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1. Independent researcher

We present a symmetry-first account of Born weights for finite-dimensional quantum systems that

does not take probabilistic postulates as primitive. The core observation is geometric: pure states are

rays in  , hence the operational state space is complex projective space  , equipped with its

natural   action. We show that this symmetry fixes, up to normalisation, a unique  -

invariant Borel probability measure on  , namely the Fubini–Study measure  [1] (Ashtekar &

Schilling 1999). Symmetry alone, however, does not determine how weights attach to specific outcome

projectors. To close this gap without appealing to stochastic axioms, we introduce minimal

operational consistency requirements for a probability assignment   over projectors:

normalisation on orthonormal resolutions, additivity on orthogonal projectors, noncontextuality, and

unitary covariance. For   these assumptions imply the quadratic form   by a

Gleason-class theorem[2], and the qubit case is handled by a standard strengthening such as extension

to POVMs (Busch 2003). Finally, combining these Born weights with deterministic volume-typicality

results from our companion work (Paper A) yields observed outcome frequencies as long-run volume

ratios under measure-preserving dynamics. The result is a compact, finite-dimensional foundation in

which Born statistics arise from symmetry plus operational consistency, with empirical content

residing in the typicality and invariance assumptions.

Corresponding author: Zayn Blore, zayn.blore@ou.ac.uk

1. Introduction

In standard quantum mechanics, the Born rule is introduced as a postulate: for a measurement with

orthonormal outcome rays  , the probability of outcome   for a pure state   is  . Although

empirically successful, the Born rule is usually not derived from more primitive structural requirements.

Qeios

C
n CP n−1

SU(n) SU(n)

CP n−1 μFS

p(P ∣ ψ)

n ≥ 3 p(P ∣ ψ) = ⟨ψ|P |ψ⟩

{| ⟩}ϕi i |ψ⟩ | ⟨ |ψ⟩ |ϕi
2

qeios.com doi.org/10.32388/4EN2OA.2 1

mailto:zayn.blore@ou.ac.uk
https://www.qeios.com/
https://doi.org/10.32388/4EN2OA.2


Why should long-run outcome frequencies match squared overlaps, and why does the same functional

form arise across disparate quantum systems?

This paper gives a symmetry-first explanation in the finite-dimensional setting. We consider a complex

Hilbert space    and focus on pure states as rays, so that the operational pure-state space is

complex projective space  . The projective space carries a natural    action, reflecting the

absence of any preferred basis in the operational description of preparations and measurements.

Our first result is geometric. We identify the epistemic measure on    by imposing a single

symmetry requirement: invariance under the   action. Under mild regularity conditions, this fixes a

unique  -invariant Borel probability measure on  , namely the Fubini–Study measure  , up

to normalisation[1]  (Ashtekar & Schilling 1999). This step is purely structural and does not assume

probabilistic postulates, stochastic dynamics, hidden variables, or interpretive additions. The role of

complex rescaling    is to define rays and hence the projective state space. It is not an additional

symmetry acting nontrivially on  .

Symmetry alone does not determine how weights attach to particular outcome projectors. To close this

gap while remaining within an operational framework, we introduce standard consistency requirements

for a probability assignment   on projectors  : normalisation on orthonormal resolutions of the

identity, additivity on orthogonal projectors, noncontextuality, and unitary covariance. For  , these

assumptions imply the quadratic form    by a Gleason-class theorem[2]. The qubit

case    is handled by a standard strengthening such as extension from projective measurements to

POVMs (Busch 2003). Taken together, the symmetry-fixed projective geometry and these operational

constraints single out the Born weights for finite-dimensional systems.

Finally, we connect weights to empirical frequencies using deterministic volume-typicality results

developed in the companion work (Paper A). In that framework, the system evolves deterministically

under a measure-preserving flow on the underlying state space, and outcome frequencies arise as long-

run volume ratios for typical initial microstates. Paper B provides the missing link that identifies the

relevant operational weights with the Born form, thereby explaining why the volume-based frequencies

match squared overlaps in standard quantum mechanics.

We work in finite    because every laboratory apparatus resolves only a finite set of distinguishable

outcomes, yielding an effective finite-dimensional operational description. Appendix  B sketches, at a
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heuristic level, how parts of the symmetry argument may extend under inductive limits; no infinite-

dimensional uniqueness theorem is claimed in the main text.

The paper is structured as follows. Section 2 fixes the  -invariant measure on   and records

the relevant geometric consequences. Section  3 states the operational consistency assumptions and

derives the Born weights via a Gleason-class argument, including the   case. Section 4 links these

weights to observed frequencies using the deterministic typicality framework of Paper  A. Section  5

discusses scope, limitations, and falsifiable assumptions, and outlines potential empirical tests.

1.1. Framework Overview

We work with a finite-dimensional complex Hilbert space  . Pure states are identified with rays,

so the operational pure-state space is the complex projective manifold  . A measurement context is

represented by a set of mutually orthogonal projectors   with  , corresponding to a finite set

of distinguishable outcomes.

Our objective is to explain why outcome weights take the Born form without introducing probabilistic

postulates as primitives. The strategy has two components.

(i) Symmetry fixes the epistemic measure on state space:

The unitary group acts transitively on  , expressing the absence of any preferred basis in the

operational description. We impose the requirement that the epistemic measure on    is invariant

under this action. Under mild regularity assumptions, this identifies a unique  -invariant Borel

probability measure on  , namely the Fubini–Study measure  , up to normalisation[1] (Ashtekar

& Schilling 1999). This step is purely geometric. Complex rescaling   plays only the role of defining

rays and hence the projective space.

(ii) Operational consistency fixes the functional form of outcome weights:

Symmetry and projective geometry do not, by themselves, determine how weights attach to particular

outcome projectors  . To obtain a unique weight rule, we introduce a probability assignment

defined for projectors    and rays  , satisfying standard operational consistency

requirements: (a) normalisation on each orthogonal resolution of the identity, (b) additivity on
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orthogonal projectors, (c) noncontextuality, and (d) unitary covariance. For  , a Gleason-class

theorem implies that these conditions force the quadratic form

[2]. The qubit case   is treated by a standard strengthening such as extending the assignment from

projective measurements to POVMs (Busch 2003).

