Review of: "Meanwhile, capacitors have a longer life and can be discharged quickly, but store much less total energy"

Ricardo Igselias
European University of Madrid

Potential competing interests: No potential competing interests to declare.

Meanwhile, capacitors have a longer life and can be discharged quickly, but store much less total energy. To make nanostructured arrays of electrostatic capacitors. A nano supercapacitor can be created. Electrostatic nanocapacitors are the simplest type of electronic energy storage device. They store electrical charge on the surface of two metal electrodes separated by an insulating material. The storage capacity of the electric nano supercapacitor is directly proportional to the surface area of these sandwich-like electrodes.

The storage capacity of the electric nano supercapacitor can be increased by using nanostructures to increase the level of energy storage. The electrodes of the nanoelectric supercapacitor work like the electrodes in regular capacitors, but instead of being flat, they are tubular and collect in the depth of nano cavities.

References

1. "Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/23oxov.
7. Afshin Rashid. (2024). Review of: "FinFET nanotransistor downscaling causes more short channel effects, less gate control, exponential increase in leakage currents, drastic process changes and unmanageable power densities".
8. Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.

26. **Afshin Rashid. (2024). Review of: “In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)”**, Qeios. doi:10.32388/pq6ho0.

28. **Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”**, Qeios. doi:10.32388/a0nexa.

29. **Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”**, Qeios. doi:10.32388/a0nexa.

30. **Afshin Rashid. (2024). Review of: “Nano supercapacitor called (electrostatic) -- The total thickness of each electrostatic nanocapacitors only 25 nm”**, Qeios. doi:10.32388/247k3y.