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It is argued from several points of view that quantum probabilities might play a role in statistical

settings. New approaches toward quantum foundations have postulates that appear to be equally

valid in macroscopic settings. One such approach is described here in detail, while two others are

brie�y sketched. In particular, arguments behind the Born rule, which gives the basis for quantum

probabilities, are given. A list of ideas for possible statistical applications of quantum probabilities is

provided and discussed. A particular area is machine learning, where there exists substantial

literature on links to quantum probability. Here, an idea about model reduction is sketched and is

motivated from a quantum probability model. Quantum models can play a role in model reduction,

where the partial least squares regression model is a special case. It is shown that for certain

experiments, a Bayesian prior given by a quantum probability can be motivated. Quantum decision

theory is an emerging discipline that can be motivated by this author’s theory of quantum

foundations.

Corresponding author: Inge S. Helland, ingeh@math.uio.no

1. Introduction

The basis for nearly all articles in theoretical and applied statistics is Kolmogorovian probability[1].

Quantum probability is mostly looked upon by statisticians as an exotic tool with no relevance for

statistical science and statistical inference. This implies that, in the statistical literature, there is very

little discussion of possible links between statistical theory and quantum theory. (A good exception is

the article by Barndor�-Nielsen et al.[2], where quantum versions of exponential models, su�ciency,

and Fisher information are discussed, among other related topics.)
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In my opinion, this has led to a limitation of statistical science, both from a theoretical point of view

and from an applied point of view. I relate this statement to the idea that traditional statistical theory

only - at least in most cases - looks upon the parameter space as a set with no structure. Introducing

more structure into the parameter space will give a richer theory. And I will show in the next Section

that some such structures indeed lead to quantum probabilities. Later in this article, I will discuss a

speci�c structure, symmetry introduced by letting a concrete group act on the parameter space, and

the implications for model reduction.

It seems as if a discussion of links between quantum theory and statistical theory is more than due

now. This can be underpinned by looking at the current revolution in arti�cial intelligence, in

particular, machine learning, an area that engages more and more statisticians. It is probably not so

well known among statisticians that discussions of connections between machine learning and

quantum mechanics have appeared in the literature now; see, for instance, the review article by

Dunjko & Briegel[3]. If we really mean that machine learning should be based upon statistics,

connections between statistical theory and quantum theory should also be of high interest.

One can ask then: Is not quantum probabilities just of relevance to the microcosmos? My answer to

this is no. To argue for that answer, one can look at recent derivations of quantum mechanics from

various postulates. In two books[4][5]  and in a series of articles[6][7][8][9][10][11][12][13][14][15], this

author has proposed a completely new foundation of quantum theory, and also, in this connection,

discussed the interpretation of the theory. This foundation is summarized in Subsections 2.2 and 2.3

below, where the essence of quantum theory is deduced from 7 postulates. Looking at these

postulates, most of them may be seen to be equally valid in a macroscopic setting.

Another basis for quantum theory is given in a series of articles by De Raedt and his collaborators. One

of these is De Raedt et al.[16]. Here, essential elements of quantum mechanics are derived from what is

called logical inference to experiments, an assumption that there are uncertainties about individual

events and that the frequencies are robust with respect to small changes in the parameters. A basic

tool in the derivations is that of Fisher information. Fisher information as a general basis for nearly all

aspects of science has earlier been advocated by Frieden[17].

Finally, it is of interest in this connection to look at the quantum-like models introduced by

Khrennikov and collaborators; see Khrennikov[18][19] and Haven & Khrennikov[20][21]. These models

are based upon quantum probabilities and are applied to several sciences, including cognitive
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psychology, sociology, �nance, and biology. An important element here is a theory of quantum

decisions; see also Helland[10][14].

While there are few examples of statistical papers related to quantum probability, there are several

articles in the quantum theory literature that use basic statistical concepts and ideas. Very much

discussion among theoretical physicists is concerned with the interpretation of quantum theory. Some

still want to look upon it as an ontological theory, but more and more physicists now conclude with

the view that quantum mechanics should be interpreted as an epistemic or epistemological theory: It

is a theory of our knowledge of the world, in the same way that statistical theory is basically about

knowledge from experiments and observations. A strong school in the quantum community is QBism,

originally an abbreviation for Quantum Bayesianism, but now by its founders claimed to have a

somewhat wider basis, see Caves et al.[22] and Fuchs[23][24]. A very recent article on Bayes’ rule and

related inference in quantum mechanics is Liu[25].

The plan of this article is as follows: In Section 2, my own basis for quantum theory is discussed in

some detail, together with other bases. One aim is to motivate the use of quantum probabilities in

macroscopic settings. In Section 3, several potential ideas for the use of quantum probabilities in

statistical settings are discussed. This includes model reductions, quantum probabilities as priors for

certain experiments, decision theory, and machine learning. The �nal section gives some general

discussion points.

2. Basic theories leading to quantum probabilities

2.1. The traditional approach

The traditional approach towards quantum theory, as found in numerous textbooks, is rather formal.

To understand the main message of this article, it is not necessary to read this subsection in complete

detail, but some of the elements discussed here will be used later.

As a start, quantum mechanics is a nearly 100-year-old theory, whose formal foundation is given by

von Neumann[26]. That book summarizes the e�orts of many prominent physicists at the beginning of

the last century, physicists whose names need not be mentioned here. The book by von Neumann has,

in turn, inspired a large literature, consisting of research articles, monographs, textbooks, and more

popular books.
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A thorough and more modern formal treatment is given by Hall[27]. The basic mathematical concept

underlying all the formal literature on quantum mechanics is that of a Hilbert space, a complex linear

space of vectors admitting a scalar product. The theory is much simpler when the dimension of the

Hilbert space is �nite, when it can be taken to be equal to    for some  , where    is the space of

complex numbers. Physical states are represented by normalized vectors in the Hilbert space, and

physical variables are represented by operators, in the �nite-dimensional case, matrices.

Hall[27]  gives axioms behind quantum mechanics that are mathematically precise, also for the case

where the operators involved are unbounded, which implies for an operator   that it is only de�ned on

a subset    of the Hilbert space. For this case, the adjoint    of the operator    is de�ned: A

vector   belongs to the domain   of   if the linear functional   de�ned on   is bounded, and

for  ,    is de�ned as the unique vector such that    for all  ,

where   is the scalar product of the Hilbert space. From this, the concept of a self-adjoint operator is

de�ned by requiring that  . A self-adjoint operator is characterized by having a real-valued

spectrum, say, real-valued eigenvalues, so, by connecting such an operator to a physical variable, the

eigenvalues can be interpreted as the possible values of this variable.

A simpler concept is that of a symmetric operator: An operator   is symmetric if   for

all  . Conditions under which a symmetric operator is self-adjoint are discussed in Chapter

9 of Hall[27]. It is noted that also symmetric operators have real-valued eigenvalues. All bounded

operators that are symmetric are self-adjoint.

Of some interest to statisticians are also the Lecture Notes by Meyer[28]  and Holevo[29]. What is

common to those monographs is that they assume the superposition principle: If    and    are

possible state vectors and    and    are complex numbers, then a normalized version of    is

also a possible state vector. In the next subsection, I will limit the concept of state vector to vectors in

the Hilbert space that are eigenvectors of some physically or statistically meaningful operator, and

then the general superposition principle is not necessarily true. As shown in Helland[8][12], this view

can be used to resolve various quantum paradoxes.

In newer versions of this traditional approach to quantum probabilities, a basic notion is that of a

POVM (positive operator-valued measurement): Let    be a Hilbert space, and    a measurable

space with   being the Borel  -algebra on  . A POVM is a function   de�ned on   whose values are

C
r r C

A

D = DA A† A

|ϕ⟩ D† A† ⟨ϕ,A⋅⟩ D

|ϕ⟩ ∈ D† |ξ⟩ = |ϕ⟩A† ⟨ξ,ψ⟩ = ⟨ϕ,Aψ⟩ |ψ⟩ ∈ D
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positive bounded self-adjoint operators on    such that for every    the mapping from    to 

 is a non-negative countably additive measure on  , and   is the identity operator.

In the �nite-dimensional case, a POVM can be constructed from a set of semi-de�nite self-adjoint

matrices    such that    by letting    for  . Then for a set of non-

negative constants   adding to  , and for a �xed orthonormal basis   of the Hilbert space, de�ne 

. This gives for any subset    of  , and for any    in the Hilbert space, 

 when  .

A POVM is called a projection valued measure (PVM) if it is self-adjoint and    is a projection

operator for every  . Naimark’s dilation theorem shows how any POVM    can be obtained from a

PVM   acting on a larger Hilbert space  : There is a unitary transformation   (a transformation such

that  ) from   to   such that   for every  .

