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A phoneme-retrieval technique is proposed, which is due to the particular way of the construction of

the network. An initial set of neurons is given. The number of these neurons is approximately equal to

the number of typical structures of the data. For example if the network is built for voice retrieval then

the number of neurons must be equal to the number of characteristic phonemes of the alphabet of the

language spoken by the social group to which the particular person belongs. Usually this task is very

complicated and the network can depend critically on the samples used for the learning. If the network

is built for image retrieval then it works only if the data to be retrieved belong to a particular set of

images. If the network is built for voice recognition it works only for some particular set of words. A

typical example is the words used for the �ight of airplanes. For example a command like the "airplane

should make a turn of 120 degrees towards the east" can be easily recognized by the network if a

suitable learning procedure is used.
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1. Introduction

The phonemes are the fundamental elements of a spoken language. Vowels and consonants are two

particular phonemes, and they are produced in different mechanisms.

A vowel is generated after the use of the vocal cords, which give rise to a periodic acoustic signal, which is

quali�ed after precise spectral components. The differences among vowels are due to te articulations and

to the opening of the lips and to that of the jaw: the corresponding signal does not exhibit random

components nor disturbance ones.
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On the contrary, the production of consonants does not involve vocal cords, since it is due to a

constriction of the mouth, where the latter, on its turn, induces a turbulence on the air which blows out of

the lungs. The turbulence creates a random component in the vocal signal, or a combination of noise and

periodic signal. There are also consonants which are due to the mouth and to the nose.

The spectrum of the vowels demonstrates resonances which are a multiple of the fundamental

frequency,which coincides with the frequency of the oscillations of the vocal cords; the pertinent power

spectrum exhibits maxima in the correspondence of the multiples of the fundamental frequencies.

2. The power spectrum

The power spectrum is the quantity after which vowels and consonants are parameterised.

De�nition 1. Let    be a stochastic process de�ned on a space of probability  ; the power

spectrum   is de�ned after the relation

where   is the expectation value with respect to the probability  .

Vowels are characterised after a concentrated spectrum on the lower part of the spectrum and on the

medium one, i.e. for frequencies smaller than  .

The fundamental frequencies of the vowels can be easily identi�ed, as the signal is periodic, and the

noise component is small. The vowels differ one from the other for the position of the fundamental

frequencies; in particular, it is enough to consider the �rst one and the second one. The form of the

spectrum of a phoneme depends also on the word which contains it and on the pronunciation of the

speaker.

The vector that represents a phoneme is built staring from the power spectrum  . Since the samples

of the spoken language are obtained after measures at discrete times, it is necessary to perform a Fourier

transform of a sequence  . It is therefore more apt to use the fast Fourier transform (FFT)  [1]. The

algorithm consists in dividing the data  ,   into two subsets, i.e. one consisting

of the data of even index, and the other of the data of odd index; a set of complex data   with index 

  is introduced thereafter, such that the real part    equals the �rst    data with 

, and the imaginary part of  ,   to the second part
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It is easy to �nd the relation which colligates the Fourier transform of the reals part of   with that of

the imaginary part of  , such that the problem is reconducted to the calculation of the Fourier

transform for   data only, instead of one for the   data which were originally given.

If  , it is straightforward to verify that the number of operations    reduces to 

  after the iteration of the procedure. The interval of frequencies in which the power

spectrum is de�ned is divided in a certain number of intervals (or 'band'). These intervals correspond to

the ways the human ears work at the variation of the frequencies. The pattern   consists of a vector that

has as many components as the number of the bands, and the value f the   component equals the

mean value of the power spectrum of the   band. The sampling of the signal has to be accomplished

at a proper frequency which avoids the distortion of the signal, after the appropriate theorem [2].

It is the purpose of the present paper to analyse the case of vowels, as it is easier to isolate the stationary

part of the acoustic signal which corresponds to the phoneme, as consonants give raise to a signal which

exhibits the presence of a strong noise.

The data   which measure the acoustic signal are grouped in boxes of  , and the FFT is applied to

every box. The blocks are issued from the �rst datum, then from the second one, and so on. The FFT is

averaged among the blocks which correspond to the same part of the signal; in other words, the Fourier

transforms are averaged, among the blocks which correspond to the blocks which are part of the same

phoneme. The average is accomplished because the division zone between one phoneme and another is

not so easily outlined. As a further problem to be solved, it is worth mentioning that the Fourier

transform accomplished only on the block containing   data is not the true Fourier transform, as the

integral de�ning it is an integral on  . There exists a theory  [2]  which allows one to correct this

miscalculation, according to which it is necessary to multiply the succession of the data which is to be

considered in the summation (or in the integral) times a certain function which depends on the shape of

the data block (which is called a 'time window'). There exist several functions: the Welch functions, the

Parzen function, the Hanning function, and so on: it is customary to verify how the pattern vecor

depends on the choice of these functions. Of course, this correction has to be accomplished before the

calculation of the power spectrum. In  [3]  the veri�cation is presented, of the issue that the vowels 