The present paper determines the operational weights. To connect weights to observed frequencies in

repeated trials, we rely on deterministic volume-typicality results established in the companion work

(Paper A). There, the underlying microstate evolves under a measure-preserving flow, and long-run

frequencies coincide with volume ratios for typical initial conditions. Combining that typicality principle

with the uniquely fixed weights above yields the Born statistics for finite-dimensional quantum systems,

conditional on the stated symmetry and operational assumptions.

In summary, the contribution of this paper is to separate the Born rule problem into a geometric part,

which fixes the natural invariant measure on  , and an operational part, which fixes the quadratic

weight rule. Paper A then supplies the deterministic typicality link from weights to observed frequencies.

1.2. Postulates addressed

Standard presentations of finite-dimensional quantum mechanics organise the formalism into a small

set of postulates. In this setting, these are commonly stated as: (i) pure states are represented by rays in a

complex Hilbert space, (ii) measurement contexts are represented by orthogonal resolutions of the

identity  , and (iii) outcome weights are given by the Born rule. The present work does not seek to

replace the kinematic architecture of finite-dimensional quantum theory. Rather, it targets the specific

question of why the Born weights take the quadratic form.

Accordingly, we treat the Hilbert-space and projective-state-space structure as background. We also

assume that operational statistics are covariant under changes of basis, expressed by the natural 

  action on  . Within this setting, the postulate we aim to eliminate as primitive is the

probability postulate.

More precisely, this paper addresses the following components.

Given a measurement context represented by a set of mutually orthogonal projectors    with 

, the Born rule assigns

n ≥ 3

p(P ∣ ψ) = ⟨ψ|P |ψ⟩ (2)
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Our aim is to show that this quadratic functional form is fixed by symmetry of the projective state space

together with standard operational consistency requirements for probability assignments.

The map from weights to observed long-run frequencies in repeated trials is not assumed as an

independent stochastic axiom. Instead, we adopt the deterministic typicality framework developed in the

companion work (Paper A), in which a measure-preserving flow on the underlying microstate space

yields empirical frequencies as typical volume ratios. The present paper supplies the missing

identification of the operational weights with the Born form; Paper A supplies the frequency

interpretation.

At no point do we assume irreducible randomness, collapse dynamics, or hidden-variable stochasticity.

We also do not require interpretive commitments about wavefunction ontology. The argument is finite-

dimensional and does not claim to resolve issues that arise uniquely in infinite-dimensional settings,

relativistic quantum field theory, or thermodynamic limits.

In summary, the logical role of the present work is to replace the Born probability postulate with a

derivation from symmetry and operational consistency, while leaving the remaining finite-dimensional

kinematics intact, and to connect those derived weights to empirical frequencies via the deterministic

typicality results of Paper A.

Standard postulate Status Location

1. Measurement outcomes are stochastic and replaced:

Outcomes arise from deterministic branching structure

[3]
this

work

2. Probability (interpretive rule)
Replaced: Frequencies emerge from

volume ratios in deterministic geometry

[3]

2. Symmetry and the invariant measure

This section fixes the natural measure on the operational pure-state space. The key principle is basis-

independence: if a preparation is described only up to a choice of coordinates in  , then the

statistical weight assigned to sets of rays should not depend on how we label the underlying degrees of

freedom. Mathematically, this is expressed as invariance under the natural   action on  .

H = C
n

SU(n) CP n−1
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We proceed in two steps. First, we state the symmetry requirement precisely as invariance of a Borel

probability measure under the   action. Second, we record the standard uniqueness result: there is a

unique  -invariant Borel probability measure on  , namely the Fubini–Study measure  .

This provides the geometric input needed for the subsequent derivation of Born weights, where

operational consistency requirements will fix the functional dependence of outcome probabilities on

projectors and states.

2.1. State Space, Evolution, and Outcome Regions

Let   be a complex Hilbert space with inner product  . We restrict attention to pure states. A

nonzero vector   represents the same physical pure state as   for any  , so pure states

are identified with rays. The resulting operational pure-state space is complex projective space

Equivalently, one may work on the unit sphere    and quotient by global

phase  , yielding

We write   for the ray containing  , and denote by

the canonical projection map.

A measurement context is represented by an orthogonal resolution of the identity   on  , where 

  and  . When convenient, we also refer to a corresponding orthonormal basis of

outcome rays   in the nondegenerate case, with  .

Our central geometric object is a Borel probability measure    on  , interpreted as the epistemic

measure on pure states. For a measurable set  ,    denotes its weight. In the next

subsection we impose symmetry requirements that single out   uniquely as the Fubini–Study measure.

2.2. SU(n) covariance and measure invariance

The special unitary group    acts on    by  , preserving the inner product. This

induces a well-defined action on rays,

SU(n)
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since    for all  . We interpret this action as expressing basis-independence of the

operational description: relabelling the coordinates of   by a unitary transformation should not change

the statistical weights assigned to sets of pure states.

Let   denote the Borel  -algebra on  . A Borel probability measure   on   is called 

-invariant if, for every measurable set   and every  ,

where  . This invariance condition is the sole symmetry requirement used to fix

the measure on the operational pure-state space.

Operational basis-independence is therefore implemented as  -invariance of  . This reduces the

measure-selection problem to the classification of  -invariant Borel probability measures on 

. In the next subsection we use the standard uniqueness result to conclude that   must coincide

with  .

2.3. Worked Example: qubit state space and the invariant measure

We illustrate the invariance requirement of Section 2.1 in the simplest nontrivial case,  . For a qubit,

the operational pure-state space is

the Bloch sphere. Concretely, each ray    corresponds to a unique Bloch vector    with 

, defined by  , where   are the Pauli matrices.

The action of   on rays,  , induces an action on Bloch vectors by spatial rotations. More

precisely, the adjoint action   corresponds to   for some  , and every rotation

arises from two unitaries  . Thus the invariance condition

is equivalent, under the identification  , to invariance of the corresponding measure under all

rotations of the sphere.

