) = ∫ dp |K(q|p) (p).ρout |2
ρin (A2)

[K]Saug = S[K] − ∫ dq (q)Λout

× [ (q) − ∫ dp |K(q|p) (p)] .ρout |2
ρin

(A3)

K†

= K c(p, q) + (p → q) + λ − (q)K (p).
δS

δK†

i

ℏ
Scl

δR

δK†
Λout ρin (A4)

δS[K] = 0 ⟺ K c + + λδR = (q)K (p).
i

ℏ
Scl Λout ρin (A5)

(p) → (2π (p − ),Ψin )4δ(4) pon−shell (B1)

= ∫ dpdq (q)K(q|p) (p)An→m Ψ∗
out Ψin (B2)

K(q|p) = (2π (∑p −∑ q) (p, q).)4δ(4)
Mn→m (B3)
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B.2. Propagators from Variational Quadratics

The quadratic variation   naturally produces convolution integrals of the form 

 reproducing loop propagators.

B.3 Unitarity

The imaginary part of   yields 

 which matches the optical theorem and Cutkosky rules.

Thus, standard perturbation theory emerges from the hierarchical response of the optimal transport

kernel.

Appendix C. Numerical Algorithmic Details

This appendix lists explicit algorithms used in Section 7.

C.1. Complex Sinkhorn Iteration

Given a complex matrix  , we enforce discrete marginal constraints via: 

C.2. Gradient Descent on 

Update rule: 

S[ ][ , ]δ2 K0 K1 K1

∫ ℓ ,d4 N(ℓ)

( − + iϵ)((ℓ + k − + iϵ)ℓ2 m2 )2 m2
(B4)

R[K]

DiscK ∝ ∫ dΦ K,K† (B5)

K

uj

Kji

vi

Kji

← ,
(j)ρout

| (i)∑iwi Kji|
2
ρin

− −−−−−−−−−−−−−

√

← ,ujKji

← ,
(i)ρin

| (j)∑jwj Kji|
2
ρout

− −−−−−−−−−−−−−−

⎷




← .Kjivi

(C1)

(C2)

(C3)

(C4)

S[K]

= − η(Kc + + λδR) .K (t+1) K (t) i

ℏ
Scl (C5)
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C.3. Tensor-Network Parameter Updates

For a decomposition 

we perform local optimization: 

C.4. Neural Phase Ansatz

If  , then 

Backpropagation allows efficient optimization of  .

C.5. Stopping Criteria

We iterate until: 

These conditions ensure stationarity, marginal satisfaction, and numerical stability.

References

1. ^Arkani-Hamed N, Trnka J (2014). "The Amplituhedron." J. High Energ. Phys. 2014(10):030. doi:10.1007/JHEP

10(2014)030.

2. ^Elvang H, Huang Y (2015). Scattering Amplitudes in Gauge Theory and Gravity. Cambridge, UK: Cambridg

e University Press. doi:10.1017/CBO9781107706620.

3. ^Strominger A (2017). "Lectures on the Infrared Structure of Gravity and Gauge Theory." https://arxiv.org/a

bs/1703.05448.

4. ^Arvanitakis A (2019). "The L∞-Algebra of the S-Matrix." J. High Energ. Phys. 2019(07):115. doi:10.1007/JHEP

07(2019)115.

K = TN( , ),Av Ge (C6)

← − η , ← − η .Av Av
∂S

∂A†
v

Ge Ge
∂S

∂G†
e

(C7)

= ( , )θji NNϑ pi qj

= .
∂S

∂ϑ
∑
i,j

∂S

∂Kji

∂Kji

∂θji

∂θji

∂ϑ
(C8)

ϑ

∥δS[K]∥

∥ − Π[K] ∥ρout ρin

∥ − ∥K (t+1) K (t)

< ,ϵstat

< ,ϵmarg

< .ϵstab

(C9)

(C10)

(C11)

qeios.com doi.org/10.32388/3T78LY 19

https://doi.org/10.1007/JHEP10(2014)030
https://doi.org/10.1007/JHEP10(2014)030
https://doi.org/10.1017/CBO9781107706620
https://arxiv.org/abs/1703.05448
https://arxiv.org/abs/1703.05448
https://doi.org/10.1007/JHEP07(2019)115
https://doi.org/10.1007/JHEP07(2019)115
https://www.qeios.com/
https://doi.org/10.32388/3T78LY


5. ^Weinberg S (1995). The Quantum Theory of Fields. Vol. 1: Foundations. Cambridge, UK: Cambridge Univers

ity Press.

6. ^Villani C (2008). Optimal Transport: Old and New. Berlin: Springer. doi:10.1007/978-3-540-71050-9.

7. ^Cuturi M (2013). "Sinkhorn Distances: Lightspeed Computation of Optimal Transport." In: Advances in Neu

ral Information Processing Systems (NIPS). pp. 2292–2300.

8. ^Choi W, Dempsey R, Jha A, et al. (2022). "Tensor Network Approaches to High-Energy Physics." SciPost Phy

s. Lect. Notes. 60. doi:10.21468/SciPostPhysLectNotes.60.

9. ^Badger S, Brönnimann T, Bürki J, et al. (2021). "Machine Learning Amplitude Recursions." J. High Energ. Ph

ys. 2021(06):098. doi:10.1007/JHEP06(2021)098.

10. ^Bonezzi R, Hohm O, Makridou A (2024). "Tree-Level Scattering from Homotopy Transfer." Nucl Phys B. 99

8:116412. doi:10.1016/j.nuclphysb.2023.116412.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/3T78LY 20

https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.21468/SciPostPhysLectNotes.60
https://doi.org/10.1007/JHEP06(2021)098
https://doi.org/10.1016/j.nuclphysb.2023.116412
https://www.qeios.com/
https://doi.org/10.32388/3T78LY

