
On the rheology of thixotropic and rheopexic suspensions 

Alexander Levinsky 

Abstract 

Semi-empirical equations are derived that describe the dependence of shear stress on shear rate 

during the flow of a one-component suspension. The suspension is considered as consisting of two 

fractions: single grains of the solid phase and their dimers, between which a reversible dimerization 

reaction occurs. In this case, the dimerization of single grains is considered as a reaction with an 

invariable rate constant, and the dissociation of dimers is considered as an inverse reaction with a 

rate constant that increases linearly with the shear rate. The equations are based on the Krieger-

Doherty formula, generalized to the case of a multicomponent suspension. 
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Introduction 

In a previous work [1], equations were derived that describe the dependence of shear stress on 

shear rate during the flow of concentrated suspensions. The equations were based on the Krieger-

Doherty formula [2, 3], generalized in our work [4] to the case of multicomponent suspensions: 

𝜂 = 𝜂0 (1 −
𝜑

𝜑̅0
)
−[𝜂̅]𝜑̅0

                                                                (1) 

Here [𝜂̅] and 𝜑̅0 are the values of the parameters averaged over all solid components: 

{
 

 [𝜂̅] =
∑[𝜂𝑖]𝜑𝑖
𝜑

𝜑̅0 =
𝜑

∑𝜑𝑖/𝜑0,𝑖

  ,                                                                  (2) 

where 𝜑 is the total volume fraction of the dispersed phase, [𝜂𝑖] is the intrinsic viscosity of i-th 

component, 𝜑𝑖 and 𝜑0,𝑖 – volume fraction and limiting concentration of the i-th component, 

respectively. 
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In that work, it was shown that the generalized Krieger formula (1–2) can be used to describe the 

dependence of the shear stress τ on the shear rate  𝛾̇ ̇ if the following assumptions are made: 

1) A one-component suspension (i.e., a dispersion of one solid in a liquid) can be considered as 

a system consisting of two fractions: single grains (“singlets”) of the solid phase and their 

dimers (“doublets”), moreover, single grains and their dimers correspond to different values 

of the parameters [η] and φ0; 

2) Dimerization of singlets can be considered as a reaction with an invariable rate constant 

k1, and dissociation of doublets as a reaction with a rate constant 𝑘, that increases linearly 

with the shear rate 𝛾̇: 𝑘 = 𝑘2 + 𝑘3𝛾̇. Here 𝑘2 – dissociation rate constant in the absence of 

flow, 𝑘3 – scan speed (change speed of rate constant with increasing of shear rate). 

It was shown that the derived equations describe well the flow of both pseudoplastic and dilatant 

suspensions. However, it was tacitly assumed in [1] that the equilibrium between singlets and 

doublets is established instantly. 

This work is a continuation and further development of the approach described in [1] and its 

generalization to the nonequilibrium case, when the achievement of equilibrium lags behind the 

change in the shear rate (i.e., there are relaxation effects - thixotropy or rheopexy). 

Theory of calculations 

So, let us consider a suspension as a system, the solid phase of which consists of two fractions: 

singlets (we denote their volume fraction as 𝜑1) and doublets (volume fraction 𝜑2). 

Due to thermal motion, singlets (let's denote their number per suspension volume unit as 𝑛1) 

collide with each other, after which they can be held together by cohesive forces, forming doublets 

(their number per suspension volume unit is 𝑛2). Under the action of thermal motion, doublets can 

decay into singlets again, i.e. the reversible reaction 2𝑛1 ⇄ 𝑛2 takes place. The application of shear 

stress should obviously promote the breakup of doublets, i.e. speed up the back reaction. 