Rotation invariance fixes the measure uniquely. Let   be the pushforward of   under the identification 

. If   is a Borel probability measure on   invariant under  , then for any two spherical

caps of equal solid angle the invariance implies they have equal  -measure. By standard arguments, this

forces   to coincide with the normalised area measure on  , hence

U(λψ) = λ(Uψ) λ ∈ C
∗

H

B(C )P n−1 σ CP n−1 μ CP n−1
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where   is the solid-angle element. Under the identification  , this normalised area measure

is precisely the Fubini–Study measure   on  .

It is useful to visualise how measurement contexts transform under this symmetry. For the standard

qubit measurement  , the outcome rays correspond to the north and south

poles of the Bloch sphere. Applying    rotates this measurement axis and maps the pair of

outcome rays accordingly. The invariance requirement asserts that the statistical weight assigned by   to

any set of rays is unchanged under such transformations. In higher dimensions, the same basis-

independence principle is expressed by  -invariance on   and leads to the unique invariant

measure  .

2.4. General Properties of Volume-Based Outcome Weights

Section 2.3 illustrates the symmetry principle used in this paper: basis-independence is implemented as

invariance of a Borel probability measure on    under the natural    action. This section

introduces the volume-based weights that will be used to connect the symmetry-fixed state-space

structure to empirical frequencies, following the deterministic typicality framework developed in the

companion work (Paper A).

In that framework, a measurement context induces a measurable partition    of an outcome-

relevant region    in the underlying microstate space. Given a reference measure    on that space, the

corresponding outcome weights are defined by the normalised volumes

The role of the present paper is to determine the functional form of these operational weights for finite-

dimensional quantum measurements from symmetry and operational consistency requirements. The

role of Paper A is to justify the identification of such weights with observed long-run frequencies under

repeated macroscopic preparations.

More precisely, volume-typicality results imply that if the underlying dynamics preserves    and

preparations sample typical initial conditions within  , then the relative volumes    coincide with

outcome frequencies in the limit of many trials[3]. In this sense, empirical frequency data probe the

d (r) = dΩ,μ
∼ 1

4π
(11)

dΩ C ≅P 1 S 2

μFS CP 1
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m
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assumptions of typicality and measure preservation, while the present paper fixes the operational weight

rule to which those frequencies are compared.

2.5. Robustness properties of volume-based weights

We collect several basic invariance and robustness properties of the volume-based outcome weights

defined in Section 2.4. Let   denote the underlying microstate space, equipped with a  -algebra 

 and a reference measure  . Let   be an outcome-relevant region and let   be a measurable

partition of   with  . The weights are

Invariance under measure-preserving reparameterisation:

If    is a measurable bijection whose pushforward preserves  , in the sense that 

 for all  , then

and hence the weights are unchanged. This expresses coordinate-independence: the predictions depend

only on the measure-class and the partition, not on an arbitrary choice of parametrisation of  .

Dependence on the observable partition:

The regions    depend on the measurement context, which can be represented abstractly by a

measurable map    to a finite outcome set  , with  . Different coarse-

grainings generally yield different partitions and therefore different weights. However, if two

measurement contexts are related by a symmetry    that preserves  , and the preparation is

transformed accordingly, then the induced partitions have equal weights:

This formalises the requirement that physically equivalent measurements yield the same statistical

predictions.

(Σ,F ,ν) σ

F ν ∈ FΩ0 { }Ωi
m
i=1

Ω0 =⨆i Ωi Ω0

= .wi

ν( )Ωi

ν( )Ω0
(13)

Ψ : Σ → Σ ν

ν(Ψ(A)) = ν(A) A ∈ F

ν(Ψ( )) = ν( ),ν(Ψ( )) = ν( ),Ωi Ωi Ω0 Ω0 (14)

Σ

Ωi

f : → OΩ0 O = { }oi = ( )Ωi f−1 oi
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Stability under measure-preserving evolution:

Let   be a measurable flow on   that preserves  , so that   for all   and all  .

Then

and the weights are time-invariant. This expresses stationarity of the volume-based weights under

measure-preserving deterministic dynamics.

Boundary insensitivity:

If   and   differ only by a set of  -measure zero, that is,  , then they define the same

weights. In particular, modifications of partition boundaries that remain contained within a  -null set do

not affect the predictions. This is the basic robustness requirement that microscopic boundary

refinements should not change empirical weights.

2.6. Summary

We have fixed the geometric setting for the finite-dimensional problem. Pure states are rays, so the

operational pure-state space is    (Section  2.1). Basis-independence is implemented as invariance

under the natural    action on    (Section  2.2). The qubit case    illustrates this

invariance concretely:   covariance corresponds to rotational invariance on the Bloch sphere, which

uniquely selects the uniform probability measure, identified with the normalised Fubini–Study measure 

 (Section 2.3).

Separately, following the deterministic typicality framework of the companion work (Paper A), we

introduced volume-based outcome weights as normalised measures of outcome regions in an underlying

microstate space 

These weights obey the formal properties of probability assignments and enjoy robustness under

measure-preserving reparameterisations, symmetries, and measure-preserving evolution (Sections 2.4–

2.5). No stochastic input is required at the level of their definition.

What remains is to connect the geometric and operational structures to the specific functional form of

quantum weights. Section  3 therefore analyses the conditions under which a probability assignment 

{ }φt t∈R
Σ ν ν( (A)) = ν(A)φt A ∈ F t

ν( ( )) = ν( ),φt Ωi Ωi (16)

Ωi Ω′
i ν ν( △ ) = 0Ωi Ω′

i

ν

CP n−1

SU(n) CP n−1 C ≅P 1 S 2

SU(2)

μFS

(Σ,F ,ν)

= .wi

ν( )Ωi

ν( )Ω0
(17)
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 for projectors   and rays   is uniquely fixed. Symmetry fixes the natural invariant

measure on state space, but to determine the dependence of weights on projectors one also requires

standard operational consistency conditions such as normalisation on orthogonal resolutions, additivity

on orthogonal projectors, noncontextuality, and unitary covariance. A Gleason-class theorem will then

imply the Born form for  , with the qubit case handled by a standard strengthening.

