
15 January 2025, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Remote Inference Over Dynamic Links
via Adaptive Rate Deep Task-Oriented
Vector Quantization

Eyal Fishel1, May Malka1, Nir Shlezinger1, Shai Ginzach2

1. School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel; 2. Rafael Advanced Defense Systems

(Israel), Haifa, Israel

A broad range of technologies rely on remote inference, wherein data acquired is conveyed over a

communication channel for inference in a remote server. Communication between the participating

entities is often carried out over rate-limited channels, necessitating data compression for reducing

latency. While deep learning facilitates joint design of the compression mapping along with

encoding and inference rules, existing learned compression mechanisms are static, and struggle in

adapting their resolution to changes in channel conditions and to dynamic links. To address this, we

propose Adaptive Rate Task-Oriented Vector Quantization (ARTOVeQ), a learned compression

mechanism that is tailored for remote inference over dynamic links. ARTOVeQ is based on designing

nested codebooks along with a learning algorithm employing progressive learning. We show that

ARTOVeQ extends to support low-latency inference that is gradually refined via successive

refinement principles, and that it enables the simultaneous usage of multiple resolutions when

conveying high-dimensional data. Numerical results demonstrate that the proposed scheme yields

remote deep inference that operates with multiple rates, supports a broad range of bit budgets, and

facilitates rapid inference that gradually improves with more bits exchanged, while approaching the

performance of single-rate deep quantization methods.

1. Introduction

As data demands and data diversity grow, digital communication systems are increasingly embracing

collaborative networks designed for reliable and task-specific communication. This trend is

particularly evident in next-generation technologies such as the Internet of Things and autonomous
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vehicles, where achieving accurate inference over rate-limited communication channels with low

latency is essential[1]. Task-based (or goal-oriented) communication has emerged as a necessary and

innovative solution for remote inference systems[2], which tend to operate in two distinct stages. The

first stage occurs at the edge or sensing device, where acquired data is conveyed over a rate-limited

channel after undergoing compression (source coding) and channel coding[3]. The second stage takes

place at the receiver, which extracts the information needed for the task, e.g., classify an image[4].

Separating the processing involved with communicating data from that associated with inference

facilitates the design of remote inference systems, and supports implementation on top of existing

communication protocols. However, separation also often comes at the cost of notable overhead in

communication resources, leading to excessive latency, which is often a crucial factor[5]. This

downgrade in performance is a result of the inference task being typically very specific, while the data

source is encoded such that it can be entirely recovered, regardless of the task at hand[6]. As such,

several studies have attempted to bridge this gap in order to facilitate remote inference over-rate

limited links. These include task-based quantization[7][8], semantics-aware coding[9][10], and goal-

oriented communications[11][12]. A common characteristic of these works involves encoding the source

based on the inference task rather than prioritizing complete signal reconstruction. This approach

supports compact representations, which in turn facilitate lower communication latency compared

with the separation based designs[13].

Designing task-based compression mechanisms based on statistical models tends to be complicated

and is limited to simple tasks that can be represented as linear[7] and quadratic mappings[14][15]. Yet,

data-driven approaches have been shown to yield accurate remote inference mechanisms for generic

tasks with compact representations. This is achieved by leveraging joint learning of the compression

mechanism along with a deep neural network (DNN)-aided inference rule[16][17]. Such designs employ

DNN-based encoder-decoder architectures, while constraining the latent features to a fixed bit

representation via uniform quantization[18][19][20], scalar quantization[21][22][23], and vector

quantization[24][25]. Such forms of neural compression, which were shown to achieve highly

compressed representation of image[26], video[27], and audio[28]  (see detailed survey in[29]), can be

naturally converted into remote inference systems. This is achieved by assigning the encoder and

decoder to the sensing and inferring devices, respectively, while training the overall system for the

desired inference metric[30].
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The majority of DNN-aided compression algorithms operate in a static single-rate manner. Namely,

the encoder maps the sensed data into a fixed-length bit sequence, which is then processed by the

decoder module[26][31]. In the context of remote inference, this operation induces two notable

challenges when communicating over time-varying links:   Once trained, the model’s compression

rate can not be modified, making it difficult for remote inference systems to adapt to changing

channel conditions. Consequently, the system must either adopt a worst-case compression rate,

increasing latency, or maintain multiple encoder-decoder model’s for different rates, adding

complexity.   Inference only begins after all the compressed features arrive and are decoded at the

inferring device, which has to wait for the entire bit sequence representation to be received before it

can provide any form of output. These limitations highlight the need for DNN-aided remote inference

systems that can operate at different rates and perform inference with minimal latency, ideally

starting as soon as the first bits are received.

Several studies have proposed DNN-aided compression methods that are not subject to   and/or  ,

while focusing on task-invariant compression, i.e., when the decoder recovers the sensed data

(typically an image). The first family of multi-rate methods is that of variable-rate DNN-aided

compression, which still require the complete bit sequence to be received for decoding (thus still

subject to  ), but can operate with different bit rates[32][33][34][35][36][37][38][39]. The encoder and

decoder can be designed to operate with different rates by using multi-scale[32], conditional[33],

modulated[34], and slimmable[35]  encoder-decoder architectures, or alternatively by masking the

latent features[36][37]  or integrating adaptive normalization[38]. While all these works utilized

uniform scalar quantizers for quantization,[39] proposed a variable rate compression mechanism that

uses vector quantization by training an external Seq2Seq model to generate the codebook on demand.