, extracted from a certain succession of words, in the application of a rectangular window, i.e.

the multiplication time the characteristic function of the block constituted of   and the multiplication

times the Hanning function do not lead to very different results as far as the frequencies less than  ,

which is the interval among which the power spectrum of the spoken language is concentrated.
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To summarise, the patterns are extracted from the vocal signal after the following operations:

1) For each group of    data, the FFT is calculated with the above-mentioned corrections, and the

power spectrum is determined;

2) the frequency interval    is divided into    intervals (or 'channels'): from    to 

,   intervals are considered, of breadth  , while from   to   only   intervals

are considered, of breadth  ;

3) in each channel, the average of the power spectrum is calculated;

  the vector  , which consists of    components, constructed this way is normalised to    in the

Euclidean norm, for a special convergence theorem of the weights to be applied, in a particular

Kohonen network [4].

The described construction can be now applied. Given a phoneme, which is represented after a vector

built in the appropriate manner, the different position of the phoneme in the different words and the

different pronunciation due to the in�ection of the voice allow for the existence of a set of vector 

 which correspond to that phoneme. It is obvious that the phonemes generate a Voronoi partition,

and the Kohonen partition algorithm should allow one to construct such a partition, together with the

vectors   which de�ne the partition. The dynamics of the winning neuron is applied to prove to theorem

of convergence of the weights. Nevertheless, the theorem which is aimed to be proven is based on a non-

linear dynamics of the weights of the network. In  [3], a validation of this version of the theorem was

provided with; nevertheless, a recognition of vowels only was achieved only in   of cases. The reason

of the inef�cient performance was outlined in that the phonemes cannot be restricted to vowels an

consonants only, but the transitions between phonemes have to be introduced, as in  [5]. In  [5], more

sensitive parameters were introduced as well, as far as the power spectrum is concerned, which lead the

patter vector to consist of   components.

3. A particular Kohonen algorithm

The present section is aimed at discussing a network consisting of    input neurons and of    output

neurons.. At each knot of the �rst type the same pattern    is presented, which represent a

particular phoneme. A weight vector   is associated with the   output neuron  .

Each input neuron is connected with all the output neurons. The weights    satisfy the 

dimensional Riccati equation
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The dynamics was introduced by Kohonen to take into account the non-linear response of the circuits

which can eventually realise this algorithm on some computer. As soon as the dynamics is opportunely

discretised, the dynamics is applied on the winning euro only, i.e. on the neuron    whose weight is as

closest as possible to the input vector   i the Euclidean distance. The evolution equation of this dynamics

is non-linear. The vector which corresponds to a pattern is constructed as described in Section 1. It is

possible to state that, if an input time sequence  , issued from the spoken language of a chosen person,

is presented to the network, a structure of vectors    should be obtained, where the latter de�ne the

Voronoi partition associated with the set of Phonemes generated by the chosen person. It is expected that

two different persons give rise to two different partitions. For it to be accomplished, a convergence and

stability Voronoi is necessary. As the dynamics described after Eq. (2) is non-linear, the convergence

theorem in probability is substituted by a Voronoi which states the stability of the weights    in the

asymptotic limit when the vector   varies within a neighbourhood which is small enough. The voice

recognition after this kind of network has not been applied successfully yet,a d, up to now, there are

programs which are able to recognise only a limited number of words, if applied to one person only, after

a suf�ciently-enough long instruction time, within a certain error. There exist also other algorithms for

the voice recognition [6], [7].

The vector    which generates the atom    of the Voronoi partition is the vector with the least

distance from all the other vectors of  , which is named the central vector.

The characteristic radius   of the atom   is the maximum distance between the central vector and

all the other vectors belonging to  .

The distance   between the central vectors of the atoms   and   and the minimum distance

between the atoms is de�ned:

De�nition 2. If an unknown pattern   is presented to the network, the neuron   is found, such that its weight

vector is endowed with the minimum distance    from the input  . Let    be the atom of the partition to

which the weights of the neuron    belong: if  , then the pattern    is recognised as the  phoneme;

differently, it is not recognised.

= αx(t) − β (t),   α,β > 0 (2)ṁi mi∑
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For a learning process to give rise to weights similar to the central vectors of each phoneme or atom of

the Voronoi partition, it is necessary to prove the stability of the Riccati equation with respect to the

variation of the input function  . More precisely, two theorems need to be demonstrated [8].

Theorem 1. If in Eq. (2)a constant function   is introduced, the the limit of the solution is proportional

to  , and the vector   approaches to this value with exponential velocity.

As it happens during the instruction procedure of the network  , on the contrary, one has

the following

Theorem 2. If the norm of the perturbation   is small, the norm of the variation of the solution of the

equation of the evolution of the weights is minorised by a constant multiplied times this small constant.

In other words, the Riccati equation is stable with respect to variations of the input vector. This property

allows one for the construction of the Voronoi partition if the learning algorithm here chosen is used.

