The range of activity of nanoparticles depends on the nature and shape of the nanostructure. However, if the energy of the nanoparticle field is comparable to the energy of electromagnetic radiation and if in a certain range a wavelength with the occurrence of chemical reactions in materials Under irradiation, significant changes will be made in the activity of nanoparticles up to 100 nm in size. is the nanometer expected to be used for storage. Given the relatively large (physically speaking) storage devices we have now and the fact that we need gigabyte sizes in various areas, there is a high potential for activity in this There is a context. Each quantum dot consists of a discrete ball of several hundred atoms that can have one of two magnetic states. This allows them to contain a single bit of information (zero or one), as is customary in machine computing. In conventional hard disks, the data bits must be spaced far enough apart that they do not overlap. Quantum dots act as completely independent units that are not structurally connected, so they can become somewhat closer to each other.

Electrostatic nanocapacitors contain billions of nanocapacitors to store large amounts of energy. Scaling up to a practically trivial level is not, but the pair works together to create larger arrays.In the structure, electrostatic nanocapacitors can effectively connect several arrays together.In general, nanoelectric supercapacitors can store large amounts of energy, but they tend to charge slowly and wear out quickly. Meanwhile, capacitors have a longer life and can be discharged quickly, but store much less total energy. To make nanostructured arrays of electrostatic capacitors. A nano supercapacitor can be created. Electrostatic nanocapacitors are the simplest type of electronic energy storage device. They store electrical charge on the surface of two metal electrodes separated by an insulating material. The storage capacity of the electric nano supercapacitor is directly proportional to the surface area of these sandwich-like electrodes. The storage capacity of the electric nano supercapacitor can be increased by using nanostructures to increase the level of energy storage.

References

1. ^Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption." Qeios. doi:10.32388/z3oxov.
during the sub-threshold range". Qeios. doi:10.32388/1al4jb.


8. Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.


28. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”. Qeios. doi:10.32388/a0nexa.

29. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”. Qeios. doi:10.32388/a0nexa.


33. Afshin Rashid. (2024). Review of: “bipolar transistors (pMOS) have a state voltage connected (Von) around 2 to 3 volts”. Qeios. doi:10.32388/c8zgwv.