The second family of multi-rate DNN-aided quantization methods is based on progressive

compression[40][41][42][43][44]. This is typically achieved by using recurrent neural network (RNN)

based encoders[40][41][42], which at each step reconstruct the input and encode the residual, such that

when each RNN output is decoded, an additional residual term is obtained. Alternative approaches to

DNN-aided progressive compression transform the input into a set of features ordered by importance.

These features are fed into uniform scalar quantizers, whose output is used by the decoder to recover

the input with growing accuracy[43][44].

Despite advancements, current multi-rate DNN-aided compression methods have several limitations

in the context of remote inference. Specifically, while multi-rate methods can be adapted to a task-

(i)

(ii)

(i) (ii)
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based setting by replacing the decoder with a DNN-aided inference rule, existing methods do not

extend to a progressive operation. This is partially due to the fact their focus is mostly on the encoder-

decoder architecture, employing simple uniform scalar mappings for quantization (with the exception

of[39], which supports adjustable vector quantizers at the cost of excessive complexity in runtime, and

without enabling progressive operation). Existing progressive DNN-aided compression methods are

highly geared towards a non-task-based setting, where the decoder recovers the input, and

progressive operation is obtained by gradual compression of additional features and residual terms

that are informative of the input. While one can potentially still employ such architecture in a task-

based setting by inferring based on the separately recovered input, such separation-based approaches

are known to be inefficient in task-based quantization[4].

In this work, we tackle the aforementioned gap by designing ARTOVeQ, a multi-rate DNN-aided

remote inference scheme that naturally supports a progressive operation. ARTOVeQ is based on a

remote inference model that uses a trainable adaptive vector quantization, allowing data compression

and inference at multiple rates while using the same underlying architecture. Inspired by nested

quantization techniques, we introduce a high-resolution quantization codebook that can be

successively decomposed into sub-codebooks of lower resolution[45][46]. The usage of such nested-

style learned codes naturally extends to a progressive operation, where compression is carried out as a

form of successive refinement[47]. This approach supports multi-rate quantization with a single

codebook, thereby providing an adaptable and economical solution for varying communication

environments. As our focus is on the learned codebook rather than on the encoder and decoder

architecture, ARTOVeQ can be combined with existing DNN-aided compression mechanisms.

Our main contributions are summarized as follows:

Rate-adaptive learned task-oriented vector quantization: We propose a multi-rate task-based

vector quantizer that extends the established Vector Quantization Variational Autoencoder (VQ-

VAE) model[24], which supports remote inference with multi-rate learned vector quantization. Our

ARTOVeQ learns a single codebook that subsumes lower-rate codewords, trained via a progressive

learning scheme[48]  that ensures the remote user (decoder) can reliably infer at various rates,

providing a sense of adaptability and reliability.

Mixed resolution implementation: To support a broad range of bit rates with fine granularity we

formulate a mixed-resolution implementation of the task-based quantizer. In this model, different
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features are quantized with different subsets of the learned codebook, thus spanning various

different bit rates, while having the encoder learn to map relevant information into features that

are quantized with higher resolution.

Progressive quantization via successive refinement: We extend the learned multivariate codebook

of ARTOVeQ to represent nested codewords, that are naturally applicable in a progressive manner.

This allows the multi-rate DNN-aided remote inference system to provide predictions of the task

with the first codeword received, while gradually improving its reliability with each incoming bit.

Extensive experimentation: We extensively evaluate our proposed ARTOVeQ for remote image

classification, using the popular edge-oriented MobilenetV2 architecture[49]  for the encoder-

decoder. Our experiments, which use the CIFAR-100 and Imagewoof datasets, demonstrate that the

proposed scheme results in a single model which for all considered rates approaches the

performance of multiple single-rate VQ-VAE models, each optimized for a specific rate, while

benefiting from mixed-rate implementation and extending to progressive operation with only a

minor performance impact.

The rest of this paper is organized as follows: Section  II reviews the system model and some

preliminaries; our rate-adaptive remote inference scheme is presented in Section III and evaluated in

Section IV. Section V concludes the paper.

Throughout this paper, we use boldface-uppercase for matrices, e.g.,  , and boldface-lowercase for

vectors, e.g.,  . We denote the  th entry of vector   and the  th entry of matrix   by   and  ,

respectively. We use  , and   for the   norm, and stochastic expectation, respectively.

II. System Model and Preliminaries

In this section, we review some essential preliminaries and present the system model under

consideration. We begin by reviewing basic quantization principles in Subsection  II-A. Then, we

formulate our remote inference problem in Subsection  II-B, and discuss existing mechanisms for

DNN-aided remote inference in Subsection II-C.

A. Quantization

Quantization is concerned with the representation of a continuous-valued signal using a finite

number of bits[50]. The discrete representations produced through quantization should in general

X

x j x (i, j) X [x]j [X]i,j

∥∥ E[⋅] ℓ2
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effectively represent signals, even at low resolution, while maintaining acceptable reconstruction

performance.