Symbol Meaning

Underlying microstate space in the deterministic typicality framework (Paper A)

Measure-preserving flow on  : 

Reference measure on  , preserved by 

Finite outcome set 

Outcome map (measurement context) 

Outcome region 

Volume-based weight 

Finite-dimensional Hilbert space 

Special unitary group acting on   and inducing an action on 

Complex projective space of rays  , the operational pure-state space

Fubini–Study (normalised)  -invariant probability measure on 

Table 1. Glossary Table

3. Symmetry, Operations, and the Probability Rule

This section constrains the form of the quantum probability rule from operational symmetry

considerations. The object of analysis is the assignment of probabilities to measurement outcomes given

a prepared quantum state. States are treated as equivalence classes under physically irrelevant

transformations, represented by rays    in a finite-dimensional Hilbert space, while measurement

outcomes are represented by projectors or, more generally, by effects.

p(P ∣ ψ) P [ψ] ∈ CP n−1

n ≥ 3

Σ

φt Σ : Σ → Σφt

ν Σ φt

O O = { , … , }o1 om

f f : → OΩ0

Ωi = ( ) ⊂ ⊂ ΣΩi f−1 oi Ω0

wi = ν( )/ν( )wi Ωi Ω0

H H = C
n

SU(n) H CP n−1

CP n−1 [ψ]

μFS SU(n) CP n−1

[ψ]
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Probabilities are viewed as functions    of the prepared state and the chosen measurement

operation. We impose invariance under transformations that correspond to changes in description or

experimental implementation without observable consequence. These include global phase

transformations of state representatives and unitary changes of measurement context, under which

corresponding outcomes and states are related covariantly. Together with normalisation and additivity

over exclusive outcomes, these operational symmetries uniquely constrain the admissible probability

assignments.

This section does not attempt to derive the Schrödinger equation, the linearity of quantum dynamics, or

any autonomous evolution equation for  . Phase information is essential for quantum dynamics and is

not removed by the present analysis. The result obtained here concerns only the unique probability

functional compatible with the stated operational symmetries and consistency requirements.

3.1. States, Outcomes, and Probability Assignments

We work in a finite-dimensional complex Hilbert space  . A physical state preparation is

represented by a ray  , defined as an equivalence class of nonzero vectors   under multiplication

by a nonzero complex scalar. This reflects the operational irrelevance of global phase and overall

normalization for probability assignments.

Measurement outcomes are represented by projectors   acting on   in the case of sharp measurements,

or more generally by positive operators   satisfying  , corresponding to effects in a positive-

operator-valued measure. A measurement context is specified by a set of mutually exclusive outcomes 

 satisfying  .

The central object of this section is a probability assignment

giving the probability of observing outcome   when the system is prepared in state  . This assignment

is assumed to depend only on the ray   and on the operationally defined measurement outcome  , and

not on the particular choice of state representative or on details of the experimental implementation. For

each measurement context  , the probabilities are required to satisfy normalisation,

without yet specifying their functional form.

p(E ∣ [ψ])

|ψ|2

H ≅C
n

[ψ] ψ ∈ H

P H

E 0 ≤ E ≤ I

{ }Ei = I∑iEi

p(E ∣ [ψ]) ∈ [0, 1],

E [ψ]

[ψ] E

{ }Ei

p( ∣ [ψ]) = 1,∑
i

Ei
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3.2. Operational Symmetry Postulates

We now specify the operational symmetries that constrain admissible probability assignments. These

symmetries express the requirement that probabilities be invariant under transformations

corresponding to physically irrelevant changes in description or experimental implementation.

First, probabilities must be invariant under global phase transformations of the state representative.

Since global phase has no operational significance, the probability assignment satisfies

for all real  .

Second, probabilities must be covariant under unitary transformations that represent changes of

measurement context or descriptive basis. If a state preparation and a measurement outcome are

transformed jointly by a unitary operator  , the corresponding probabilities are required to be preserved:

Here, unitary transformations are taken as the symmetry operations that relate experimentally

equivalent implementations, not as dynamical evolutions derived within the present framework.

These symmetry postulates ensure that probability assignments depend only on operationally

meaningful features of the preparation and measurement, and not on arbitrary representational choices.

3.3. Additivity, Normalisation, and Contextual Consistency

In addition to the operational symmetry requirements specified above, admissible probability

assignments must satisfy basic consistency conditions reflecting the structure of measurement

outcomes.

For any measurement context defined by a finite set of mutually exclusive outcomes    satisfying 

, probabilities are required to be normalised,

Probabilities must also be additive over mutually exclusive outcomes within a given measurement

context. If two effects   and   correspond to exclusive outcomes in the same context, so that  ,

then the probability assigned to their coarse-grained outcome satisfies

p(E ∣ [ψ]) = p(E ∣ [ ψ])eiθ

θ

U

p(E ∣ [ψ]) = p(UE ∣ [Uψ]).U †

{ }Ei

= I∑iEi

p( ∣ [ψ]) = 1.∑
i

Ei

E F EF = 0
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These additivity and normalisation conditions are imposed as operational consistency requirements on

probability assignments within each measurement context. They do not presuppose any specific

functional form for  , nor do they impose relations between probabilities associated with

incompatible measurement contexts.

3.4. Uniqueness of the Probability Rule

We now combine the operational symmetry and consistency conditions specified above to constrain the

admissible probability assignments. The result is a uniqueness statement for the probability rule

associated with sharp measurement outcomes.

Consider a fixed measurement context defined by a finite set of mutually orthogonal projectors 

  satisfying  . The assignment    defines a frame function on the lattice of

projectors, satisfying normalisation and finite additivity within each context. Together with unitary

covariance, this ensures that the probability assignment depends on the state only through the ray 

 and transforms consistently under changes of measurement basis.

For Hilbert spaces of dimension  , these conditions fall within the scope of Gleason-type

representation theorems. Under the standard assumptions of finite additivity, boundedness, and

noncontextuality within measurement contexts, such theorems imply that there exists a unique density

operator   associated with each ray   such that

for all projectors  . For pure state preparations,  , yielding the familiar Born form

This result is invoked as a constraint on admissible probability assignments given the stated operational

symmetries and consistency requirements. No claim is made here regarding the dynamics of quantum

states or the ontological status of  .