Let there be 𝑛0 grains of the solid phase per unit volume of the suspension, and let the average 

grain volume be 𝑣. Then the volume fraction of the solid phase is 𝜑0 = 𝑛0𝑣. At a given shear rate 

𝛾̇ an equilibrium is established between singlets and doublets at a certain rate: 2𝑛1 ⇄ 𝑛2 and 

𝑛1 + 2𝑛2 = 𝑛0. Multiplying the left and right sides of the last equality by 𝑣, we get 

𝜑1 + 𝜑2 = 𝜑0.                                                             (3) 

Let the dimerization rate constant k1 be invariable, and the reverse reaction rate constant k linearly 

depend on the shear rate 𝛾̇, which, in turn, is some function of time: 𝑘 = 𝑘2 + 𝑘3𝛾̇(𝑡). Further, we 



will assume that 𝛾̇ changes linearly with time (which is usually implemented in practice in 

rotational viscometers). Thus, the reaction kinetics is described by the differential equation 

𝑑𝜑1
𝑑𝑡

= −𝑘1𝜑1
2 + (𝑘2 + 𝑘3𝛾̇)𝜑2                                                        (4) 

Substituting equality (3) into equation (4), we obtain: 

𝑑𝜑1
𝑑𝑡

= (𝑘2 + 𝑘3𝛾̇)(𝜑0 − 𝜑1) − 𝑘1𝜑1
2.                                                 (5) 

As initial conditions, we choose the concentration of singlets 𝜑1
𝑖𝑛𝑖𝑡 at equilibrium, which is 

established in the absence of flow, i.e. at  𝛾̇ = 0 and  
𝑑𝜑1

𝑑𝑡
= 0. Then 𝑘2(𝜑 − 𝜑1) − 𝑘1𝜑1

2 = 0, 

whence  

𝜑1
𝑖𝑛𝑖𝑡. =

√𝑘2
2 + 4𝑘1𝑘2𝜑0 − 𝑘2

2𝑘1
                                                          (6) 

Equation (5) is the well-known Riccati equation, which, unfortunately, in the general case cannot 

be integrated in quadratures [5, 6]. Therefore, it was solved numerically by the classical Runge-

Kutta method of the fourth order [7]. The result of the numerical solution will be denoted as 𝜑1(𝑡). 

The Krieger–Doherty formula for a two-component suspension according to (1) and (2) has the 

form 

𝜏 = 𝜏0 + 𝜂0𝛾̇ (1 −
𝜑1
𝜑10

−
𝜑2
𝜑20

)
−

[𝜂1]𝜑1+[𝜂2]𝜑2
𝜑1/𝜑10 + 𝜑2/𝜑20

,                                      (7) 

with 𝜏 is shear stress, 𝜏0 is the yield stress, 𝜂0 is the viscosity of the dispersion medium, 𝛾̇ – is the 

shear rate, 𝜑1 and 𝜑2 are the volume fractions of singlets and doublets (in accordance with (3) 

𝜑2 = 𝜑0 − 𝜑1), 𝜑10 and 𝜑20 are the corresponding limiting concentrations, [𝜂1] and [𝜂2] – are 

the corresponding intrinsic viscosities. 

Having a numerical solution 𝜑1(𝑡) of the differential equation (5), one can calculate the shear 

stress using formula (7). The results of the calculations thus depend on 7 parameters: the rate 

constants  𝑘1, 𝑘2 and 𝑘3, the limiting concentrations 𝜑10 and 𝜑20, as well as on the intrinsic 

viscosities [𝜂1] and [𝜂2]. 

Results and discussion 

A study of the parametric sensitivity of the derived equations showed that the equations are capable 

of describing both the thixotropic and rheopex behaviour of suspensions (Fig. 1–6). 



 

 

Fig.1. Dependence of the volume fraction of singlets 

on the shear rate. Parameter values: 𝑘1 = 10; 𝑘2 =

0.1; 𝑘3 = 10; 𝜑0 = 0.4 

 

 

 

 

From Fig. 1 can be seen that with an increase in the shear rate (“forward move”), the concentration 

of singlets increases (i.e., the suspension flow destroys doublets), and with a decrease in the shear 

rate (“reverse move”), their concentration is restored due to the flow of dimerization reactions, and 

due to the finite reaction rate, the change in concentration lags behind the change in shear rate, 

which leads to hysteresis in concentration and, as a result, to hysteresis in viscosity and shear 

stress. 

