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1. Introduction

In linear spaces with the inner product, one can prove many inequalities satisfied by vectors belonging to

these spaces. They have a number of important applications not only in mathematics, but also in

mathematical physics, and in particular in quantum mechanics. An example here is the Schwartz

inequality used in the derivation of Heisenberg’s quantum uncertainty principle. Other inequalities are

used to derive the so–called "sum uncertainty relations" (see, e.g.[1][2]). In some applications it is

important to know the upper bound on the sum of norms. Such a bound can be found using, for example,

the Dunkle–Wiliams inequality[3]. This upper bound also finds various applications. An example of this is

its use in mathematical physics to derive the so–called "reverse uncertainy relation"[4][5][6]. Here we

present a simple inequality, (much simpler than that following from the Dunkle–Wiliams inequality),

which seems to be a new, that can be used in the derivation of the above mentioned reverse uncertainty

relation, as well as in other cases.

2. A certain simple inequality

There is a simple inequality, which may be useful in some applications:
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Theorem. Consider the linear vector space with the inner product. Vectors,  , belonging to such a

space satisfy the inequality

Proofs.

1) Let’s use the identity

(where    is the real part of a complex number  ), and apply the Cauchy–Schwartz inequality to 

. There is

Replacing   in (3) with the the results (4) we obtain the inequalities (1) and (2). 

2) Let’s use the triangle inequality

and take the squares of its both sides. Then we get that

In the next step we find   from the parallelogram law:

, and replace the right hand–side of (6) with

the   calculated in this way, which leads to the inequality (2). 

3. Applications: A reverse uncertainty relation

The inequality (2) is simple and may be useful in some applications: It seems that it should be of interest

to, among others, physicists studying the so–called "reverse uncertainty relations", see e.g.[4][5][6]. In

these papers an upper bound for a sum of norms was applied to define the reverse uncertainty relation

for the sum of variances and properties of such a relation were analyzed. The upper bound mentioned

and having more complicated form then that resulting from (2) was found in[4][5][6]  using the Dunkl–

Williams inequality[3]. Now let us try to derive the "reverse uncertainty relation" using inequality (2).

In a general case, the variance   of an observable  , when the quantum system is in the state  ,

is defined as follows
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where  , and   is the expected value of an observable   in a system that

is in the state  , (where    is the normalized vector and    is the Hilbert space of states of the

quantum system under considerations), provided that  . Equivalently: 

. The observable    is represented by hermitian operator    acting in  . Here 

  is the standard deviation. Let us consider two observables,    and  , represented by non–

commuting hermitian operators    and    acting in  , such that    exists and 

, (  denotes the domain of an operator   or of a product of operators). Let

If to insert (8) into (1) then we obtain

There is  . This and the definition (7) means that the inequality (9)

takes the following form,

where

is a quantum version of the covariance (or, of the correlation function) of the observables    and    in

quantum state  . Here defining the correlation function   we follow, e. g.[7][8] and others. The

inequality (9) is a simple variant of the "reverse uncertainty relation".

Another simple variant of the "reverse uncertainty relation" can be obtained using (2). Namely, applying

the method used to derive the inequality (9) to (2) and keeping in mind all steps leading to (9) we obtain

that,

which is another, less restrictive, variant of the "reverse uncertainty relation".

4. Final remarks

The Dunkl–Williams inequality for vectors   from a real or complex inner product space has the

following form[3][9],
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where the condition that   are nonzero vectors must be satisfied[3][9]. This inequality was used

in[4]  to find the "reverse uncertainty relation". Indeed, replacing    in (13) by (8) and using the

definition (7) after some algebra authors of[4] obtain that

where  . The inequality (14) is the reverse uncertainty relation derived in[4].

As can be seen from the inequality (14) this reverse uncertainty relation has rather complicated form and

is undefined if    is an eigenvector of    (or of  ). This is because then    (or 

) and the inequality (13) does not hold. These kinds of weaknesses are absent in

inequalities (9) and (12), i.e., in our simpler reverse uncertainty relations. Although inequalities (9) and

(12) do not provide any useful information about the upper bound for the sum of two variances, 

, if   is an eigenvector of   (or  ), but even in such a case the left and right sides of

these inequalities are finite and well–defined, which cannot be said about inequality (14). Moreover,

inequalities (9) and (12) seem to be simpler in applications than inequality (14).

Reverse uncertainty relations, (9), (12) and (14) have another non–obvious property that is worth

mentioning. Namely, if the system is in such a state    that  , and

simultaneously   and  , then it is not possible to obtain any useful information about the

upper bound for the sum of variances from these relations. Indeed, in this case  , so also 

, and  . The first observation is that in

such a case observables    and    are uncorelated in this state. Further observations are that in the

situation under consideration the inequality (9) takes the form  ,

and the inequality (12) looks as follows,  , and finally, inequality (14) takes the form: 

. Neither of these results says anything about the upper bound for the sum 

. So if observables   and   are uncorrelated in state   then using only inequalities

(9), (12) and (14) nothing can be said about the upper bound on the sum of their variances.

To sum up: inequalities (9), (12) and also (14) (i.e. all reverse uncertainty relations presented here) are

worth further investigation, both theoretical and experimental. The experiment should decide which of

them better describe the real properties of quantum systems.
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