The key property of a POVM is that   can be interpreted as a probability of outcome   when

measured in the state    when this is a normalized vector in the Hilbert space. This is a version of

Born’s formula.

2.2. A new approach; the postulates and the �rst results

A completely new approach towards quantum foundations is proposed in Helland[12][13][14][15], where

the formal properties of quantum mechanics are derived from a rather simple set of postulates. These

postulates will be repeated below.

As a possible general interpretation, the basis can be taken to be relative to an actor who is in some

�xed (physical or statistical) context. In this context, there are theoretical variables, and some of these

variables, say   may be related to the actor  . Some of these variables are accessible to him,

which means roughly that it is, in some future, given some estimation principle, in principle possible

to obtain as accurate estimates as he wishes on the relevant variable. Other variables are inaccessible.

In Helland[12][13][14][15], physical examples are given. In the present article, applications to statistics

will be the theme, and then in most cases, the theoretical variables will be parameters of some

statistical model. However, I will also allow other interpretations of the variables: In special

applications, they may be latent variables, future data, or combinations of parameters and data.

The above characterization of accessible and inaccessible variables will, in this article, mainly be

related to a statistical implication of the theory. But the theory itself is purely mathematical and can be

H |ψ⟩ ∈ H E

⟨F(E)ψ,ψ⟩ F F(Ω) = I

{ }Mi ∑ = IMi = F(i)Mi i = 1, … , r

pi 1 {| ⟩}ψi

⟨ , ⟩ =Miψi ψi pi E {1, … , r} |ψ⟩

⟨F(E)ψ,ψ⟩ = ∑i∈E | |ai
2
pi |ψ⟩ = | ⟩∑i ai ψi
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made precise in di�erent directions. In particular, the terms ‘accessible’ and ‘inaccessible’ can just be

seen as primitive notions of the theory. In addition to the statistical implication, two other ways that

the theory can be made precise are 1) ordinary quantum mechanics, where the theoretical variables are

physical variables, in my interpretation connected to a �xed context and also to the mind of some

actor; 2) quantum decision theory, where the variables are decision variables. From a mathematical

point of view, it is only assumed that if    is a theoretical variable and   for some function  ,

then   is a theoretical variable. And if   is accessible, then   is accessible.

As said, in physical applications, the variables may also be connected to the mind of some actor. Note,

however, that actors may communicate. The mathematical model developed in the articles mentioned

above is equally valid relative to a group of people that can communicate about the various theoretical

variables. This gives a new version of the theory, a version where all theoretical variables are de�ned

jointly for such a group of actors. In physical applications, the actor or the communicating group of

actors is important. In many statistical applications, we may take the group to be the set of all possible

actors; see Section 3 below.

From a mathematical point of view, an accessible variable    is called maximal if there is no other

accessible variable   such that   for some non-invertible function  . In other words, the term

‘maximal’ will then be seen to be maximal with respect to the partial ordering of variables given by 

 i�   for some function  .

To be precise, every accessible variable is assumed to vary over some topological space; in most cases,

they are real-valued or vector-valued, and all functions discussed are assumed to be Borel-

measurable.

A basic assumption in my theory is that there exists an inaccessible variable    such that all the

accessible variables can be seen as functions of  . In simple physical applications, such a   may easily

be de�ned explicitly. In statistical applications,   may be some total, inaccessible parameter, say, the

set of all parameters that in some way may be included in a certain statistical model.

Two di�erent accessible variables   and   are de�ned to be related if there is a transformation (group

action)   in  -space and a function   such that   and  .

As a summary of the above discussion, here are the �rst 3 postulates of the theory:

Postulate 1. If    is a theoretical variable and    for some function  , then    is also a theoretical

variable.

λ θ = f(λ) f

θ λ θ

θ

λ θ = f(λ) f

α ≤ β α = f(β) f

ϕ

ϕ ϕ

ϕ

θ η

k ϕ f θ = f(ϕ) η = f(kϕ)

η γ = f(η) f γ
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Postulate 2. If   is accessible to   and   for some function   , then   is also accessible to  .

Postulate 3. In the given context, there exists an inaccessible variable   such that all the accessible ones can

be seen as functions of  . There is a transitive group   acting upon 

A de�nition is now needed for the fourth postulate:

De�nition 1. The accessible variable   is called maximal if   is maximal as an accessible variable under the

partial ordering de�ned by   i�   for some function  .

Note that this partial ordering is consistent with accessibility: If   is accessible and  , then   is

accessible. Also,   from Postulate 3 is an upper bound under this partial ordering.

Postulate 4. There exist maximal accessible variables relative to this partial ordering. For every accessible

variable   there exists a maximal accessible variable   such that   is a function of  .

Then, in my opinion, two di�erent maximal accessible variables come very close to what Bohr called

complementary variables; see Plotnitsky[30]  for a thorough discussion. The term complementary

originated in connection to the variables position and momentum, but has now reached a number of

applications; see Steiner & Rendell[31] and Maccone[32] for example.

It is crucial what is meant by ‘di�erent’ here. If  , where   is a bijective function, (i.e., there is a

one-to-one correspondence between   and  ), then   and   contain the same information, and they

must be considered ‘equal’ in this sense.   and   are said to be ‘di�erent’ if they are not ‘equal’ in this

meaning. This is consistent with the partial ordering in De�nition 1. The word ‘di�erent’ is used in the

same meaning in the Theorem below.

Postulate 4 can be motivated by using Zorn’s lemma - if this lemma, which is equivalent to the axiom

of choice, is assumed to hold - and Postulate 3, but such a motivation is not necessary if Postulate 4 is

accepted. Physical examples of maximal accessible variables are the position or the momentum of

some particle, or the spin component in some direction. In a more general situation, the maximal

accessible variable may be a vector, whose components are simultaneously measurable variables.

Assuming these postulates, the main result of Helland[6][12][15] is as follows:

Theorem 1. Consider a context where there are two di�erent maximal accessible variables   and  . Assume

that both   and   are real-valued or real vectors, taking at least two values. Make the following additional

assumptions:

θ C λ = f(θ) f λ C

ϕ

ϕ K ϕ.

θ θ

α ≤ β α = f(β) f

β α = f(β) α

ϕ

θ λ θ λ

θ = f(η) f

θ η θ η

θ η

θ η

θ η

qeios.com doi.org/10.32388/4EGWDR 7

https://www.qeios.com/
https://doi.org/10.32388/4EGWDR


i. On one of these two variables, say  , there can be de�ned a transitive group of actions   with a trivial

isotropy group and with a left-invariant measure   on the space  , the range space of the function 

 in  .

ii. There exists a group   on  .

Then there exists a Hilbert space   connected to the situation, and to every (real-valued or vector-valued)

accessible variable there can be associated a symmetric operator on  .

The main result is that each accessible variable   is associated with an operator  . The proof goes by

�rst constructing   and  , then operators associated with other accessible variables are found by

using the spectral theorem. For this, we need weak conditions[27]  ensuring that the symmetric

operators are self-adjoint.

In order to formulate in general the spectral theorem, �rst, the spectrum   of an operator   is de�ned

as the set of constants   such that   does not have a bounded inverse. For self-adjoint operators,

the spectrum is contained in the real line and contains all eigenvalues of  . For bounded operators, the

spectrum is equal to the set of eigenvalues.

Then, in general, we have for any self-adjoint operator    that there exists a projection-valued

measure   such that

From this spectral theorem (see Hall[27]  for a proof), if    is the operator which according to

Theorem 1 is associated with the maximal accessible variable  , we can de�ne the operator associated

with   by

In particular, we have

Note that here   may be any maximal accessible variable associated with some   which satis�es (i) and

(ii) above. It is shown in Helland (2024d) that, as a consequence of the assumption (ii), the two

variables   and   will be related.

θ G

ρ Ωθ

f θ = f(ϕ)

M Ωϕ

H

H

ξ Aξ

Aθ Aη

σA A

λ A − λI

A

A

EA

A = λd (λ).∫
σA

EA (1)

A = Aη

η

ξ = f(η)

= f(A) = f(λ)d (λ).Aξ ∫
σA

EA (2)

d (λ) = I.∫
σA

EA (3)

η θ

θ η

qeios.com doi.org/10.32388/4EGWDR 8

https://www.qeios.com/
https://doi.org/10.32388/4EGWDR


By Axiom 4, for any accessible variable  , there exists a maximal variable   and a function   such that 

. In this way, operators associated with any accessible variable may be de�ned.

Groups as acting on a space are important in my approach. A group action   acting on a space    is

called transitive if for every  , the range of   as   runs through   is the full space  . If this holds

for one  , it holds for every  . The isotropy group of   at   is the set of   such that  .