Formally, a quantizer, denoted by    is a mapping from continuous-valued inputs in    into

discrete-valued outputs in    using    bits. The set  , whose cardinality is  ,

represents the quantization codebook. This codebook defines the set of possible discrete outputs,

forming the basis for the two-stage quantization mapping: Initially, an encoding function maps the

continuous input   into a discrete set  . Then, a decoding function maps each item in

this discrete set into an associated codeword. Conventionally,  , and the codeword constitutes a

reconstruction of the input. However, in task-based quantization, the codeword represents some

desired information that must be extracted from the input, and thus    can differ from    [7]. When 

, the quantizer is scalar, while   denotes a vector quantizer.

B. Problem Formulation

We consider a remote inference setting comprised of a sensing device and an inferring user. At time  ,

the sensing device captures an input data sample  , which is conveyed to the inferring user for

providing a prediction  . For instance,   can represent an image captured at a remote camera, while 

  is the predicted class of the content of the image. The users communicate over a rate-limited

channel which is modeled as a bit-pipeline with time-dependent capacity, denoted as  , measuring

bits per time unit  [25]. Consequently, the latency required to transmit    bits at time    is given by 

. The system is illustrated in Fig. 1.

Figure 1. Remote inference system illustration

For conveying  , a quantization mechanism is employed, consisting of:   an encoder at the sensing

device, denoted  , that maps    into a    bits representation denoted  ; and    a decoder 

 implementing a decision rule at the inferring user that outputs   based on  . It is assumed that
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(⋅)fd ŷ t zt

qeios.com doi.org/10.32388/48LHM4 6

https://www.qeios.com/
https://doi.org/10.32388/48LHM4


the sensing device knows the current channel capacity  , and that the capacity has some lower

bound  .

We focus on a data-driven setting. During design, one has access to a data set consisting of labeled

examples  , that is,    pairs of inputs and desired outputs for design purposes. Our

goal is to design a remote inference system based on two performance measures:

P1 Accuracy of the predictions  , where we specifically focus on classification tasks;

P2 Latency of the inference procedure, which we constrain to be at most   (with  .

In principle, the sensing device can be designed to carry out the complete inference procedure.

However, we concentrate on the common setting in which only partial pre-processing can be applied

due to, e.g., hardware limitations[1].

C. DNN-Aided Remote Inference

A natural approach to design data-driven remote inference system is to partition a DNN suitable for

the task at hand between the sensing and inferring devices, resulting in a trainable encoder-decoder

model[51]. However, compressing the latent representation using a finite number of bits poses a

problem owing to the non-differentiable nature of continuous-to-discrete mappings, and the desire

to adjust the bit rate based on channel variations to meet latency constraints. This limits the ability to

jointly learn the encoder and decoder mappings using conventional gradient-based deep learning

tools. As such, various solutions have been proposed, including modeling scalar quantizers as additive

noise during training[18][20], and soft-to-hard approximations[22][31].

Another approach to bypass the non-differentiable step is to use straight-through gradient

estimators. A well-known example of this approach is the well-established VQ-VAE[24], illustrated in

Fig. 2. Gradients are passed through the quantization step, allowing for joint learning of the encoder,

codebook, and the decoder, despite the non-differentiable nature of the quantization. This joint

optimization forms the foundations for the VQ-VAE model, which consists of three components: a

DNN encoder,  , a quantization codebook,  , and a DNN decoder  . The codebook    is

comprised of    vectors of size  . The input sample,  , is processed by the encoder into 

 which serves as a low-dimensional representation of the input. Subsequently, the vector 

 is decomposed into   vectors of size  , denoted  , and each is represented by the closest

codeword in  . Thus, the latent representation   is the stacking of

Ct

> 0Cmin

D = {( , )xi yi }Ni=1 N

ŷ t

τmax ≥ )τmax
1
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The quantized    is processed by the decoder into  , and the number of bits conveyed is 

.

To jointly train the encoder-decoder while learning the codebook  , the VQ-VAE uses a loss function

comprised of three terms as follows:

where   is the stop-gradient operator. The first term in (2),  , is the task-dependent loss,

(e.g., cross entropy for classification). The second term is the VQ-loss, which moves the codebook

vectors closer to the encoder outputs. The third term is the commitment loss, which causes the

encoder outputs to be similar to the codebook vectors. The hyperparameter    balances the

influence of the commitment loss on  . While alternative loss measures have been recently

proposed for training the VQ-VAE to boost improved utilization of its codebook[52][53], (2) is to date

the common loss used for training such DNN-aided vector quantizers, see[54][55]. The loss in (2) is

stated for a given codebook size  , resulting in a model that is fixed to a given bit budget  .

Figure 2. VQ-VAE architecture. The encoder maps the input   into the features  , which is

divided into   sub-vectors of size  . Each sub-vector undergoes the vector quantization

mechanism, which selects an embedding based the distance from the codebook vectors. The

decoder is applied to the collection of quantized sub-vectors for inference.
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III. ARTOVeQ

In this section we introduce the proposed ARTOVeQ, designed for remote inference over dynamic

channels as formulated in Subsection  II-B. We commence by detailing its high level rationale in

Subsection III-A, after which we present its trainable rate-adaptive vector codebook in Subsection III-

B. We then show in Subsections III-C-III-D how the design of ARTOVeQ naturally extends to support

multi-rate and progressive quantization, respectively, with a single codebook. We conclude with a

discussion provided in Subsection III-E

A. High Level Rationale

The VQ-VAE algorithm of  [24], recalled in Subsection II-C, can be used for high performance remote

inference (in the sense of P1) when employed over a static channel (in which the capacity and latency

constraints, dictating the bit budget  , are fixed), owing to its ability to learn task-oriented vector

quantization codebooks. Nonetheless, its application for remote inference is not suitable for dynamic

channels, as it cannot adapt its bit rate to the the channel conditions. Moreover, its operation is non-

progressive, i.e., the decoder needs to receive all bits representing the codeword for inference, which

limits its minimal inference latency (P2).