3.5. The Qubit Case and POVM Extension

The uniqueness result of the previous subsection relies on representation theorems that apply directly to

Hilbert spaces of dimension  . The two-dimensional case therefore requires separate consideration.

p(E + F ∣ [ψ]) = p(E ∣ [ψ]) + p(F ∣ [ψ]).

p(E ∣ [ψ])

{ }Pi = I∑iPi p( ∣ [ψ])Pi

[ψ]

n ≥ 3

ρ[ψ] [ψ]

p(P ∣ [ψ]) = Tr( P )ρ[ψ]

P = |ψ⟩⟨ψ|ρ[ψ]

p(P ∣ [ψ]) = ⟨ψ|P |ψ⟩.

ψ

n ≥ 3

qeios.com doi.org/10.32388/4EN2OA.2 14

https://www.qeios.com/
https://doi.org/10.32388/4EN2OA.2


For qubit systems, restriction to projective measurements alone is insufficient to uniquely fix the

probability rule. However, if one enlarges the class of admissible measurement outcomes to include

positive-operator-valued measures, the same operational symmetry and consistency requirements may

be imposed. In this setting, probabilities are assigned to effects    satisfying  , with

normalisation enforced at the level of each POVM.

Allowing POVMs constitutes an operational strengthening of the measurement framework rather than a

change of physical assumptions. Under this extension, Gleason-type representation results apply also in

dimension two, implying that admissible probability assignments admit a trace representation,

for all effects  . For pure state preparations,  , yielding the Born form for qubit

measurements as well.

Thus, once operational symmetry and consistency requirements are imposed uniformly across all

admissible measurement procedures, the probability rule is uniquely fixed in all finite dimensions.

3.6. Mixed States and Subsystems

The preceding analysis has focused on probability assignments associated with pure state preparations.

In experimental practice, however, preparations may involve classical uncertainty or access to only a

subsystem of a larger composite system. It is therefore necessary to extend the probability rule to mixed

states.

Operationally, a mixed state is represented by a density operator  , encoding either a classical mixture of

preparation procedures or the effective description of a subsystem obtained by tracing over inaccessible

degrees of freedom. Given a measurement outcome represented by an effect  , the probability

assignment is

This extension is consistent with the operational symmetry and additivity requirements imposed above.

In particular, convex combinations of preparation procedures correspond to convex combinations of

probability assignments,

reflecting classical uncertainty at the level of preparation rather than any additional quantum structure.

E 0 ≤ E ≤ I

p(E ∣ [ψ]) = Tr( E),ρ[ψ]

E = |ψ⟩⟨ψ|ρ[ψ]

ρ

E

p(E ∣ ρ) = Tr(ρE).

p(E ∣ λ + (1 − λ) ) = λp(E ∣ ) + (1 − λ)p(E ∣ ),ρ1 ρ2 ρ1 ρ2
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The trace form of the probability rule thus extends uniformly to mixed states and subsystems without

introducing new assumptions beyond operational consistency.

4. Discussion

The derivation presented above shows that the Born rule follows necessarily from a deterministic,

symmetry-constrained geometric framework: outcome weights emerge from volume ratios over a

compact, invariant state space, with no requirement for probabilistic or interpretive inputs. In this

section, we discuss the broader implications of this result.

First, we clarify how volume-typicality connects to observable outcome frequencies, and why no

probability postulate is needed (Section 4.1). Next, we compare this approach with the conventional

axioms of quantum mechanics, identifying which postulates are replaced or made redundant (Section

4.2). Finally, we outline the limitations of the current framework and identify key open questions for

future work (Section 4.3).

Throughout, the focus remains on what this derivation requires and what it does not. The success of the

volume-weighted approach does not depend on philosophical stance. It is a structural result grounded in

symmetry, continuity, and the intrinsic geometry of the state space.

4.1. Volume-Typicality and Frequencies

The outcome weights    derived in Sections 2 and 3 have the form of a probability

distribution but arise from purely geometric and deterministic considerations. No stochastic process,

random collapse, or statistical sampling is involved in their definition. Instead, these weights describe

the relative volume of each outcome region under a measure-preserving flow on a compact state space.

This supports the notion of volume-typicality introduced in[3] , where observed outcome frequencies are

understood as the long-run frequencies of macroscopic events generated by a deterministic system,

given uncertainty about the precise microstate. If the system is prepared repeatedly under the same

macroscopic conditions, and the set of corresponding microstates is uniformly distributed with respect

to the symmetry-invariant measure  , then the observed frequency of each outcome will, in the limit,

approach  .

This approach to frequency is entirely deterministic:

The system evolves predictably from each microstate via the flow  .

= μ ( )/μ ( )wi Ωi Ω0

μ

wi

φt
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The partition   is defined geometrically by the observable.

The outcome label   is a deterministic function of the initial microstate.

The outcome weights arise solely from the relative measure of the outcome regions.

What appears probabilistic at the macroscopic level is thus the consequence of two factors: our ignorance

of the specific microstate, and the fact that outcome labels arise from coarse-graining a continuous state

space. The term “typicality” reflects this: most microstates consistent with a given preparation lie in

outcome regions in proportion to their volume.

Importantly, this view differs sharply from conventional probabilistic interpretations of quantum

mechanics. Here, frequencies emerge not from intrinsic indeterminism, but from the geometric structure

of the dynamical system and its symmetries.

This closes the explanatory loop: the Born rule is recovered not by assumption or statistical postulate, but

by identifying how deterministic systems produce stable ensemble frequencies under well-defined

geometric constraints.

4.2. Comparison with Quantum Postulates

Standard formulations of quantum mechanics rely on several core postulates, including:

1. State Postulate: A system is fully described by a unit vector   in a Hilbert space  .

2. Observable Postulate: Physical observables correspond to Hermitian operators on  , with

eigenvalues representing possible outcomes.

3. Evolution Postulate: The state evolves unitarily via the Schrödinger equation.

4. Measurement Postulate (Born Rule): Upon measurement in basis  , the probability of outcome 

 is given by  .

5. Collapse Postulate: After measurement, the system collapses to the eigenstate corresponding to the

observed outcome.

The framework presented in this paper recovers the outcome statistics implied by Postulate 4 but does so

without invoking it. Instead, the result    emerges from deterministic dynamics and

symmetry-constrained geometry alone.

Specifically:

{ }Ωi

i

|Ψ⟩ H

H

{| ⟩}ϕi

i P (i) = |⟨ |Ψ⟩|ϕi
2

=wi |⟨ |Ψ⟩|ϕi
2
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The Born rule is not assumed; it is shown to be the unique outcome of volume-based typicality under 

 symmetry.