In the transitive case, for di�erent  , the isotropy groups are isomorphic. In particular, if the isotropy

group is trivial for one  , it is trivial for every  .

When there is a transitive group   with a trivial isotropy group acting on  , there will be a one-to-one

correspondence between the points    and the group elements  . This is important for the

proof of Theorem 1.

It is shown in Helland[15] that under the assumptions of Theorem 1, there exists a variable   that is a

bijective function of    and a transformation    on the  -space by which the variables    and    are

related:  .

An important special case of Theorem 1 is when the accessible variables take a �nite number of values,

say  . For this case, it is proved in Helland[12][15]  that a group    and a transformation 

 with the above properties can always be constructed. The following Corollary then follows:

Corollary 1. Assume that there exist two di�erent maximal accessible variables   and  , each taking   values,

and not in one-to-one correspondence. Then, there exists an  -dimensional Hilbert space   describing the

situation, and every accessible variable in this situation will have an associated self-adjoint operator in  .

In the �nite case, the equations (1-3) take a simpler form. The operator    will have eigenvalues 

 and corresponding eigenvectors  . The spectral theorem then reads

where    is the complex conjugate row vector corresponding to  . In the quantum mechanical

literature, these vectors are often written as ket and bra vectors:    and  . The

eigenvectors can be chosen as orthonormal:  . In the following, both notations will be

used.

We then further have

ξ η f

ξ = f(η)

G Ω

ω ∈ Ω gω g G Ω

ω ω ∈ Ω G ω g ∈ G gω = ω

ω

ω ω ∈ Ω

G Ω

ω ∈ Ω g ∈ G

ξ

η k ϕ θ ξ

ξ(ϕ) = θ(kϕ)

, , … ,u1 u2 ur G

k

θ η r

r H

H

Aη

{ }uj { }uj

= ,Aη ∑
j

ujuju
†
j

(4)

u
†
j uj

= |j⟩uj = ⟨j|u
†
j

= ⟨i|j⟩ =u
†
iuj δij

= f( ) ,Af(η) ∑
j

uj uju
†
j

(5)
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in particular

the corresponding resolution of the identity.

Theorem 1 and its Corollary constitute the �rst steps in a new proposed foundation of quantum theory.

In statistical applications, the variables (parameters) involved will in most cases have a continuous

variation. However, continuous parameters can be approximated by a sequence of parameters taking a

�nite number of values; see subsection 5.3 in Helland[4]. In this way, we may avoid both the symmetry

assumptions of Theorem 1 and the technical issues relating symmetric and self-adjoint operators.

Examples are given in Section 3 below.

The second step now is to prove the following: If    is the transformation connecting two related

maximal accessible variables    and  , and    and    are the associated operators, then there is a

unitary operator    such that  . This, and a more general related result, is

proved as Theorem 5 in Helland[12].

Given these results, a rich theory follows. The set of eigenvalues of the operator    is proved to be

identical to the set of possible values of  . The variable    is shown to be maximal if and only if all

eigenvalues of the corresponding operator are simple. In general, the eigenspaces of   are in one-to-

one correspondence with questions ‘What is  ’/ ‘What will   be if we measure it?’ together with sharp

answers   for some eigenvalue   of  . If   is a maximal accessible variable, then all eigenvectors

of the operator   have a similar interpretation. In my theory, I wish to limit the concept of a state

vector to vectors in the Hilbert space that are eigenvectors of some meaningful operator. Then this

gives a simple interpretation of all possible state vectors.

What is lacking in the above theory is a foundation of Born’s formula, necessary for the computation

of quantum probabilities. Several versions of Born’s formula are proved from two new postulates in

Helland[4][15]. The �rst postulate is as follows:

Postulate 5. The likelihood principle holds.

As is well known, the likelihood principle is a principle that many statisticians base their inference on.

In its strict form, it is controversial; see, for instance, the discussion in Schweder and Hjort[33].

Elsewhere[4], I have advocated the view that the principle should be restricted to a speci�c context,

= I,∑
j

uju
†
j

(6)

k

θ η Aθ Aη

W(k) = W W(k)Aη (k)−1
Aθ

Aθ

θ θ

Aθ

θ θ

θ = u u Aθ θ

Aθ
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and then it is less controversial. For a basic historical discussion of the principle, see Berger and

Wolpert[34].

Recall that the likelihood principle runs as follows: Relative to any experiment, the experimental evidence

is always a function of the likelihood. Here, the term ‘experimental evidence’ is left unde�ned and can be

made precise in several directions. But as everybody would agree, an experiment is always done in a

context, and such a context should include a well-de�ned experimental question.

In a quantum mechanical setting, a potential or actual experiment is seen in relation to an actor   or

to a communicating group of actors. Concentrate here on the �rst scenario. In the simplest case,

assuming a discrete-valued variable, we assume that   knows the state   of a physical system and

that this state can be interpreted as the knowledge that   for some maximal accessible variable 

. Then assume that   has focused upon a new maximal accessible variable  , and we are interested

in the probability distribution of this variable.

The last postulate is connected to the scienti�c ideals of  , ideals that either are given by certain

conscious or unconscious principles, or are connected to some concrete persons. These ideals are then

modeled by some ‘higher being’   that   considers to be perfectly rational with respect to any aspect

of the relevant theoretical variables.

Postulate 6. Consider in the context    an experiment where the likelihood principle is assumed to be

satis�ed, and the whole situation is observed by an experimentalist    whose decisions can be shaped or

in�uenced by a ‘superior being’  . Assume  ’s probability for some given outcome   is  , that   is seen by 

 to be perfectly rational in agreement with the Dutch Book Principle, and that   is assumed to be the real

probability for  .

The Dutch Book Principle says as follows: No choice of payo�s in a series of bets shall lead to a sure

loss for the bettor.

A situation where Postulate 6 holds will be called a rational epistemic setting. It will be seen in the

next subsection to imply essential aspects of quantum probability. As shown in Helland[13], it also

gives a foundation for probabilities in quantum decision theory.

In Helland[4][14], a generalized likelihood principle is proved from the ordinary likelihood principle:

Given some experiment, assumed here to have a discrete, maximal accessible parameter  , and

assume a context    connected to the experiment, any experimental evidence will under the above

assumptions be a function of the so-called likelihood e�ect  , de�ned by

C

C |a; i⟩

=θa ui

θa C θb

C

D C

τ

C

D D E q D

C q

E

θa

τ

F = F a
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In particular, the probability   of Postulate 6 must be a function of  :  .

In many textbooks, quantum mechanics is restricted to discrete-valued variables as above. For a

continuous variable  , the likelihood e�ect can be de�ned by appealing to the spectral theorem for

the operator   and using the probability density   for the data:

2.3. The Born rule from the approach above

Using these postulates and a version of Gleason’s Theorem due to Busch[35], the following variant of

Born’s formula is proved in Helland[4][14]:

Theorem 2 [Born’s formula, simple version] Assume a rational epistemic setting and assume two

di�erent discrete maximal accessible variables   and  . In the above situation, we have:

Here,    is the state given by   and    is the state given by  . In this version of the

Born formula, I have assumed perfect measurements: there is no experimental noise, so that the

experiment gives a direct value of the relevant theoretical variable. Another assumption is that the

events    and    are contained in the experimental questions related to the respective

experiments.

A last postulate is needed to compute probabilities of independent events. A version of such a

postulate is

Postulate 7. If the probability of an event   is computed by a probability amplitude   from the Born rule in

the Hilbert space  , the probability of an event   is computed by a probability amplitude   from the Born

rule in the Hilbert space  , and these two events are independent, then the probability of the event 

  can be computed from the probability amplitude  , associated with the tensor product of the

Hilbert spaces   and  .

This postulate can be motivated by its relation to classical probability theory: If    and 

, then 

The simple Born formula can now be generalized to the case where the variables are continuous, and

where the accessible variables    and    are not necessarily maximal. There is also a variant for a

(u; z, τ) = p(z|τ, = )|a; i⟩⟨a; i|F a ∑
i

θa ui (7)

q F q(F|τ)

θa

A = Aθa p(z|τ, = u)θa

(u; z, τ) = p(z|τ, = u)d (u).F a ∫
σA

θa EA (8)

θa θb

P ( = | = ) = .θb vj θ
a ui |⟨a; i|b; j⟩|2 (9)

|a; i⟩ =θa ui |b; j⟩ =θb vj

=θa ui =θb vj

E1 z1

H1 E2 z2

H2

∩E1 E2 z1z2

H1 H2

P ( ) =E1 | |z1
2

P ( ) =E2 | |z2
2

P ( ∩ ) = P ( )P ( ) = | | = |E1 E2 E1 E2 z1|2
z2|2

z1z2]2

θa θb
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mixed state involving  .