Our proposed ARTOVeQ builds on the ability of VQ-VAE to learn task-oriented multi-resolution

codebooks, while overcoming its lack of flexibility and progressiveness by handling a codebook that

accommodates multiple-bit resolutions. This is achieved by incorporating the following aspects:

A1 A single codebook    is designed to support all multi-level bit resolutions by restricting it to be

decomposable into sub-codebooks that are used for reduced bit rates.

A2 A dedicated training algorithm is proposed, which combines principled initialization for vector

quantization based on the Linde–Buzo–Gray (LBG) algorithm[56], alongside a gradual learning

mechanism that allows the same decoder to be reused with all sub-codebooks.

A3 By further restricting the learned codebook to take the form of nested vector quantization[45], we

enable a progressive operation, where on each incoming bit the decoder can successively refine its

predication.

In the following subsections we design ARTOVeQ by gradually incorporating A1-A3 into its design.

Bt

Q
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B. Rate-Adaptive Learned Vector Codebook

Here, we design a VQ-VAE-based architecture that enables multi-rate vector quantization, thus

meeting A1, and present a training algorithm that enables rate adaptive task-oriented quantization

following A2.

1. Architecture

Using the VQ-VAE architecture outlined in Subsection  II-C, which is generic in the sense that it is

invariant of the specific DNNs used for the encoder and decoder, we construct a single codebook that

accommodates multiple resolutions by iteratively doubling its number of codewords. Specifically, for

each quantization level,  , up to some maximum compression rate  , a

dedicated codebook is maintained  . The process begins with constructing the 1-bit resolution

codebook, followed by the 2-bit resolution codebook, and so forth, until the maximum compression

rate is reached. This design guarantees that

From (3) it follows that the first two codewords are derived from  ; the first four are derived from 

; and so on. The users thus manage a unified codebook encompassing all quantization resolutions,

avoiding storing individual codebooks for each resolution.

As new samples    become available to the sensing device, the quantization level is initially

determined using

After determining the quantization level, remote inference is performed on the discrete outputs at the

central server.

2. Training

Given a dataset  , the training algorithm sets the encoder  , the codebook  , and

the decoder  , through a gradual learning process. This approach is organized in three stages,

designed to enable the model to operate at progressively higher resolutions over time while retaining

previously acquired knowledge.

l = 1, 2, . . . Slog2 S = |Q|

Ql

⊂ ⊂ ⋯ ⊂ .Q1 Q2 Q Slog2 (3)

Q1

Q2
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= max{l ∈ {1, 2, . . . S} ∣ ≤ } .lt log2
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Stage 1: Encoder-Decoder Initialization

The first training stage uses    to obtain a warm start for the encoder-decoder configuration 

. This is achieved by training both models as a sequential DNN without including

quantization, i.e., mapping an input   into  . In particular, using the task-dependent loss  ,

the empirical risk that guides the initial setting of   is given by

Stage 2: Codebook Initialization

Next, we initialize the vector codebook   with   codewords of size  . To that aim, we first pass

every    in the trained encoder, and divide its output    into    sub-vectors of size  ,

denoted  . These sub-vectors are aggregated into a new unlabeled dataset 

. The obtained    is used to initialize the codebook with    codewords 

  using the LBG algorithm[56]. The LBG algorithm iteratively constructs a codebook for a

single rate by creating non-task-based vector quantizers, with the goal of minimizing distortion

(measured via the   norm) in its codeword representation over  . Specifically, it seeks to minimize

the following loss function:

This principled codebook initialization facilitates tackling a core challenge in training VQ-VAEs, i.e.,

the frequent learning of under-used codewords[53], without having the alter the VQ-VAE loss such

that it can be utilized for boosting support of multiple rates in the subsequent stage.

Stage 3: Task-Based Joint Adaptation

The codebook vectors are then jointly updated as learnable parameters, along with the encoder and

decoder. In this stage, we sequentially refine the model for each quantization level  .

For each level  , the codebook    is constructed by expanding the previous codebook    with

additional code vectors, initially drawn from the LBG initialized  .

Specifically, when training at step  , one already has a codebook   along with the

encoder-decoder trained so far. Thus, the extended codebook    is initialized by setting its first 

  codewords, denoted  , to be the same ordering of codewords in  , denoted 

D
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, while setting the remaining    codewords to be the corresponding codewords

from  . Then, to learn   while having the decoder be suitable for all sub-codebooks in  ,

we further train  ,  , and    using a loss measure which accounts the inference accuracy

achieved with all codebooks of quantization levels up to  , while encouraging the first   codewords 

 not to deviate much from those already learned. This loss at step   is

In (7),   is the vector obtained by quantizing   using the first   codewords in  , while 

.