No probabilistic interpretation is invoked. Frequencies arise from volume ratios over coarse-grained

outcome regions, not from stochastic collapse or epistemic randomness.

The derivation is agnostic to ontological commitments. It does not rely on hidden variables,

wavefunction branching, or subjective belief updating.

This geometric account thus provides an explanatory foundation for outcome frequencies that is logically

prior to the standard postulates. It suggests that if the quantum formalism is an emergent statistical

description of an underlying deterministic system, then the Born rule need not be fundamental, it can be

derived.

Moreover, by grounding outcome statistics in measurable geometric volumes on a symmetric state space,

the approach sidesteps long-standing controversies over collapse and interpretation. It offers a clear

distinction between what is observed (frequencies) and what is explained (volume typicality), without

needing to assert how or whether the wavefunction itself is ontic.

In this way, the approach complements the operational success of standard quantum theory while

offering a deeper structural account of one of its most fundamental statistical rules.

4.3. Limitations and Open Questions

While this paper establishes that the Born rule follows uniquely from deterministic volume geometry

under symmetry constraints, several important limitations remain. These concern the scope of

applicability, the treatment of composite systems, and the possible extension to more general

observables.

Finite-Dimensional Systems

The derivation presented here is restricted to systems represented by finite-dimensional state spaces.

The symmetry constraints used in Section 3 rely on the compactness of the projective state space and the

unitary invariance of the measure  .

While our derivation has focused on finite-dimensional quantum systems with compact projective state

space  , the principles outlined here may extend to continuous or infinite-dimensional

systems by coarse-graining. In such cases, effective discretization methods, such as those used in lattice

SU(n)

μ

S ≅CP n−1
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field theory[4], allow the continuum to be approximated by a finite number of distinguishable degrees of

freedom within a compact geometry. These discretized state spaces can preserve the same geometric

symmetries (e.g. unitary invariance) and support a derived volume measure that converges to the

continuum form in the limit of finer resolution. Thus, while the present analysis does not address

infinite-dimensional Hilbert spaces directly, the volume-based symmetry argument may remain valid in

physically relevant limits.

Beyond Projective Measurements

Only sharp measurements, i.e., those defined by orthonormal projective bases, are considered in this

framework.

Empirical Signatures

Although the volume-based framework reproduces the Born rule under well-defined assumptions, it

currently makes no novel empirical predictions. This limits its immediate falsifiability.

Summary

This paper establishes that deterministic evolution on a symmetry-constrained state space yields

outcome frequencies matching the Born rule, with no need for stochastic postulates. What remains is to

extend, test, and refine the model:

Can the framework accommodate entanglement, decoherence, or information flow?

Can or should it be generalised to infinite dimensions or continuous spectra?

Are there regimes, cosmological, mesoscopic, or gravitational, where deviations might appear?

These questions define the natural next steps for a volume-based approach to quantum foundations.

5. Falsifiability and Empirical Tests

Any proposed explanation of the Born rule must be subject to empirical scrutiny. While the standard

quantum formalism takes    as an axiom, the present framework derives it from

deterministic geometry. This opens the door to testing the assumptions under which the derivation

holds.

The key empirical claim is this:

P (i) = |⟨ |Ψ⟩|ϕi
2
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If macroscopic preparation procedures select microstates uniformly (with respect to a symmetry-

invariant, volume-preserving measure  ) over the state space  , and if observable outcomes correspond

to well-defined partitions  , then the frequency of each outcome should converge to 

.

Any persistent deviation from this rule, under controlled, repeatable conditions, would falsify one or

more assumptions of the volume-typicality framework.

For example, Interferometry as a Test of the Measure:

The geometric symmetry-based framework predicts outcome frequencies proportional to    for all

quantum systems.

One feasible test platform is quantum interferometry, such as a Mach–Zehnder interferometer with

adjustable phase delay. A single-photon source prepares quantum states with tunable path amplitudes,

and detectors at the output arms record relative frequencies.

To test for deviations, one can prepare a known input state  , vary the phase  , and

record output detection rates. By comparing empirical frequencies one can detect or constrain non-

quadratic scaling in the effective probability rule.

Current photon-counting experiments can detect deviations in balanced configurations (

). No such deviations have been observed, but improved precision could probe closer to

the symmetry-derived limit.

Another example, Experimental Implementation in Superconducting Qubit Arrays:

Here high-fidelity unitary operations and repeated state preparation are now routine. These systems

allow precise engineering of states  , with control over initialization, entanglement, and

measurement axes via microwave gate sequences.

To test the volume-based prediction  , one can:

Prepare superpositions of known amplitudes (e.g.  ),

Measure in multiple bases via tomographic rotation gates,

Compare the empirical frequencies of outcomes across repeated trials to the expected Born-rule

predictions.

This experimental route tests the core claim of the paper: that the    rule follows from geometric

symmetry constraints, not from axiomatic postulates or probabilistic collapse.

μ S

{ }Ωi

= μ ( )/μ ( ) =wi Ωi Ω0 |⟨ |Ψ⟩|ϕi
2

|Ψ|2

|Ψ⟩ = α |0⟩ + β |1⟩ ϕ

|α| = |β| = 1/ 2–√

|Ψ⟩ ∈ C
d

μ ∝ |Ψ|2

|Ψ⟩ = α |0⟩ + β |1⟩

|Ψ|2
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5.1. What Could Be Falsified

There are several concrete ways in which the framework could, in principle, fail:

Asymmetry in Microstate Sampling: If physical preparation procedures do not yield an invariant

ensemble of microstates, but instead bias toward specific regions of  , the resulting outcome

frequencies would deviate from those predicted by  . High-precision preparation and

tomography could test this.

Violation of Volume Preservation: If the dynamics   fail to preserve volume (e.g. due to dissipation,

decoherence, or external interaction), then weights computed from    would not remain stable.

Time-dependent statistical drift could indicate such effects.

Failure of Coarse-Graining Consistency: If the macroscopic observable does not yield a sharp partition

of  , or if microscopic ambiguity leads to smeared outcomes, then deviations from the sharp-volume

rule may arise. This could be probed by increasing measurement resolution.