De�ne �rst the mixed state operator associated with any accessible variable    by using the spectral

theorem for  :

In the continuous case,    is the probability density for  . In the discrete case,    is the point

probability of  , and (10) reads

where   is the eigenvector of   corresponding to the eigenvalue  .

The probability distribution for    assumed in (10) can be of many kinds. For a Bayesian, it can be a

prior or posterior distribution. For a frequentist, it can be a con�dence distribution of the kind

discussed by Schweder and Hjort[33]. Also, statisticians that follow some �ducial school operate with

probability distributions of parameters.

Assume now �rst that   in Theorem 2 is discrete, but not necessarily maximal. Then   is a function 

  of a maximal accessible variable  , and it follows by summation over  , assuming that 

 belongs to some set   de�ned by   for some given set  , that

where    is the projection upon the space spanned by the eigenvectors    of    for which the

eigenvalues   are in the set of indices   such that  .

Now, by approximating a continuous    by discrete variables    such that    as  , it is

easy to show that (12) holds in general, where now    is interpreted as the projection upon the

eigenspace of the indicator for the set    corresponding to the value 1 for this indicator. More

precisely, we should use  , where   is the spectrum of the operator  , and   is

found from the spectral theorem of the same operator.

In the same way, a continuous   may be approximated by discrete  , assumed to be functions   of

some maximal accessible variables  , replacing the variable    in Theorem 2. Then, using the

de�nition (10) (which can be generalized to the case of non-maximal accessible variables), we can

prove

θa

θ

A = Aθ

= (u)d (u).ρθ ∫
σA

pθ EA (10)

(u)pθ θ (u)pθ

θ

= ( ) ,ρθ ∑
j

pθ uj uju
†
j

(11)

uj Aθ uj

θ

θb θb

f η j

η = vj B1 f( ) ∈ Bvj B

P ( ∈ B| = i) = ⟨a; i| |a : i⟩,θb θa ΠB (12)

ΠB |b; j⟩ Aη

vj j f( ) ∈ Bvj

θb θbn →θbn θb n → ∞

ΠB

∈ Bθb

= d (u)ΠB ∫
B∩σb Eb σb Aθb { }Eb

θa θar fr

ξr θa
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Theorem 3 [Born’s formula, general version]. Assume Postulate 5 and Postulate 6, and assume that we

have two di�erent accessible variables   and   in the relevant context. Assume that the knowledge of   is

given by the density matrix  . Then for any Borel set   in   we have

This result is not necessarily associated with a microscopic situation, a fact that I will come back to in

examples in Section 3.

As a corollary, we have

Here   is the operator corresponding to  .

Finally, one can generalize to the case where the �nal measurement is not necessarily perfect. Let us

assume future data    instead of a perfect theoretical variable  , which is now taken to be the

parameter of the experiment. Note that we only need the likelihood principle (together with postulate

6) for perfect experiments in order to prove that (13) is valid. Then we can de�ne an operator

corresponding to   by

where   is found from the spectral theorem used on the operator  . Then from the version

(13) of the Born formula, we obtain

and

where   is found from the spectral theorem used on the operator  .

Again, elementary quantum mechanics uses discrete data and discrete parameters, a setting

unfamiliar to statisticians, but useful as an approximation. Then   is the point probability

of the data, we de�ne

and Born’s formula gives   and

θa θb θa

ρa B Ω
θb

P ( ∈ B| ) = trace( ).θb ρa ρaΠB (13)

E( ) = trace( ).θb∣∣ρa ρaAθb (14)

Aθb θb

zb θb

zb

= p( = u)d (u),Azb ∫
σA

zb zb∣∣θ
b Eb (15)

{ }Eb A = Aθb

E( ) = trace( ).zb∣∣ρ
a ρaAzb (16)

P ( ∈ F) = trace( d (z)),zb ρa ∫
z∈(F∩ )σA

1
Ezb (17)

{ }Ezb =A1 Azb

p( = )zb∣∣θb ui

= p( = ) ,Azb ∑
i

zb∣∣θ
b ui uiu

†
i (18)

E( ) = trace( )zb∣∣ρa ρaAzb
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where   is the eigenvector of   corresponding to the eigenvalue  .

All this not only points to a new foundation of quantum theory, but it also suggests a general

epistemic interpretation of the theory: Quantum Theory is not directly a theory about the world, but a

theory about an actor’s knowledge of the world. In particular, the probabilities in the Born formula

can be interpreted as probabilities attached to a single observer, or to a communicating group of

observers. It is crucial that the probabilities at the outset according to Postulate 6 are seen as

probabilities as evaluated by the ‘superior actor’ D.

2.4. Quantum theory as the most robust description of reproducible experiments

In De Raedt et al.[16][36]  another approach to the foundation of quantum theory is discussed. This

approach will be described very brie�y here.

First, the authors de�ne inference-probability as any conditional probability satisfying the three rules

1. , where   denotes not- .

2. , where    denotes essentially what

statisticians call  .

3.   and  , where    denotes essentially what statisticians call 

.

These rules are the same as the rules for the concept of plausibility, derived from reasonable

assumptions and discussed in detail by Jaynes[37]. In op. cit.,  ,   and   are propositions, and to be

precise,   denotes that both propositions   and   are true, and   denotes that at least one of

the propositions is true.

Next, De Raedt et al.[16][36] assume the following conditions, which are made precise in these articles:

Conditions 1. There may be uncertainty about each event. The condition under which the experiment is

carried out may be uncertain. The frequencies with which events are observed are reproducible and robust

against small changes in the conditions. Individual events are independent.

Using these assumptions, they �rst derive quantum probabilities for the Einstein-Podolsky-Rosen-

Bohm thought experiment. This experiment consists of a source  , a router   to the left of the source

P ( ∈ F) = trace( ),zb ρa∑
∈Fzj

vjv
†
j

(19)

vj Azb zj

P (A|Z) + P ( Z) = 1A
¯ ¯̄̄∣

∣ A
¯ ¯̄̄

A

P (AB|Z) = P (A|BZ)P (B|Z) = P (B|AZ)P (A|Z) AB

A ∩ B

P (A Z) = 0A
¯ ¯̄̄∣

∣ P (A + Z) = 1A
¯ ¯̄̄∣

∣ A + B

A ∪ B

A B Z

AB A B A + B

S R1
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oriented by a chosen unit vector  , a router    to the right of the source oriented by a chosen unit

vector  , and two detectors connected to each router.

The experiment is the same as what is called the Bell experiment, an experiment that has now been

shown experimentally to give outcomes as predicted by quantum theory, but not by ‘common sense’

use of classical arguments. The Bell experiment has been discussed under various assumptions by

many authors, including Helland[7][11]

De Raedt aims at making a minimal set of assumptions about the experiment; for details, see De Raedt

et al.[16][36] and references therein:

a. Each time the source    is activated, it sends a signal to the right router and a signal to the left

router.

b. After this, each router sends a signal to one of its two detectors, depending upon the orientations 

.

c. The detectors register the signal and operate with 100   e�ciency.

The whole experiment is then run a large number    of times, giving frequencies for the various

outcomes. Probabilities are obtained by letting  . It turns out that these probabilities are in

agreement with quantum theory, which deviates from the common sense use of classical arguments.

This is a special experiment, but it is an important experiment, distinguishing between quantum

predictions and classical conditions. A simpler experiment is the Stern-Gerlach experiment. Here the

source  , activated at times  , sends a particle carrying a magnetic moment    to a

magnet   with its magnetization  . Depending on   and  , the particle is detected with 100   by one

of two assumed detectors. It is crucial that this depends only on the scalar product  . Again, by a

long argument, the predictions of quantum theory are derived under very weak assumptions.

In addition to this, there is a discussion of the Schrödinger equation in De Raedt et al.[16], a theme that

I will not discuss in detail in the present article.

It is crucial that fundamental quantum predictions are derived in op. cit., using plausible assumptions

together with the basic Conditions 1. There is nothing microscopic connected to these assumptions,

supporting my main thesis that quantum theory also may be relevant in a macroscopic context.

Finally, these derivations are also consistent with my epistemic interpretation of quantum theory, as

shown by the following citation: ‘… current scienti�c knowledge derives, through cognitive processes

a1 R2

a2

S

ai

%

N

N → ∞

S n = 1, 2, … ,N s

M a a s %

a ⋅ s
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in the human brain, from the discrete events which are observed in laboratory experiments and from

the relationships between those experiments that we, humans, discover.’

As said in the Introduction above, it is also highly relevant that the concept of Fisher information is

used in their detailed arguments.