Equation (7) encapsulates the cumulative impact of quantization levels up to  . The first three terms

are based on the VQ-VAE training loss as in (2), aggregated over all resolutions. The last term

promotes rate adaptability, with the hyperparameter    governing its impact. The overall loss

using dataset   is

A concise depiction of the training algorithm, where mini-batch stochastic gradient descent is

employed for training in Stages 1 and 3, is presented in Algorithm 1, and the overall procedure is

illustrated as Fig. 3.
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Figure 3. ARTOVeQ training illustration
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C. Mixed Resolution ARTOVeQ

ARTOVeQ learns a task-oriented vector quantizer using a single codebook that can be applied across

multiple resolutions. Still, once a bit budget    is fixed, the same  -bit codebook is

applied to each features sub-vector, at an overall budget at time t of    bits per input.

However, the fact that the same codebook   can be decomposed into multiple codebooks of different

resolutions can be leveraged to quantize high dimensional inputs with mixed resolutions applied to

different features.

1. Architecture

To formulate the mixed resolution ARTOVeQ, we recall that the encoder output   is divided into the 

  sub-vectors  . Each features segment is assigned a specific sub-codebook based on a

designated bit resolution  , with a total bit budget at time    is    representing the

sum of bits allocated across all segments. The resulting bit budget   can thus take any value in the

range  , indicating that the mixed resolution design provides high bit budget

flexibility and granularity, a property not achieved with alternative variable rate learned quantizer

architectures whose focus is on the encoder-decoder architecture, e.g.,  [40][41][42][43][44]. An

illustration of the mixed resolution ARTOVeQ can be seen in Fig. 4.

Figure 4. Mixed resolution ARTOVeQ illustration. Different colors represent different

quantization resolutions.
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2. Training

The training of mixed resolution ARTOVeQ follows the same procedure as in Algorithm 1, with a slight

modification applied in Stage 3. Here, instead of progressively increasing the resolution of the

codebook and having it employed for quantizing all   features, we gradually increase the resolution

of the first   features  , after which we increase the resolution of quantizing  , and so on. The

rationale in this form of gradual learning draws inspiration from classical image compression

methods based on quantizing different components with different resolution, e.g., [57]. In doing so, we

aim to consistently have some features quantized with improved resolution, such that the task-based

encoder-decoder be encouraged to embed there features that are more informative with respect to the

task.

D. Progressive ARTOVeQ

While the training procedure used by ARTOVeQ is based on progressive learning, where the resolution

of intermediate features gradually grows during training  [48], the resulting quantizer does not

immediately support progressive quantization. Specifically, for a chosen bit budget  , the codewords

do not support progressive decoding, namely, the decoder has to have access to all bits representing

the compressed features in order to infer. Nonetheless, while the formulation of the codebook in

Subsection  III-B only allows variable-rate operation, the fact that what one learns is the multi-

resolution codebook implies that it can naturally extend to have a progressive codebooks, whose

codewords incrementally build on prior representations, as a form of successive refinement.

1. Architecture

To support progressive quantization, we alter the codebook constraint of (3) to be one which supports

successive refinement of initial low-resolution representations of the codewords. Drawing inspiration

from nested quantization, which is typically considered in the context of uniform[45]  and lattice

codebooks[58], we constrain each intermediate codebook   to represent a one bit refinement of  .

Mathematically, for each   there exist   vectors   such that

with   being the Minkowski set sum, thus  .

M

d × 1 x
e
t,1 x

e
t,2

Bt

Ql Ql−1

l ∈ {1, . . . , S}log2 d × 1 ,e
~(l)

1 e
~(l)

2

= + { , },Ql Ql−1 e
~(l)

1 e
~(l)

2 (9)

+ | | = 2 ⋅ | |Ql Ql−1

qeios.com doi.org/10.32388/48LHM4 15

https://www.qeios.com/
https://doi.org/10.32388/48LHM4


The constrained codebook form in (9) enables progressive recovery via successive refinement.

Specifically for an encoder output   and its decomposition into  , the decoder only needs one bit

per each sub-vector to recover their representation in    and use it for inference. With the next 

 bits, the decoder obtains the improved representation in  , and uses it to improve its inference

output, and so on.

2. Training

Progressive ARTOVeQ is based on the learned task-based vector quantizer detailed in Subsection III-

B, while introducing an alternative constraint on the learned multivariate codebook in the form of (9).

Accordingly, the training procedure of progressive ARTOVeQ is based on the learning procedure stated

in Algorithm 1, with three main differences introduced to support the constrained progressive form

(9):

Since the LBG algorithm is based on clustering the inputs without accommodating the desired

constrained form, the initialization of the codebook in Stage 2 is omitted.

For each quantization level  , the aspects of the codebook that are learned are the two difference

vectors  . These are randomly initialized for each resolution.

As the codebooks no longer satisfy  , but instead hold (9), the regularizer encouraging the

former in   is canceled, i.e., we set   for each   in (7).

The resulting training algorithm is summarized as Algorithm 2.
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E. Discussion

The proposed ARTOVeQ is designed to facilitate learning a single task-based vector quantization

codebook that supports finer granularity and progressive decoding through the use of multiple

resolution. Accordingly, it is particularly suitable for remote inference over time-varying

communication links, e.g., with mobile users[1]. This flexibility allows the compression rate to be

adjusted according to dynamic channel conditions, ensuring accurate inference, while supporting a

broad range of multiple resolutions (via mixed-resolution among different feature sub-vectors), as

well as allowing the decoder to provide rapid inference and gradually improve it via successive

refinement. Adaptivity is achieved through nested codebooks, and progressive learning techniques,

allowing the system to refine its performance over successive iterations or stages of operation. As

ARTOVeQ focuses on learning the quantization codebook and does not restrict the task-based

mappings   and  , it can be integrated in various DNN architectures.