 

Fig. 2. Thixotropy: viscosity vs. shear rate. The rate 

constants are the same as in Fig. 1; values of other 

parameters: 𝜑10 = 0.5; 𝜑20 = 0.45; 𝜏0 = 0; 𝜂0 =

0.1; [𝜂1] = 3; [𝜂2] = 4. 

 

 

Fig. 2 shows the dependence of viscosity on shear rate at the same rate constants as in Fig. 1, and 

the values of the remaining parameters (limiting concentrations and intrinsic viscosities) were 

chosen so that the viscosity decreases with increasing shear rate, i.e. so that the suspension exhibits 

pseudoplastic behaviour. At the same time, it can be seen that the finiteness of the reaction rates 

leads to the fact that the recovery of viscosity occurs with a lag, and the viscosity with a decrease 

in 𝛾̇ remains less than the viscosity with an increase in 𝛾̇  (i.e., the suspension is thixotropic). 

Such behaviour of viscosity can be explained by the fact that doublets make a greater contribution 

to the viscosity of the suspension than singlets, so the destruction of doublets leads to a decrease 

in viscosity, and the delay leads to the fact that during the experiment the viscosity does not have 

time to recover. Thus, pseudoplastic suspensions in the presence of relaxation effects demonstrate 

a thixotropic behaviour, which also can be seen from Fig. 3. 



 

 

Fig. 3. Thixotropy: shear stress vs. shear rate. The 

parameter values are the same as in the previous 

figures. 

 

 

 

 

Fig. 4. Rheopexy: dependence of viscosity 

on shear rate. Parameter values: [𝜂1] = 5,  

[𝜂2] = 2.5; rest parameters have the same 

values. 

 Fig. 5. Rheopexy: dependence of shear stress on 

shear rate. Parameter values are the same. 

 

Fig. 4 and 5 show similar results for dilatancy and rheopexy. It is easy to see that in this case the 

doublets make a smaller contribution to the viscosity of the suspension, and their destruction leads 

to an increase in the viscosity, i.e. the suspension is dilatant, and the finiteness of the reaction rates 

leads to the fact that during the experiment, with a decrease in the shear rate, the viscosity does 

not have time to decrease to the previous value, and the suspension demonstrates rheopex 

behaviour. Thus, dilatant suspensions become rheopex in the presence of relaxation effects. 

At high rates of dimerization and decay of dimers, the derived equations degenerate into the 

limiting case of instantaneous establishment of equilibrium. This limiting case is described in the 

previous work [1], where it is shown that the equations describe pseudoplasticity and/or dilatancy 

well (depending on the ratio of the parameters 𝜑10,  𝜑20, [𝜂1] and [𝜂2]). 

For experimental verification of in this work derived equations, the data published in the literature 

[8–10] were used. The results of comparing theory with experiment are shown in the following 

figures. 



 

 

Fig. 6. Aqueous suspension 

of nanodiamonds according 

to [8]. Parameter values: 𝑘1 ≈
56.81, 𝑘2 ≈ 2.287, 𝑘3 ≈
1.035, 𝜑0 ≈ 0.370, 𝜑10 ≈
0.582, 𝜑20 ≈ 0.358, 𝜏0 ≈
14.4, 𝜂0 ≈ 0.0492 𝑃𝑎 ∙ 𝑠, 
[𝜂1] ≈ 2.948 Па ∙ с,  [𝜂2] ≈
5.370 𝑃𝑎 ∙ 𝑠. The standard 

deviation of the curves from 

the points is 0.3 Pa (1.3% of 

the mean value of the shear 

stress). The error indicator 

shows a spread of 3%. 