In a recent, long, and detailed article[38], the Bell experiment and the violation of the so-called CHSH

inequality is discussed from the general point of view of mathematical models and discrete data. It is

concluded that discrete data recorded by experiments and mathematical models used to describe

relevant features belong to di�erent, separate universes and should be treated accordingly. This is a

conclusion that seemingly has large consequences for ordinary statistical modelling.

In my opinion, this conclusion indeed seems to be supported in experiments like the Bell experiment.

It is connected to the fact that any human being, including a theoretician that makes mathematical

models, meets limitations that apply to these models: It may in certain cases be impossible to include

more than two maximal accessible parameters in the models. More precisely: If the model contains

two, really di�erent, related maximal accessible parameters    and  , it cannot at the same time

contain a parameter    which is related to  , but not to  . The notion of being related can be given a

precise de�nition connected to the mind of a person or to the joint minds of a group of communicating

persons (see Subsection 2.2). All this follows from the discussion in Helland[7][11], a discussion which

is also brie�y given in Helland (2024c).

2.5. Ubiquitous quantum structure

In a number of books and articles, see Khrennikov[18][19] and Haven & Khrennikov[20][21] for some of

them, Andrei Khrennikov has advocated what he calls quantum-like models. I will start with a

particular argument given in Khrennikov[18].

He there takes the point of departure that the law of total probability

where   is a disjoint partition of the probability space, does not hold under all circumstances. He

assumes in particular that a term of the form

where   denotes the product, may have to be added to the right-hand side of (20).

θ η

ζ θ η

P (B|C) = P ( |C)P (B| ∩ C),∑
a

Aa Aa (20)

{ }Aa

2λ(B|a,C) ,(P ( |C)P (B| ∩ C))Πa Aa Aa

− −−−−−−−−−−−−−−−−−−−−
√ (21)

Πa
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He then shows that quantum probabilities may be derived under the speci�c condition that 

  for all  . One then can write    for an angle  . Specialize to the case

where the partition has two elements    and  , and use the elementary formula 

 to arrive at

where

which can be seen as a special case of Born’s formula.

This is a minor technical argument, but it again shows that quantum probabilities may be derived

under conditions that are not necessarily microscopic. In fact, the many examples and the various

other arguments in Khrennikov[18][19] underline this point. Let me end this subsection with a citation

from the preface of Khrennikov[19].

‘Quantum-like modeling is built on the methodology and the mathematical apparatus of quantum

theory and it is directed to applications outside of physics, namely to biology, cognition, psychology,

decision making, economics, �nances, social and political sciences, and arti�cial intelligence.’

Note that statistics as a science aims at a similar list of applications.

2.6. Some of the properties of quantum probabilities

I have already mentioned that the law of total probability does not hold for quantum probabilities.

This implies also that Savage’s sure thing principle[39] does not hold:

If an event   is true (has probability 1) under condition  , and it also is true under condition  , then it

is always true.

This may seem counterintuitive, but it can be understood by the fact that quantum mechanics allows

states that can be seen as superpositions of the states speci�ed by the condition    and by the

condition  , states where other conditions are focused upon. (I do not need the general superposition

principle here; the ‘other conditions’ can be related to a complementary theoretical variable.)

Another property of quantum probabilities is that the probability of successive events depends on the

order of the events. An example mentioned in the quantum decision literature is an opinion poll,

where American citizens were asked about their opinions on Al Gore and their opinion on Bill Clinton.

|λ(B|a,C)| ≤ 1 B,a,C λ = cos (ϕ) ϕ

A A
¯ ¯̄̄

x + y + 2 cos (ϕ) = |xy−−
√ + |x−−√ eiϕ y√

2

P (B|C) = ,|ψ(B)|2 (22)

ψ(B) = + .P (A|C)P (B|A ∩ C)
− −−−−−−−−−−−−−−−

√ eiϕ P ( C)P (B ∩ C)A
¯ ¯̄̄∣

∣
∣
∣A
¯ ¯̄̄

− −−−−−−−−−−−−−−−
√ (23)

B A A
¯ ¯̄̄

A

A
¯ ¯̄̄
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Empirically, it was shown that answers were dependent upon the order in which the questions were

asked.

To prove this property, we also have to assume the well-known collapse rule of quantum mechanics:

Start with a pure state  , so that, according to the Born rule, the probability of an event    is 

, where   is the projection on the indicator of  . Then the collapse rule says that after the

measurement, the state changes to

For a derivation of this rule from a knowledge-based perspective, see Shrapnel et al.[40].

This gives for successive events   and  :

which in general is di�erent from  .

Finally, it follows from (25) and a simple geometric argument that one in certain cases may have

which to some may seem counterintuitive, but can be illustrated by the so-called Linda paradox,

discussed by several authors, for instance Busemeyer and Bruza[41].

3. Statistical applications

In the statistical applications below, I will only in some special cases go into details concerning the

related quantum-mechanical calculations, which may be complicated. The main purpose of this

Section is to point at some ideas under which such calculations may possibly enlighten or complement

a statistical analysis.

3.1. An experiment that can be analyzed by quantum probabilities

In a medical experiment, let   and   be continuous inaccessible parameters, the hypothetical

e�ects of treatment   and  , respectively. Assume that the focus of the experiment is to compare

treatment    with the mean e�ect of the other treatments, which is supposed to give the parameter 

|ψ⟩ B

∥ |ψ⟩∥ΠB 2
ΠB B

| ⟩ = .ψB
|ψ⟩ΠB

∥ |ψ⟩∥ΠB
(24)

B C

P (BandthenC) = P (B|ψ⟩)P (C|B) = = ,∥ |ψ⟩∥ΠB 2
∥ ∥ΠC

|ψ⟩ΠB

∥ |ψ⟩∥ΠB

2

∥ |ψ⟩∥ΠCΠB 2
(25)

P (CandthenB)

P (BandthenC) > P (C),

, ,μa μb μc μd

a, b, c d

b
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. One wants to do a pairwise experiment, but it turns out that the maximal parameter

which can be estimated is

(Imagine, for example, that one has four di�erent ointments against rash. A patient is treated with

ointment   on one side of his back; a mixture of the other ointments on the other side of his back. It is

only possible to observe which side improves best, but this observation is assumed to be very accurate.

One can in principle do the experiment on several patients and select out the patients where the

di�erence is clear.)

Described in this way, it may be natural, after the data are collected, to do a Bayesian analysis with a

prior given by  . But assume now that we have the following

modi�cation of the experiment:

The experiment is done on a selected set of experimental units, on whom it is known from earlier

accurate experiments that the corresponding parameter

takes the value  . In other words, for a Bayesian analysis, one is interested in the priors

Consider �rst a full Bayesian approach, also toward these priors. Natural priors for    are

independent    with the same    and  . By location and scale invariance, there is no loss in

generality by assuming    and  . Then the joint prior of    and 

 is multinormal with mean   and covariance matrix

A numerical calculation from this gives

This result can also be assumed to be valid when  , a case which can be considered as

independent objective priors for  , more precisely, a joint non-informative prior for the

( + + )1
3
μa μc μd

= sign( − ( + + )).θb μb
1

3
μa μc μd

b

P ( = −1) = P ( = +1) = 1/2θb θb

= sign( − ( + + ))θa μa
1

3
μb μc μd

+1

π = P ( = +1| = +1).θb θa

1 − π = P ( = −1| = +1).θb θa

, … ,μa μd

N(ν, )σ2 ν σ

ν = 0 σ = 1 = − ( + + )ζa μa
1
3
μb μc μd

= − ( + + )ζb μb
1
3
μa μc μd 0
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3

− 4
9
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4
3

π = P ( > 0| >0) ≈ 0.43.ζb ζa

σ → ∞

, … ,μa μd

qeios.com doi.org/10.32388/4EGWDR 20

https://www.qeios.com/
https://doi.org/10.32388/4EGWDR


parameters under the translation group; see Helland[42].

Now consider quantum probabilities for the same priors. Since again scale is irrelevant, a natural

group on    is a 4-dimensional rotation group around a point    together with a

translation of  . Furthermore,   and   are contrasts, that is, linear combinations with coe�cients

adding to 0. The space of such contrasts is a 3-dimensional subspace of the original 4-dimensional

space, and by a single orthogonal transformation, the relevant subset of the 4-dimensional rotations

can be transformed into the group    of 3-dimensional rotations on this latter space, and the

translation in   is irrelevant. One such orthogonal transformation is given by

Let   be the group of rotations orthogonal to  . We �nd

The rotation group element transforming   into   under   is strongly related to the group element 

 transforming   into   under a group of rotations of unit vectors.