While our setup primarily focuses on a pair of sensing and inferring users, this methodology is

extensible to collaborative inference among multiple edge devices. Our approach assumes that the

instantaneous channel capacity ( ) is known, enabling the sensing user to determine the appropriate

quantization level. However, a potential extension of our scheme could allow it to function without

prior knowledge of channel capacity, dynamically tuning the quantization rate during the remote

inference process. Another potential aspect for future exploration, which stems from the ability to

learn a variable rate and progressive vector quantization codebook integrated into a remote inference

system, is its ability to enhance data privacy and security. Recent studies have shown that well-

designed compression strategies can enhance privacy, providing an additional benefit to our rate-

adaptive scheme[59][60]. Furthermore, recent advancements in randomized neural networks

demonstrate their potential for ensuring privacy[61]. While ARTOVeQ has the potential of supporting

such extensions, they would necessitate reformulation of the learning procedure, and are thus left for

future investigation.

IV. Numerical Experiments

In this section, we present the results of our numerical experiments1. We first detail our experimental

setup in Subsection  IV-A, after which we detail our four main studies, each focusing on a distinct

aspect of our approach for image classification: variable-rate task-based compression

fe fd

Ct
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(Subsection  IV-B), mixed resolution compression (Subsection  IV-C), progressive compression

(Subsection IV-D), and remote inference over dynamic channels (Subsection IV-E).

A. Experiential Setup

To evaluate our quantization scheme, we use two datasets: CIFAR-100 and Imagewoof. CIFAR-100

consists of 60,000 diverse images with dimensions  , spanning 100 classes and thus

encompassing a wide variety of source distributions. Imagewoof contains 10,000 images at a higher

resolution of  , but with a slightly narrower set of 10 classes, each representing different

dog breeds. This combination allows us to assess our method’s robustness across a large number of

source distributions in CIFAR-100, and under a more specific, yet high-resolution, distribution in

Imagewoof.

For our evaluation, we employed the MobileNetV2[49]  architecture to accommodate edge device

constraints, partitioning it into an encoder  , comprising the first four residual blocks, and a

decoder    with the remaining blocks. The encoder-decoder and codebooks were jointly trained

using the Adam optimizer, with learning rate    and batch sizes    and    for CIFAR-100 and

Imagewoof, respectively.

We evaluate the performance in terms of test accuracy achieved with the following quantization

methods:   ARTOVeQ (as detailed in Subsection III-B);   a single-rate VQ-VAE, in which a different

codebook is trained for each bit budget, constituting an upper-bound on the performance achievable

with a single codebook shared among all resolutions;    mixed resolution ARTOVeQ (detailed in

Subsection III-C);   progressive ARTOVeQ (detailed in Subsection III-D);   residual VQ-VAE (RVQ-

VAE)[40]; and   Single-Rate LBG, in which LBG[56] is applied anew to the learned encoder output for

quantization for each codebook size. In each experiment, the encoder’s output was divided into 

 segments, and the quantizer is applied to each sub-vector.

B. Variable-Rate Task-Based Compression

We first assess the performance of variable-rate ARTOVeQ in an environment where bit-rate

availability may vary over time, demonstrating its capability to enable remote inference across a broad

range of communication conditions. We show that, despite utilizing a single codebook across multiple

resolutions, ARTOVeQ remains competitive with single-rate VQ-VAE and outperforms other

benchmark models.
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Learned Codebooks: A defining characteristic of ARTOVeQ is its nested codebook structure. Fig.  5

illustrates the progression of codebooks    for    on the CIFAR-100 dataset. As the bit

resolution increases, the codebook vectors progressively capture the latent state distribution with

greater precision, leading to improved performance at higher resolutions.

Figure 5. Learned codebook vectors. Embedding dimensions 

Performance Evaluation: Having showcased the codebook structures learned by ARTOVeQ, we proceed

to evaluating its performance when integrated into a remote inference system. The results achieved

for CIFAR-100 are reported in Fig.  6. There, we observe the trade-offs between compression via

quantization and performance in ARTOVeQ compared to other variable-rate and single-rate baselines.

As expected, each approach exhibits an increasing trend in performance before tapering off and

saturating at higher resolutions, typically around 4–5 bits for per sub-vector.

, … ,Q1 Q8 d = 2

d = 2
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Figure 6. CIFAR-100 Accuracy as a function of bits per sub-vector for varying codebook vector sizes  .

ARTOVeQ consistently performs just slightly below the single-rate VQ-VAE, with a performance drop

of approximately   for  . Some performance degradation is observed when transitioning from 

 to   as the number of bits per codeword is remains constant, while the dimensionality of

the codewords increases, i.e., the quantizaiton rate is reduced. Despite this, ARTOVeQ still

outperforms both single-rate LBG and RVQ-VAE. This accuracy degradation relative to single-rate

VQ-VAE can be attributed to the constraints imposed by ARTOVeQ’s nested codebook structure. While

ARTOVeQ supports multiple bit resolutions within a single codebook, it is limited in its ability to

independently optimize for each resolution, a benefit that single-rate VQ-VAE possesses. The LBG

algorithm consistently ranks second to last, likely due to the diverse distribution of CIFAR-100.