 

Fig. 6 shows the dependence of the shear stress on the shear rate for an aqueous suspension of 

nanodiamonds according to the data of [8]. The dots represent the experiment; the solid curves 

represent the calculation by the derived equations. It is easy to see that the derived equations are 

in good agreement with the experiment, and the parameters of the equations take realistic values. 

The calculated dependences of the volume fraction of singlets, as well as the viscosity on the shear 

rate, corresponding to the results presented in Fig. 6 are shown in Figs. 7 and 8, respectively. It is 

easy to see that the suspension is pseudoplastic and, as expected, the presence of a relaxation effect 

leads to thixotropy. 

  

Fig. 7. Aqueous suspension of nanodiamonds. 

Calculated dependence of the volume fraction of 

singlets on the shear rate. 

Fig. 8. Aqueous suspension of nanodiamonds. 

Calculated dependence of viscosity on shear rate. 

 

 

However, in the literature [9, 10] there are also experimental data, according to which a 

pseudoplastic suspension demonstrates a rheopex character [9], (the dependence of shear stress on 

shear rate for such a suspension according to the data of [9] is shown in Fig. 9), as well as 



suspensions with a variable flow character [10] (i.e., at some shear rates, thixotropy is observed, 

and at others, rheopexy). These data are presented in fig. 10. 

 
 

Fig. 9. Aqueous suspension of palygorskite. 

Dependence of shear stress on shear rate 

according to [9]. 

Fig. 10. Polymer suspension filled with ceramic 

nanoparticles. Dependence of shear stress on 

shear rate according to [10]. 

 

As it turned out, the derived equations do not describe these results. The reason is that these 

equations predict the following behaviour: 

The convex dependence 𝜏(𝛾̇), shown in Figs. 9, means a decrease in viscosity during the forward 

move, i.e. pseudoplasticity. During the subsequent reverse move, the viscosity should recover 

(increase) with a delay, i.e. the curve 𝜏(𝛾̇) for the reverse move should lie below the curve 𝜏(𝛾̇) 

for the forward move, which contradicts the experimental data presented in Fig. 9. 

The data in Fig. 10 represent a system with a variable nature of the flow: with a forward move, the 

dependence 𝜏(𝛾̇) is first concave (dilatancy), then convex (pseudoplasticity); the same for the 

reverse. As was shown in previous works [1, 11], to describe the variable nature of the flow, it is 

necessary to take into account the formation of trimers. Therefore, it is natural to assume that 

taking into account the formation of trimers, together with taking into account the finiteness of the 

reaction rate, will also make it possible to describe both the data presented as in Fig. 10 and in Fig. 

9. The next work will be devoted to the study of this possibility. 

Conclusions 

1. A one-component suspension can be considered as a system consisting of two fractions: single 

grains and their dimers, between which an equilibrium is established at a certain final rate, 

depending on the shear rate. This model describes uniformly and naturally 4 types of 

rheological behaviour of suspensions: pseudoplasticity, dilatancy, thixotropy and rheopexy. 



2. The application of shear stress leads in all cases to the destruction of dimers and a shift of 

equilibrium towards single grains. 

3. The type of rheological behaviour of the suspension depends on the ratio of four parameters: 

the limiting concentrations of the components 𝜑10 and 𝜑20, their characteristic viscosities [𝜂1] 

and [𝜂2], as well as on the time to reach equilibrium. If this time is small compared with the 

time of experiment, the equations degenerate into the limiting (equilibrium) case and describe 

pseudoplasticity and/or dilatancy. If this time is comparable with the time of the experiment, 

relaxation effects appear – thixotropy and/or rheopexy. 

4. An assumption was made (already confirmed by further studies) that taking into account the 

formation of trimers will also make it possible to describe the cases when the suspension, 

depending on the shear rate, exhibits both thixotropic and rheopex behaviour. 
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