Furthermore, let    be the maximal subgroup of    under which    is permissible. The following

de�nition was given in Helland[42][43] and is further discussed in these two articles:

De�nition 2. Let    be a group acting upon a parameter  , and let    be a function of  . We say that    is

permissible if   implies   for all  .

In general, if    is a permissible parameter in this way, one can de�ne group actions    on    by 

 for  .

The subgroup    is here isomorphic with the unit vector transformation group of rotations around 

 together with a re�ection in the plane perpendicular to  . The action by the group    induced on 

 by   is just a re�ection together with the unit element.

Again, all these groups have their analogues in relation to the rotation group of unit vectors.
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In conclusion, the whole situation is completely equivalent to the spin-example discussed in many

books, for instance, Helland[4], and may be assumed to satisfy the postulates of Subsection 2.2 above.

This implies, by an application of the Born rule (see Proposition 7 in Helland[4]):

So the two analyses give di�erent results for the desired prior. Which solution should one

recommend? Here is my opinion: Both solutions are based upon symmetries implied by group actions.

The full Bayesian solution is based upon a prior distribution on the inaccessible parameters 

  and  , which could be related to group actions upon these parameters. In the quantum

solution, one ends up with a group acting upon the accessible parameters    and 

. In general, in applied statistics, it is crucial that the parameter space is not too large.

From an applied point of view, symmetries based upon accessible parameters should be preferred

when compared to rather abstract symmetries based upon inaccessible parameters. Therefore, even

though the arguments are more complicated, I will here prefer the quantum probability solution.

Related arguments are discussed more generally in the next subsections.

3.2. Model reduction under symmetry

In applied statistics, it is crucial that the parameter space is not too large. For instance, in regression

problems, when the number of regression variables    is larger than the number of units  , ordinary

least squares regression runs into problems. Let, in general,   be the set of all thinkable parameters

that a statistician   wants to include in his model, and, for the sake of the argument, let us assume

that there exists a group   acting on the space  .

The total parameter   may, in many cases, be so large that it cannot be estimated from the available

data, using some estimation principle like unbiased estimation or equivariant estimation. Here, I will

concentrate on the last estimation principle.

In general, let a group   act upon the space   over which a parameter   varies. In many cases, this

group may be induced by a group    acting upon the sample space  , based upon some statistical

model  :

This introduces a homomorphism from    to  : If    is mapped to    and    is mapped to  , then 

 is mapped to  .

π = P (sign( ) = +1|sign( ) = +1) = (1 + a ⋅ b) = .ζb ζa
1

2

1

3

, ,μa μb μc μd

= sign( )θa ζa

= sign( )θb ζb

p n

ϕ

C

M Ωϕ

ϕ

G Ωθ θ

Ĝ Ω

(x)P θ

( x) = (x)forallx ∈ Ω.P gθ ĝ P θ (26)

Ĝ G ĝ1 g1 ĝ2 g2

ĝ1 ĝ2 g1g2
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An estimator   of the parameter   is said to be equivariant if   is the estimator of   whenever 

 is mapped to  . There can be many arguments given to concentrate upon equivariant estimators.

Under very weak conditions, there exists a right-invariant measure   on   under the group  : First,

a right-invariant Haar measure    is de�ned on the group    itself by    for all 

 and  . Then   is said to be right-invariant if   with   for

some  . Left-invariant measures have a similar de�nition. In many cases, the left-invariant measure

is equal to the right-invariant measure,

This introduces an invariant measure on every orbit of the group  : An orbit is the set   for some 

. The space    is always divided into a disjoint set of orbits. If    and    belong to the same

orbit, this orbit can equivalently be characterized by either   or  . If there is only one orbit of 

 in  , the group is said to be transitive.

An objective Bayes estimator with respect to   is an estimator that uses the right-invariant measure

as a prior. In Helland[42], 12 di�erent reasons for using such a prior are given; among other things, it

can be proved that credibility sets with some credibility probability are equal to frequentist con�dence

sets with the same con�dence probability.

Turning to quantum theory, it is important for the foundation that there exists a transitive group on

the variable space (see point (i) in Theorem 1 of Subsection 2.2). If   should not be transitive, we can

introduce the following model reduction principle:

Principle 1. Reduce   to an orbit of the group  . Choose the orbit such that a subparameter   of interest is

permissible.

In Helland[44]  and Helland[4], this principle is used on the electron spin, a qubit. It is shown that a

classical model of spin can be reduced to a quantum model using this principle. In Helland et al.[45],

the same principle was used to motivate the model reduction in multiple regression, leading to the

partial least squares regression model.

Go back to the example in Subsection 3.1. By a change of notation, let    be the group given by

re�ections of three-dimensional unit vectors    together with rotations around  . This group is

intransitive, and its orbits are found by �xing some  . This corresponds to what was called   there,

and a group reduction gives the quantum-mechanical interpretation of the example.

More statistical theory related to transitive and intransitive groups de�ned on the parameter space

and the sample space is given in Helland[42]. It is of independent interest that the statistical model

(x)θ̂ θ ( x)θ̂ ĝ gθ

ĝ g

μ Ωθ G

ν G ν(D ⋅ g) = ν(D)

D ⊆ G g ∈ G μ μ(A) = ν( )GA = {g : g ∈ A}GA θ0

θ0

G {g }θ0

∈θ0 Ωθ Ωθ θ1 θ2

{g }θ1 {g }θ2
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Ωθ G ζ
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corresponding to partial least squares regression can be motivated by model reduction to orbits of a

certain group de�ned on the parameter space[46][47].

3.3. Partial least squares regression and model reduction

Partial least squares regression is an algorithmic method for estimating the regression parameter  ,

intended for the case of collinearity. It was connected to a statistical model in Helland[48]. Brie�y, this

model can be formulated as follows: Let   be the covariance matrix of the   explanatory variables 

, assumed to be random, and let    be the eigenvectors of  . Decompose the

regression vector   of the predictor variable   upon   as

and then introduce the following hypothesis for some  :

There are two mechanisms by which the number of terms can be reduced: 1) Some terms are really

zero; 2) There are coinciding eigenvalues of  , and then the eigenvectors may be rotated in such a

way that there is only one in the relevant eigenspace that is along  .

Then the following is proved in Helland[48]: The parametric version of the partial least squares

regression algorithm stops after    steps under the hypothesis  . Using the resulting partial least

squares regression for prediction seems to give a good solution to the collinearity problem.

In Helland[47], this is studied further. Among other results, one can prove the following: (Theorem 5

in op. cit.) Using a least squares criterion, the partial least squares model under certain technical

conditions gives the best possible model reduction for linear prediction.

In discussing this and related results, it turns out to be of some relevance to use results from the

foundation of quantum theory, in particular Theorem 1 from Subsection 2.2. Speci�cally, let 

 be the full parameter of the model, where  , let   be

the model reduced    under the hypothesis  , and let    be any other  -parametric model

reduction of  . Then it is shown in Helland[47] that the assumptions of Theorem 1 are satis�ed.

Using this, it is shown: The technical condition ensuring that the PLS regression model ( ) is better

than the arbitrary reduction   holds if a statistician   has a non-informative prior on  .

β

Σx p

; i = 1, … ,pxi { }di Σx

β y x = ( , … , )x1 xp

β = ,∑
i=1

p

γidi (27)

m < p

: There are exactly m nonzero terms in (27).Hm

Σx

β

m Hm

ϕ = (β, , )Σx σ2 = V ar(y| ; i = 1, … ,p)σ2 xi θ = θ(ϕ)

β Hm η = η(ϕ) m

β

θ

η B η
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Furthermore, assume Postulate 5 and Postulate 6. Then the general version of the Born formula holds.

In Postulate 6, we may specify the superior actor   to represent general scienti�c ideals connected to

any statistician making the statistical analysis. Note that the probabilities here must be interpreted as

probabilities as calculated by  , that is, probabilities assuming general scienti�c ideals.

3.4. Continuous parameters and complementarity

The discussion in this subsection must be considered tentative. There are mathematical issues that

should be resolved.

In the traditional approach to quantum mechanics, the Hilbert space is directly determined by the

variable considered. If this is the position of a particle, say, the Hilbert space is  , where   is

Lebesgue measure, and the operator corresponding to position   is just a multiplication by  .

Similarly, for a continuous statistical parameter    that varies over the whole space, and where the

relevant group is the translation group, we can take the Hilbert space to be  , and take the

operator   corresponding to   to be multiplication of   by  .

This also determines the operator for any  : By the spectral theorem, we have 

, which gives  . This reduces to multiplication with    in this

case.

Complementarity is a notion due to Niels Bohr, who called the position and momentum of a particle

complementary variables. In my theory, in a statistical context, two parameters are called

complementary if they are really di�erent and both are maximal accessible variables. By Theorem 1,

the existence of two such complementary parameters is the essential basis for the development of

quantum phenomena in a statistical setting.