Incompatibility in Composite Systems: If experiments on entangled systems reveal correlations

inconsistent with any  -invariant volume assignment across tensor products of  , the

framework would require modification.

5.2. Prospects and Constraints

At present, no empirical deviation from the Born rule has been confirmed. The volume-based derivation

aligns perfectly with standard outcome statistics wherever they have been tested. However, the

framework provides a conceptual advantage: its assumptions are visible, structural, and testable. This is

in contrast to postulates treated as fundamental or axiomatic.

The challenge for future work is to identify realistic experimental contexts, possibly involving

decoherence, gravitational effects, or high-precision state preparation, where deviations from the

assumed geometry might occur.

6. Conclusion

This paper has shown how Born weights can be fixed in a finite-dimensional setting from symmetry and

operational consistency, without taking probabilistic postulates as primitive. The geometric starting

point is that pure states are rays, so the operational pure-state space is complex projective space  .

Basis-independence is implemented as invariance under the natural    action on  , which

Σ

μ( )Ωi

φt

μ( )Ωi

Σ

SU(n) Σ

CP n−1

SU(n) CP n−1
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uniquely selects the normalised Fubini–Study measure   as the invariant probability measure on state

space.

Symmetry alone does not determine how weights attach to particular outcome projectors. To fix the

functional form of outcome weights, we introduced standard operational consistency requirements for a

probability assignment    on projectors, including normalisation on orthogonal resolutions,

additivity on orthogonal projectors, noncontextuality, and unitary covariance. For   these conditions

imply the quadratic form   by a Gleason-class theorem, with the qubit case handled

by a standard strengthening such as extension to POVMs. In this sense the Born form is not assumed, but

singled out by symmetry together with operational coherence.

The link from weights to observed long-run frequencies is supplied by the deterministic volume-

typicality framework developed in the companion work (Paper A). There, measurement contexts induce

measurable outcome partitions of an underlying microstate space, and under measure-preserving

dynamics typical initial conditions yield empirical frequencies equal to the corresponding volume ratios.

The present paper identifies the unique operational weight rule to which those volume-based

frequencies should be compared.

The framework is intentionally finite-dimensional and makes no claims of an infinite-dimensional

uniqueness theorem, nor of an immediate extension to relativistic quantum field theory. Its empirical

content resides in the stated invariance and operational assumptions and in the typicality and measure-

preservation conditions required for the frequency link. Within that scope, the result supports a

deterministic foundation in which Born statistics arise from symmetry and operational consistency, and

observed randomness is understood as typicality under measure-preserving evolution rather than as a

fundamental stochastic postulate.

Appendix A. Comparison with Other Approaches

Numerous attempts have been made to derive or justify the Born rule from deeper principles. While

differing in assumptions, scope, and interpretation, these approaches share the goal of explaining

quantum outcome statistics without postulating them. Below, we briefly compare the present volume-

based framework with several leading alternatives.

μFS

p(P ∣ ψ)

n ≥ 3

p(P ∣ ψ) = ⟨ψ|P |ψ⟩
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A.1. Everettian (Many-Worlds) Derivations

In Everettian frameworks, all outcomes occur, and probabilities are interpreted as branch weights.

Modern versions appeal to decision theory[5][6] or typicality over branches[7].

Strength: Retains the full formalism of quantum theory.

Limitation: Requires interpretational commitments (e.g. branching reality, rational agents).

Comparison: The present framework fixes the Born form as the unique operationally coherent weight

rule in finite dimensions (Gleason-class, with a qubit strengthening) and treats the link to observed

frequencies via deterministic volume-typicality in the companion work (Paper A).

A.2. Envariance and Decoherence-Based Arguments

Zurek’s envariance program[8]  uses entanglement symmetry to argue that amplitudes must square to

produce consistent reduced states. Decoherence is invoked to explain effective outcome separation.

Strength: Tied to physical processes like entanglement and environment.

Limitation: Envariance is subtle, and derivations often assume partial trace properties or reduced-

state normalisation.

Comparison: The volume-based approach obtains the Born form from symmetry plus operational

coherence constraints in finite dimensions (Gleason-class, with a qubit strengthening) and treats the

frequency link separately via deterministic volume-typicality in the companion work (Paper A).

A.3. Gleason-Type Theorems

Gleason’s theorem[2] and its generalisations show that, under certain conditions, any probability measure

on projectors must match the Born rule.

Strength: Rigorous mathematical constraint from Hilbert space axioms.

Limitation: Assumes the Hilbert space formalism and measure additivity from the outset.

Comparison: This paper adopts these coherence constraints but embed them in a symmetry-fixed

projective geometry, using    invariance to select    and Paper A typicality to interpret the

resulting weights as long-run frequencies.

SU(n) μFS
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A.4. Hidden-Variable Theories

In deterministic models like Bohmian mechanics[9][10], the Born rule is typically imposed as an initial

condition on the distribution of hidden variables.

Strength: Provides a deterministic ontology.

Limitation: Requires a postulated equilibrium distribution, typically not derived.

Comparison: Our framework does not introduce additional ontic variables beyond the operational

state description, and instead fix the Born form from symmetry plus operational coherence (Gleason-

class, with a qubit strengthening), with frequencies linked via deterministic volume-typicality in

Paper A.

The volume-typicality framework uniquely combines:

Determinism,

No hidden structure,

No appeal to rational agents,

And a self-contained derivation of the Born rule from geometry and symmetry.

Appendix B. Geometric Interpretation of the Probability Rule

This appendix provides a geometric interpretation of the probability rule established operationally in

Section  3. The purpose of this construction is explanatory rather than deductive. It illustrates how the

Born form naturally arises when probability assignments are realised as measures on state space that

respect the same operational symmetries imposed in the main text.

No new assumptions are introduced here, and no independent derivation of the probability rule is

claimed. The uniqueness of the probability assignment follows from the operational analysis of Section 3.

The geometric picture presented below is compatible with that result and provides an intuitive

realisation of it.

B.1. Projective State Space and Invariant Measure

Let    be a finite-dimensional Hilbert space. Pure physical states are represented by rays  ,

forming the complex projective space  . This space carries a natural Riemannian structure given by

the Fubini–Study metric, which is invariant under the action of the unitary group  .