Similar results are observed in the Imagewoof data, as reported in Fig. 7. As seen in Fig. 7, as opposed

to CIFAR-100, here the single codebook of ARTOVeQ results in its reaching a small gap in performance

from fixed-rate methods, that use a different codebook for each resolution. This can be attributed to

the higher redundancy at higher resolutions of the source data, and its smaller number of labels,

which allows fixed rate methods to obtain suitable codebooks for sufficient number of bits at the

output of the encoder. ARTOVeQ maintains a consistent    performance gap, which reflects the

challenge of achieving an optimal latent representation given the constraints imposed by the nested

structure’s. RVQ-VAE, which achieves the lowest accuracy on CIFAR-100, was shown to be instable

and fail to faithfully learn, and was thus not included in the figure. ARTOVeQ consistently performs

well across both datasets, demonstrating its robustness in diverse scenarios.

d
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Figure 7. Imagewoof: Comparison of accuracy vs. total number of bits for different values of  : the

unquantized MobileNetV2, the single-rate standalone VQ-VAE, ARTOVeQ, and LBG

In terms of complexity, ARTOVeQ operates in a one-shot manner, in contrast to the iterative

encoding-decoding process of RVQ-VAE, which relies on residuals. As a result, ARTOVeQ offers a

significant advantage in computational efficiency. In RVQ-VAE, the multiple forward pass iterations

required to achieve higher resolutions substantially increase computational demand.

C. Mixed-Resolution Compression

We proceed to evaluating the ability of ARTOVeQ to leverage its multi-resolution codebook to quantize

different sub-vectors with different resolutions. For this task, we partitioned the encoder output,  ,

into four blocks with a manual bit allocation strategy. The first segments were assigned the highest bit

representations, following a policy where the largest bit share is allocated to the first segment, with

subsequent segments receiving progressively lower bit resolutions that collectively sum to a

predefined bit budget  . The aim of this study is the examine the performance of using mixed

resolution codebooks compared to identical resolution ones with the same overall bit budget (which

we contrasted with various benchmarks in Subsection IV-B).

The CIFAR-100 and Imagewoof results corresponding to    and    are shown in Figs.  8-9,

respectively. There, we compare accuracy for different values of total number of bits assigned across

four quantizers (that are applied to each four sub-vectors). In the identical resolution case, all

quantizers have the same codebook, while in the mixed resolution case, the first quantizer uses more

codewords compared to the remaining ones. Our findings reveal that, for both datasets, mixed-

resolution configurations consistently outperform their identical resolution counterparts, though the

improvement varies with the number of bits. This demonstrates that the finer granularity enabled by
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mixed-resolution compression, combined with task-based learning, allows for a more refined latent

space representation, resulting in improved performance. As seen in Fig. 8, this effect is particularly

evident in lower bit budgets, between 4-10 bits, where the richer bit spectrum enables more effective

learning and performance gains.

Figure 8. CIFAR-100: Accuracy versus total number of bits for four

configurations—mixed resolution and identical resolution. Solid lines

correspond to  , while dashed lines represent  . Mixed resolution

demonstrates a broader range of allocated bits, leading to improved

performance.

d = 2 d = 4
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Figure 9. Imagewoof: Accuracy versus total number of bits for mixed

resolution and identical resolution. Solid lines correspond to  , while

dashed lines represent  . The performance of mixed resolutions closely

aligns with that of identical resolutions.

Quantitatively, we observe a performance gap of approximately    for    and 

  for    on the CIFAR-100 dataset within the 8-20 bit range. Similarly, for the

Imagewoof dataset, the gap ranges from    for    and    for  . These

findings suggest that improved performance can be achieved with a smaller bit budget. At the higher

end of the bit spectrum, identical-resolution configurations tend to closely match the performance of

mixed-resolution ones for both datasets. However, due to the redundancy and narrower distribution

of Imagewoof, this alignment is reached at a lower bit budget. In all cases, mixed-resolution

configurations offer the advantage of flexible memory usage.

D. Progressive Compression

We proceed by evaluating the progressive quantization codebook version of ARTOVeQ, with its

successive refinement approach. Specifically, we aim to assess how effectively the progressive

constraint and its corresponding learning technique balance compression efficiency and task

accuracy, and to compare the performance of successive bit increments against the variable-rate

ARTOVeQ evaluated in Subsection IV-B.
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Our findings, shown in Fig.  10 for CIFAR-100 and in Fig.  11 for Imagewoof, demonstrate that, as

expected, variable-rate ARTOVeQ consistently outperforms the more constrained progressive

codebook across all bit resolutions and quantization embeddings (   and  ). Nonetheless,

progressive codebooks manage to approach the performance of variable-rate ARTOVeQ owing to its

dedicated learning technique, within some performance gap that varies between the considered tasks.

The discrepancy is attributed to the the strict progressive constraint, which, while allowing for

incremental decoding with minimal latency, comes at the cost of some performance degradation

compared to variable rate ARTOVeQ. This is particularly evident for Imagewoof with  .