Subsection 3.1 gave a setting where two discrete complementary parameters implied quantum

probability as a possible prior. For continuous parameters, the theory is more complicated. The point

is that the Hilbert space    is not separable and does not have a countable basis. On many

occasions, also in this article, it may nevertheless be useful to think in terms of a �nite set of basis

vectors. This corresponds to parameters    and    taking a �nite number of values. Continuous

parameters may be approximated by such �nite-valued parameters. For mathematicians, a direct

strictly precise theory is given in Hall[27].

Example

D

D
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x x
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(R,dμ)L2

Aθ θ f ∈ (R,dμ)L2 θ
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= λdAθ ∫
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θ EAθ
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Consider a modi�ed version of the example from Subsection 3.1. Assume that in the rash-medicine

illustration, we really are able to measure the di�erence in improvement on the sides of each patient’s

back, and thus in one set of measurements get an estimate of    and in

another set of measurements get an estimate of  . These are contrasts, but

not orthogonal contrasts.

We are interested in the contrast  , but relative to a particular population for which we have

information about the contrast  . This information is obtained from a previous experiment that has

been analyzed by either frequentist or Bayesian methods. In the �rst case, we have obtained a

con�dence distribution of the contrast  , and in the last case, a posterior probability distribution. In

either case, we possess now a probability density   for  . We will use this to �nd a prior for the

experiment on  , relevant for the resulting population.

Now we use Theorem 1. The assumptions may be shown to be satis�ed, see below, with  , 

  and    equal to the translation group on  , and    equal to the translation group on 

. The result is two symmetric operators,    corresponding to    and 

 corresponding to  . We can take   to be of the simple multiplication form. The operators will be

self-adjoint. Using the spectral theorem for   ( ) and the probability density  , we

�nd a density operator  , and the spectral theorem for   ( ) gives a

projection operator   for each Borel set  . Then, from Born’s formula, a prior for   is

given by

It is crucial for this example that both the parameters    and    can be seen to be maximal as

accessible parameters; see De�nition 1 of Subsection 2.2. They belong to di�erent experiments and

must be maximal in these experiments: For instance, any parameter   for the �rst experiment such

that   is a function of   which is not bijective must be inaccessible, not possible to estimate from the

available data. This is a rather strong requirement.

One such potential    will be the vector  , and another will be the vector 

. These must be inaccessible; it is only possible to measure contrasts/ di�erences

between sides of the back. (This can be seen as a somewhat strange requirement, but it is here crucial

for my arguments.) Furthermore, one must argue that priors should only depend upon accessible

parameters. Then, a quantum prior determined by (28) can be motivated for the second experiment.

= − ( + + )ζa μa
1
3
μb μc μd

= − ( + + )ζb μb
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Note that in this example, if we take the basic inaccessible variable as  , and   as

the translation group acting on  , then the contrast function    is not

permissible with respect to  . (See De�nition 2 of Subsection 3.1.) The group    acting on    is not

induced by the full group  .

In the discussion above, I had assumed that we really had knowledge about   for each unit, so that

this was available for the selection of units. For the more realistic case, see below.

The essence of this example can be generalized. Assume a statistical model    with density 

  with some large parameter space  . Let    be a group acting upon  , and let    be

some focus parameter. Assume that   is maximally accessible in the given situation, that is, 1) It can be

estimated using some estimation principle; 2) If    for a non-invertible function  , then the

parameter    cannot be estimated. Assume that there is a transitive group    with a trivial isotropy

group acting on  . Consider some experimental units, and make an experiment in accordance with

the model on these units. This gives a Bayesian posterior or a con�dence distribution (more generally,

a �ducial distribution[49]) with density  . In the Bayesian case, it is natural, if possible, to use as a

prior the invariant measure associated with the group  .

Then do a new experiment on a selected set of units, selected according to the probability distribution 

. Let    be another maximal accessible parameter, a focus parameter on the second

experiment, and essentially di�erent from  . Then, according to Theorem 1, there exists a Hilbert

space  , and two symmetric operators    and    in  , one associated with    and one with  . Let 

  be the spectral decomposition of  , and de�ne  . Then it can be

argued that a prior    for the second experiment should be chosen such that  ,

where    is the projection operator de�ned by  , with    chosen such that 

.

All this assumes that units can be chosen by values of   that are really known. If not, we de�ne  ,

where    is the chosen estimator of  , and we must replace    by  , where 

  with    being the density in the distribution of the estimator, assumed to only

depend upon  , and where    is found from the spectral distribution of  .

Units are then chosen from data   of the �rst experiment according to the density  .

Similar discussions can, in principle, be made in very complicated statistical models. For many such

models, the groups   and   of Theorem 1 can be de�ned. An example from the design of experiments

ϕ = ( , , , )μa μb μc μd M

ϕ θ = = − ( + + )ζb μb
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M G θ
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where such groups can be de�ned is the model for randomized experiments discussed by Bailey[50].

But to discuss examples where links to quantum theory can be found, one has to have a basic

inaccessible parameter  , and two really di�erent maximal accessible (complementary) parameters.

An even more general class of statistical models is discussed by McCullagh[51] using category theory.

Group theory can be seen as a special case of category theory, and using this, examples with groups 

  and    can be found. But again, it is a challenge to �nd applied examples with two di�erent

maximal accessible parameters.

It is obvious that more research in this area is required.

3.5. Decisions

For the purpose of this subsection, it is crucial that my foundation of quantum theory is also valid

when relevant accessible variables are macroscopic. In the language of Khennikov[18][19], I also want

to include quantum-like models, which are applicable in biology, economics, psychology, and many

other disciplines. Quantum structure may be ubiquitous. A special case is quantum cognition

theory[41], which includes quantum decision theory.

The traditional tool for decision-making in statistics is to minimize the expected value of a loss

function. However, there are many decisions that are made in a statistical analysis, which cannot be

seen in this way: The choice of model, the choice of method in the analysis, the choice of variables or

set of variables to include in a multiple regression setting, or the choice to report or not report a  -

value. These are examples of decisions made by a statistician or by a communicating group of

statisticians, decisions that sometimes can be modeled by quantum decision theory[52].

Decisions can be made on the basis of knowledge, on the basis of beliefs, or both. They are always

made in a concrete context. Single persons can make decisions, and joint decisions can be made by a

group of communicating persons.

Consider a person    or a group of persons in some decision situation. Say that he or she or they

has/have the choice between a �nite set of actions  . Relative to this situation, we can de�ne a

�nite-valued decision variable  , taking the di�erent values  , such that    corresponds to

the action    . If   (or the group) really is (are) able to make a decision here and carry out

the actions, we say that   is an accessible variable. As discussed for the general situation in Subsection

ϕ

G M

p

C

, … ,a1 ar

θ 1, … , r θ = i

ai (i = 1, … , r) C

θ
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2.2, the variable   is in relation to a person   or to the group of persons; in fact, here   belongs to the

mind of   or to the joint minds of the group.

This must be made precise. A decision problem is said to be maximal if   (or the group) is (are) just

able to make his (their) mind(s) with respect to this decision; if the problem is made slightly more

complicated, he (they) is (are) not able to make a decision. Let two (completely) di�erent maximal

decision variables be    and  , where    corresponds to the action    , and 

 corresponds to the action    . Then, by the theory of Subsection 2.2, we can model

the situation by using quantum theory.

Note that both    and    may be vector variables. Say that  , where each    is a simpler

decision variable. Then this corresponds to a situation where the actor(s), in addition to the di�cult

decision given by  , is (are) faced with   more simple decisions. Such a situation is not uncommon. In

each situation where we shall make a di�cult decision, we will be in a context where also a number of

trivial decisions may have to be made just in order to survive and to function well in the given context.

For many people, these trivial decisions occupy a large portion of their mind, such a large part that the

vector decision variable    also must be considered to be maximal. The assumption that both    and 

 take the same number of values  , can be satis�ed by arti�cially adding some actions to one of the

decision problems.

It is crucial that both    and    can be seen as functions of some large inaccessible variable  . The

solution here depends on which philosophy one has. One psychological theory might be that our more

automatic decisions depend upon our culture and upbringing, which, modeled in some way, can be

seen as a part of  . In addition,   must contain something that may be called our free will.

The simple model above does not cover all situations. Sometimes we have a choice between an in�nite

number of possibilities, and sometimes the outer context changes during the decision process.

Nevertheless, the simple model is a good starting point.

It is well known that our minds may be limited, for instance, when faced with di�cult decisions. I will

�rst mention a side result in this direction from the present development.

In Helland[7], Theorem 2 says essentially: Imagine a person   which, in some context, has two related

maximal accessible related variables    and    in his mind. Impose a speci�c symmetry assumption.