This results remains valid also if perturbation   is a stochastic process of continuous trajectories; the

almost-everywhere convergence is not obtained any more from the learning dynamics: only stability is

achieved. It is important to remark that stability holds only if the components of the input vector are all

strictly greater than or equal to a �xed positive number  ; this behaviour was noticed also by Kohonen [9],

but no satisfying explanation was given thereafter. This hypothesis provides one also with the

motivation of the choice of the power spectrum as a representation of the voice.

Theorem 3. If  ,  , then there is stability if

it is important that this criterion be satis�ed when   coincides with the value given by Eq. (3). In [3] work

has been developed to prove Theorem 3. As a sample,   words pronounced by a woman were analysed.

The patterns pertinent to the vowels    were extracted.    samples of    were obtained; 

 samples of   were obtained;   samples of   were obtained;   samples of   were obtained. Because

only    samples of    were obtained, the latter vowel was excluded form the study. The constant    is of

order  . The convergence of the Riccati equation was obtained after a numerical integration of 

 steps, and the value was differing from that forecast by the theoretical one of a quantity smaller than 

, in the case of a constant input. Furthermore, the numerical solution con�rms that the approach

to the limiting value is an exponential one. The stability condition was not matched because the value of 

  was calculated as  ; nevertheless, after the numerical integration of Eq. (2), this property was

veri�ed by means of the data available.
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4. Discussion

It is now appropriate to state the following De�nitions and Theorems.

De�nition 3. let    be the input value of the network, and it is the same for each of the    neurons

which constitute it; a weight vector   is associated with each neuron  ; the output of a generic

neuron is given by 

where   is the Euclidean scalar  dimensional product.

The output of the network given in this de�nition corresponds to what learnt from the recognition;

indeed, the condition according to which the Euclidean distance between the weight of the winning

neuron and the input pattern be minimal corresponds to the fact that   is the maximum: it is therefore

appropriate to state that, during the recognition, only the neuron whose maximum output, according to

the previous de�nition, be active.

De�nition 4. The phonemes form a set of    dimensional constant vectors  ,  , such

that

for  , where    is the parameter previously de�ned, and    is the Euclidean norm of the

space  .

This de�nition equals the statement that the central vectors of the Voronoi partition are normalised to  ,

and that there exists a minimum distance between them, which is an important parameter within the

construction.

De�nition 5. The 'perturbed' set of the phonemes is a vector function

with   for   and   continuous.

In this de�nition, the fact is established, that the set of phonemes by which the instruction of the

network is done is given by the vector which really represents the phoneme, to which a quantity is added,

which can be also random as far as it is continuous, which represents all the random �uctuations due to

the accent of a person, to the position of the phoneme in the word, and so on. It is remarked that the
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construction is meaningful if this perturbation is smaller than  ; differently, there is a superposition

between the data which instruct the network.

De�nition 6. The evolution equation of the weight vector of the generic neuron   is as follows:

where    is the    perturbed phoneme,    and    are positive constants, which are �xed, which

depend on the characteristics of the particular circuit which realises the neural circuit.

It is interesting to remark that, if one takes  , with   �xed, the the   chosen as

is a �xed point of Eq. (8). Let   the solution of Eq. (8) for  . There holds the following

Theorem 4. For each initial condition  , one has

Let   be the solution of the evolution equation for the weights  , and let  ,  ,

the variation of the solution with respect to the solution  . The following De�nition 7 and the following

Theorem 5 are equivalent to stating the previous discussion, which demonstrates that the instruction of

the neural network is meaningful only if the �uctuations which are present in the set of instruction of

the network do not let the central vector of the Voronoi partition, which the instruction process builds,

vary much.

De�nition 7. The network formed by the    neurons and their weights is stable with respect to the

variation of the input   if it is possible to �nd   such that, for each   continuous,  , the

exists   such that

where   is the variation of the previously-de�ned solution.

It is now possible to expose the theorem which states the stability of the system in the sense of De�nition

7. The theorem is valid also if the perturbation is a random function, as the only property which is

requested is the continuity which is veri�ed for many stochastic processes present in nature.

Theorem 5. Let   a continuous vector function, and let   such that

δ
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and  : then one has

to determine   such that

5. Outlook

Self-organising maps have been tested for the recognition of word boundaries in [10]. Coding strategies

between layers are discussed in [11].

Self-organising neural networks are analsyed in  [12]  as far as the validity of the technique to span the

speech space.

The ability of time-dependent self-organising maps can be used to determine the time-dependent

features of the input speech signal [13] .

The consequences of the modi�cations of the input signal are studied in [14], [15].

The analysis of consonants has been scrutinised from different techniques; as a main result, the analysis

of consonants is dependent of the chosen language [16][17][18]

The dynamic stability of the neural networks has been investigated in [19].

The Kohonen dynamics in a dynamically expanding context has been considered in [20].

An example of winner-take-all neural network is given in [21].
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