Figure 10. CIFAR-100: Comparison of accuracy as a function of the total

number of bits for successive refinement and variable-rate ARTOVeQ. Solid

lines indicate  , and dashed lines indicate  . Variable-rate ARTOVeQ

consistently outperforms successive refinement, with the performance gap

most prominent at lower bit rates (2–3 bits).

Despite the performance gap, the results show that both variable-rate ARTOVeQ and progressive

ARTOVeQ begin to saturate around 6 bits, with only marginal improvement beyond this point. From a

complexity standpoint, both techniques operate in a one-shot fashion; however, progressive

quantization has the advantage of minimal latency, as inference can begin immediately after the first

bit is received, whereas variable-rate ARTOVeQ requires the entire bit sequence.
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Figure 11. Imagewoof: Accuracy comparison as a function of the total number

of bits for successive refinement and variable-rate ARTOVeQ. Solid lines

represent  , while dashed lines represent  . ARTOVeQ demonstrates

superior performance, with a consistent gap of approximately   across all bit

rates.

E. Remote Inference over Dynamic Channels

The experimental studies so far have evaluated the different versions of ARTOVeQ, all trained to

support multiple quantization resolutions, in a given bit rate. As the motivation for ARTOVeQ is to

facilitate remote inference over dynamic channel with a single codebook, we next evaluate its

aggregated performance when repeatedly applied for remote inference with changing channel

conditions.

Experimental Setup: To evaluate the performance of models in a dynamic channel environment, we

consider a communication system where the channel capacities   fluctuate over time with coherence

duration  . At a given time  , the channel can support a maximal bit-rate  , such that the

per-codebook bit-budget   takes values in  . To reflect variability, we simulate three

distinct channel scenarios:   a uniform distribution of bit-rates;   scenarios where lower bit-rates

are more likely, and    scenarios where higher bit-rates are more likely. Theses are obtained by

setting
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where we set   to obtain scenarios  ,   and  , respectively.

Model Evaluation: We compare the average accuracy of ARTOVeQ and Progressive ARTOVeQ, which

both maintain a single DNN and a single codebook, to two main benchmarks: The first is remote

inference system that maintains eight different fixed-rate encoder-VQ-VAE-decoder chains,

constituting the most flexible yet extremely costly alternative. We also compare to using a single

fixed-rate encoder-VQ-VAE-decoder designed with codebook sizes  . As the latter

operates at a fixed rate, it fails to convey the samples within the coherence time when its rate

surpasses that supported by the channel.

The results obtained with the CIFAR-100 and the Imagewoof dataset sare reported in Table 1. The

experimental results across CIFAR-100 and Imagewoof datasets reveal consistent performance

behaviors for both   and  . As expected, Multiple Fixed-Rate VQ-VAE consistently achieves

the highest inference accuracy, while being only within a minor gap from ARTOVeQ across all

scenarios. The progressive ARTOVeQ, designed with the mechanism of incremental codebook vector’s

improvement, shows a slight performance drop of approximately    on CIFAR-100 and 

  on Imagewoof. Conversely, the Single-Rate VQ-VAE struggles in scenarios where the

channel’s supported bit-rate is insufficient to meet the model’s pre-defined bit-rate requirement.

This limitation highlights the lack of versatility, as it can not perform inference under constrained

channel conditions. These results indicate on the ability of ARTOVeQ and its variants to support

flexible remote inference over dynamic channels.
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Model

CIFAR-100 ImageWoof

2

Multiple Fixed-Rate VQ-VAE 72.95 72.00 73.65 74.59 72.75 75.76

Single-Rate VQ-VAE

-bit 68.82 68.82 68.82 63.11 63.11 63.11

-bit 46.17 28.79 60.95 47.75 29.78 63.05

-bit 9.27 3.30 18.98 9.56 3.40 19.57

ARTOVeQ 72.35 71.59 72.90 71.73 70.00 72.90

Progressive ARTOVeQ 71.85 70.72 72.66 68.59 67.14 69.64

4

Multiple Fixed-Rate VQ-VAE 71.64 70.31 72.61 72.65 69.59 74.77

Single-Rate VQ-VAE

-bit 65.15 65.15 65.15 56.94 56.94 56.94

-bit 45.53 28.40 60.11 47.19 29.43 62.31

-bit 9.21 3.27 18.84 9.53 3.39 19.51

ARTOVeQ 70.41 69.45 71.07 67.08 63.52 69.80

Progressive ARTOVeQ 68.76 67.53 69.68 63.77 60.82 65.82

Table 1. Performance comparison of various models for time-varying channels.

V. Conclusions

We proposed ARTOVeQ, a DNN-based remote inference mechanism with a single multi-resolution

codebook that supports multi-rate vector quantization with both identical, mixed-level, and

progressive resolutions. We devised a method to learn nested codebooks via a dedicated gradual

learning scheme, enabling a single model to operate at various resolutions. Our numerical analyses

highlight the performance trade-offs between our rate-adaptive mechanisms and model-based as

well as data-driven alternatives for task-based vector quantization, showing the ability of ARTOVeQ

to learn a remote inference system with single codebook whose performance approaches systems

where each rate is trained individually.
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Notes

Parts of this work were presented at the 2023 IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP) as the paper[62]. 

Footnotes

1 The source code and hyperparameters used in this experimental study are available at

https://github.com/eyalfish/ARTOVeQ.
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