Then   cannot simultaneously have in mind any other maximal accessible variable which is related to 

, but not related to  . It was claimed in Helland[7]  that the violation of a famous inequality by

θ C θ

C

C

θ η θ = i ai (i = 1, … , r)

η = j bj (j = 1, … , r)
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η n

θ θ

η r

θ η ϕ

ϕ ϕ

C

θ η

C

θ η

qeios.com doi.org/10.32388/4EGWDR 29

https://www.qeios.com/
https://doi.org/10.32388/4EGWDR


practical Bell experiments can be understood on the basis of this theorem. See also Helland (2023e),

where a corresponding theorem is formulated without any symmetry assumption.

Note that this result has the quali�cation ‘at the same time’ and indicates a speci�c restriction to two

maximal variables. But the human mind is very �exible. Taking time into account, we can think of very

many variables, even ones that are not related.

For the present article, however, the direct results from Subsection 2.2 are equally important. Consider

again a decision situation, and assume the simple model of the present subsection. In particular, let 

 at the same time be confronted with at least two di�erent maximal related decision processes. Then

the following hold:

- Each decision variable    is associated with a self-adjoint operator  , whose eigenvalues are the

possible values of  .

The decision process is maximal if and only if each eigenvalue of the corresponding operator is

single.

In the maximal case, the eigenvectors of the operator can be given interpretations: They are

coupled to one particular decision process and a speci�c choice in this decision process: In concrete

terms, the eigenvectors    are in one-to-one correspondence with 1) some maximal accessible

decision variable  , and 2) a speci�c value   of  . In other words, the possible eigenvectors are in

one-to-one correspondence with 1) the question ‘Which decision process?’ and 2) ‘Which action

did this decision process lead to?’.

In the general case, the eigenspaces of the operator have a similar interpretation.

This can be taken as a starting point of quantum decision theory, but to develop this theory further, we

need to be able to calculate probabilities for the various decisions. For this, I refer to the discussion of

the Born rule in Subsection 2.3. In particular, note that the probabilities are assumed to be calculated

in a way that can be associated with some (abstract or concrete) superior being, assumed to be

perfectly rational. The interpretation of this point also depends on our philosophy. My own view is

discussed in Helland[53].

3.6. Machine Learning

The literature on Arti�cial Intelligence, in particular Machine Learning, has exploded in recent years.

For the purpose of this article, I will focus on a simple neural network with one hidden layer and a

C

η Aη

η

u

η u η

qeios.com doi.org/10.32388/4EGWDR 30

https://www.qeios.com/
https://doi.org/10.32388/4EGWDR


single output, as described from a statistical point of view in Efron and Hastie[54]. Here, assume 

  predictors (features)    which for simplicity are centered on zero expectation, 

 hidden units   (  and output  , where   and   are non-

linear, monotonically increasing functions satisfying    and  , and    and    are

the parameters of the model, the weights. The   and   are observed on   units, and our task - the

learning of the network - is to estimate the weights. In many applications,    is very large, and

procedures such as backpropagation are used. I will here also consider the case where   is moderate,

perhaps smaller than  . Then a model reduction may be called for.

Before discussing this, I take a brief look at some of the recent literature concerning links between

machine learning and quantum theory.

In their abstract, Dunjko and Briegel[3]  mention 3 points: 1) Quantum computing is �nding vital

applications in providing speed-ups for machine learning problems. 2) Machine learning may become

instrumental in advanced quantum technologies. 3) One can consider quantum generalizations of

learning and arti�cial intelligence concepts.

Op. cit. is a review article with many references to recent papers. Quantum models of relevance to

machine learning are discussed in detail. Historically, the �rst such model was the quantum Turing

machine[55], but there are many more modern models. In general, machine learning can be divided

into supervised and unsupervised learning. In supervised learning, we start with a training set 

, where   is a vector, and the task is to predict   from   on a new unit, so multiple

regression can be seen as a special case of machine learning. Quantum information is a more general

concept, where data are replaced by quantum states. This is a large area with independent literature.

Again, specializing to the multiple regression case, one can mention works by Wiebe et al.[56],

Wang[57], and Schuld et al.[58].

In two recent articles, Wu et al.[59] and Zhu et al[60] develop network models that can simultaneously

predict multiple quantum properties and the behavior of an unknown quantum process.

Quantum foundations seek to understand and develop the mathematical and conceptual basis for

quantum theory. Bharti et al.[61] survey representative works at the interface of machine learning and

quantum foundations. Special topics considered are entanglement, Bell-type inequalities, and

contextuality. It is proposed that neural networks can be seen as ‘hidden’ variable models for quantum

systems.
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Go back to the simple model introduced in the �rst paragraph of this Section. We are interested in

model reduction. The whole neural net is usually learned by gradient descent[54][62]. For the purpose

of model reduction, I will concentrate on a single perceptron

I now, as a model, assume that the features    have a random distribution with

expectation   and covariance matrix  , assumed to be positive de�nite. Expand   in

terms of eigenvectors   of 

Then, completely in analogy with partial least squares regression (Subsection 3.3), introduce the

model reduction ( )

The theory of Helland[47]  carries over. We can represent    with the parameter 

, which is a function of  . Assume any other model reduction   to 

  terms. Assume a non-informative probability distribution of  . Then, it can be proved that by a

least squares criterion,   gives a better model reduction than  .

In proving this in op. cit., essential use was made of a joint quantum model for   and  . There, and

here, the assumptions of Theorem 1 (Subsection 2.2) can be shown to be satis�ed. The group   acting

on    is given by orthogonal transformations of the  ’s and    . It is

convenient to let the group    on    be de�ned by orthogonal transformations of all the  ’s 

 and by  . Then the orbits of the group   are given by   and the hypothesis 

. (Theorem 2 in Helland[47]). This is the reason why I have chosen the constraint  .

To carry out the model reduction for the perceptron in theory, and also in practice, the whole

literature on partial least squares can be taken over if we base ourselves on    and 

. The theoretical population algorithm is given in Appendix 1 of Helland[47].

In practice, we have data on    copies of  , and in the algorithm, theoretical variances and

covariances must be replaced by estimated variances and covariances. The size   can be determined

by cross-validation.
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x = ( , … , )x1 xp

0 Σ w = ( , … , )w1 wp

di Σ

w = .∑
i=1

p

γidi (30)

θm

: There are exactly m nonzero terms in (30).Hm

Hm

= ( , … , )θm γ1d1 γmdm ϕ = (w, Σ) ηm

m ηm

θm ηm

θm ηm

G

θ dj ↦γj αjγj (j = 1, 2, … ,m)

M ϕ di

(i = 1, … ,p) ↦ g( )γi αiγi M m

Hm g(0) = 0

x

y = (a) [= ]g−1 ∑p
j=1wjxj

n (x,y)

m
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Then all this should be incorporated into the algorithm for the whole neural network. Look again at

the simple model de�ned at the beginning of this Subsection. We are given data    on    units,

where all these variables are centered by their means. We use a feedforward procedure, which means

that we start the estimation by �rst looking at the transition from the  -data to the variables  , then

from    to  . The now well-known procedures here can be found in the machine learning literature.

Each of these steps must now be replaced by a series of steps of the type described in the previous

paragraph. I omit the details here, since the purpose of the present article is to introduce ideas.

A model reduction of this kind can be expected to give an advantage when there is not too much data (

) compared to the number   of variables, or perhaps more accurately, as shown in the partial least

case by recent asymptotics by Cook and Forzani[63], in the abundant case where many predictors 

 contribute information about the response  , often correlated information.

4. Concluding remarks

The social scientist Ralph D. Stacey once said: ‘Culture is a set of attitudes, opinions and convictions

that a group of humans share, about how one shall behave against each other, how things shall be

evaluated and done, which questions that are important and which answers that are accepted. The

most important elements of culture are unconscious, and cannot be forced upon us from the outside.’

From this perspective, statistical theory and quantum theory, as they have functioned up to now, may

be seen as connected to separate cultures. It is hoped that this article may help to bridge the gap

between these two cultures.

The investigations here started with Helland[64], where mathematical models in various sciences were

discussed from several points of view. With the present article, this discussion can be said to lead to

concrete results.

Of course, there are di�erences between models in quantum theory on the one side and statistically

related models on the other side. It is important that quantum models are always seen in a context,

and that they often are related to an observer or a group of communicating observers. Contextual

quantum measurements have been discussed from several points of view by Khrennikov[65]. By

contrast, statistical models are more universal. But this does not contradict the fact that quantum-like

models are ubiquitous, cf. Khrennikov[18][19].

(x, z) n

x al

al z

n p

x z
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