H ≅C
n [ψ]

CP
n−1

SU(n)
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Associated with this metric is a unique unitarily invariant volume measure   on  , normalised so

that  . This measure provides a canonical notion of uniformity over pure states,

consistent with the operational symmetries imposed in Section 3.

B.2. Measurement Outcomes as Geometric Partitions

Consider a sharp measurement defined by a set of mutually orthogonal projectors    satisfying 

. Each projector defines a subset of projective space associated with the corresponding

outcome.

Operationally, a measurement context induces a partition of   into disjoint regions  , where each

region   corresponds to outcome  . These regions are defined relative to the measurement context and

transform covariantly under unitary transformations. No physical dynamics on    is assumed or

required.

B.3. Probability as Relative Geometric Measure

Within this geometric framework, the probability assigned to outcome   for a prepared state   may be

interpreted as the relative measure of the region    with respect to the invariant measure  ,

conditioned on the preparation.

Imposing unitary invariance and additivity over mutually exclusive outcomes uniquely fixes the

dependence of this measure on the prepared ray. The resulting probability assignment takes the form

in agreement with the Born rule obtained operationally in Section 3.

B.4. Scope and Interpretation

The geometric construction presented here does not posit an autonomous dynamics for probabilities, nor

does it interpret quantum evolution as motion on projective space. Geometry enters solely as a means of

representing operationally invariant probability assignments.

Accordingly, this appendix should be read as providing an intuitive geometric realisation of the

probability rule already fixed by operational symmetry and consistency, rather than as an independent

derivation or physical model.

μFS CP
n−1

(C ) = 1μFS P
n−1

{ }Pi

= I∑iPi

CP
n−1 { }Ωi

Ωi Pi

CP
n−1

Pi [ψ]

Ωi μFS

p( ∣ [ψ]) = ⟨ψ| |ψ⟩,Pi Pi
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Appendix C. Deterministic Volume Typicality and Outcome

Robustness

This appendix collects the deterministic and measure-theoretic assumptions underlying the volume-

based interpretation of outcome weights used in this paper. These assumptions are not required for the

operational uniqueness result established in Section  3. Rather, they provide a concrete physical

realisation of how the uniquely fixed probability rule may arise from deterministic dynamics on an

underlying state space.

C.1. Deterministic State Space and Invariant Measure

Let    be a smooth, compact, finite-dimensional manifold representing the microstate space of the

system. We assume the existence of a deterministic flow

generated by a smooth vector field and preserving a normalised measure  ,

for all measurable subsets   and all times  . No assumption of ergodicity is required. The invariant

measure   defines a notion of typicality on  .

C.2. Outcome Regions and Coarse-Graining

Measurement is modelled as a coarse-graining map

where   is a finite set of macroscopically distinguishable outcomes. Each outcome   corresponds

to a measurable region

with the regions   forming a partition of a reference region  .

Outcome weights are defined as relative volumes,

Σ

: Σ → Σφt

μ

μ( (A)) = μ(A)φt

A ⊂ Σ t

μ Σ

f : Σ → O,

O = { }oi oi

= ( ) ⊂ Σ,Ωi f−1 oi

{ }Ωi ⊂ ΣΩ0

= .wi

μ( )Ωi

μ( )Ω0
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C.3. Typicality and Emergence of Frequencies

Under deterministic, measure-preserving dynamics, standard typicality arguments from statistical

mechanics imply that for  -almost all initial conditions, long-run empirical frequencies of outcomes

converge to the corresponding volume fractions  . The appearance of probabilistic frequencies thus

reflects the predominance of typical microstates rather than intrinsic stochasticity.

C.4. Robustness Under Environmental Coupling

In realistic settings, systems interact with additional degrees of freedom. We model this by extending the

state space to

with joint dynamics preserving the product measure  .

Outcome regions extend to product regions

where   represent correlated environmental configurations. Provided the system-level regions 

 remain disjoint and macroscopically stable, the relative volume ratios remain approximately invariant,

C.5. Relation to the Operational Probability Rule

When the invariant measure on the effective state space is identified with a unitarily invariant measure

on projective Hilbert space, and outcome regions are defined compatibly with quantum observables, the

volume-based weights   coincide numerically with the probability rule fixed operationally in Section 3.

Accordingly, this appendix provides a deterministic realisation of the operationally established

probability rule, without introducing additional probabilistic postulates or modifying the symmetry-

based analysis of the main text.

μ

wi

= × ,Σtot Σsys Σenv

= ×μtot μsys μenv

= × ,Ω
∼
i Ωi Ei

⊂Ei Σenv

Ωi

≈ .
( )μtot Ω

∼
i

( )μtot Ω
∼

0

μ( )Ωi

μ( )Ω0

wi
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Appendix D. Glossary of Key Terms

 (psi):

A complex vector representing the state of a finite-dimensional quantum system. In this paper,   is

treated as an operational descriptor of system preparation, not a fundamental ontological object.

Outcome region,  :

A measurable, disjoint subset of the unit sphere in state space corresponding to a macroscopically

distinguishable outcome. Each   is constructed to align with a specific observable result.

Volume-typicality:

The principle that, in a deterministic system with branching, long-run frequencies of outcomes are

determined by the invariant volume of each outcome region. A “typical” trajectory lies in the largest such

region compatible with its history.

Branching:

The partitioning of state space into disjoint regions as the system evolves, representing distinct future

outcomes. Branching is deterministic and geometric, not probabilistic.

Invariant measure,  :

A volume measure on state space preserved under the system’s deterministic dynamics. Frequencies of

outcomes are given by  , where   is the full accessible state region.

Symmetry constraints:

The physical invariances imposed on the system, specifically:

Complex-scaling symmetry:   for 

Unitary covariance:   for 

These ensure the measure respects physical indistinguishability of rescaled, rotated, or phase-shifted

states.

Ψ

Ψ ∈ C
n

Ωi

Ωi

μ

μ ( ) /μ ( )Ωi Ω0 Ω0

Ψ → λΨ λ ∈ C
∗

Ψ → UΨ U ∈ SU(n)
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Deterministic flow,  :

A smooth, volume-preserving evolution map   that governs how states evolve over time. Used

in blore[3] to track branching and outcome region volumes.
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