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Abstract

We formulate the classical and quantum Boltzmann equations for the one par-
ticle distribution function and density operator corresponding to the motion of
several indistinguisable point charges in motion with mutual electromagnetic
interaction attached to central potentials and also interacting with an external
electromagnetic field. These equations are used to derive formulas for the scat-
tered electromagnetic field and analyze their properties like frequency content.
Using the Wigner distribution to draw an analogy between classical probability
distribution functions in phase space and corresponding quantum analogues, we
compare the classical and quantum Boltzmann equations showing explicitly how
the quantum Boltzmann equation for the Wigner distribution is the same as the
classical Boltzmann equation but with extra quantum corrections expressible as
a power series in Planck’c constant. We then proceed to formulate the quan-
tum Boltzmann equation for open quantum systems, ie, systems connected to a
noisy bath and explain how to estimate the Lindblad noisy coupling parameters
from the nonlinear quantum Boltzmann state evolution between successive POV
measurements. We then proceed to formulate the quantum Boltzmann equation
for the one particle density operator derived from the quantum Belavkin filter
for N-particles taking into account non-demolition measurement noise. Par-
tial tracing of the Belavkin filter with the molecular chaos hypothesis for the
N-particle state yields this nonlinear one particle filtered quantum Boltzmann
equation. We then apply Lec-Bouten’s method of control unitaries based on
the measurement process to cancel out part of Lindblad noise from the filtered
quantum Boltzmann equation. Finally, we explain how to perform a second or-
der perturbative analysis of the classical Boltzmann equation in order to arrive
at the frequency spectrum of the scattered field from the frequency spectrum of
the incident field. The last section is devoted to the derivation of the two par-
ticle quantum Boltzmann equation for the Belavkin quantum filter. During the
process of derivation, we explain how to derive the general rth order quantum
Boltzmann equation for the Belavkin quantum filter on N particles when the
bath acts symmetrically, ie, in a permutation invariant way on all the particles.
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0.1 Calculating the scattered electromagnetic field
produced by a slowly spatially varying in-
cident electromagnetic field on a set large
charged particles with several identical smaller
charged particles moving in the vicinity of
the former

Consider a lattice of M (not very large) charged particles with each particle hav-
ing a charge Ze and each such particle having N (very large) charge particles,
each of charge -e. When an electromagnetic field Ec(t, r), Bc(t, r) is incident
upon this system, it causes the charged particles to execute motion and thus
generated a scattered electromagnetic field. Our aim is to calculate this scat-
tered field approximately assuming that the incident field varies very slowly
over the region defined by the charged particles of charge −e surrounding each
centre. The potential generated by each centre is

Ze/|r −Qk| − − − (1)

where Qk is the position of the centre. Thus, the potential experience by the
charge −e located at Qk + ξ is

V0(ξ) = Ze/|ξ| − − − (2)

Apart from this, the interaction between two charges −e located at ξ1, ξ2 relative
to the centre Qk is given by

V12 = e2/|ξ1 − ξ2| − − − (3)

Taking this into account, the classical Boltzmann equation in the molecular
chaos approximation for a single charge attached to the centre Q = Qk is given
by

∂tf(t, ξ, v)+(v,∇ξ)f(t, ξ, v)+(e/m)(∇V0(ξ),∇v)f(t, ξ, v)−(e/m)(Ec(t, Q)+v×Bc(t, Q))f(tξ, v)+

((N−1)e2
∫

f(t, ξ′, v′)(ξ−ξ′)d3vd3ξ′)/|ξ−ξ′|3,∇v)f(t, ξ, v)+(f0(ξ, v)−f(t, ξ, v))/τ(v) = 0−−−(4)

Herein, we are neglecting the effects of the force of the magnetic fields produced
by the N − 1 remaining charges in each central region on a given charge within
the same region. The last term involving the relaxation time constant is a
replacement of the collision term. If we wish to take into account the effects of
the magnetic fields generated by the motion of the charges in the non-relativistic
approximation, then we would have to add the term

e2(N−1)(

∫
d3ξ′d3v′v×(v′×(ξ−ξ′))f(t, ξ′, v′)d3ξ′d3v′/|ξ−ξ′|3,∇v)f(t, ξ, v)−−−(5)

2



It should also be noted that each centre of charge Ze will also generally carry
a spin described by an operator in a 2J + 1 Hilbert space where J is an integer
or a half integer. The effect of the magnetic field produced by this spin on the
charges −e is a purely quantum mechanical effect and can only be accounted in
a quantum mechanical formulation of the Boltzmann equation.

In summary, the chaos hypothesis leads to approximating the pairwise in-
teraction terms between the charges by bilinear forms in the Boltzmann distri-
bution function. For the present, we neglect these bilinear terms assuming that
all of their effects can be absorbed within the relaxation time term. We note
that the equilibrium Boltzmann density is

f0(ξ, v) = NZ(β)−1exp(−β(mv2/2− eV0(ξ)))−−− (6)

For each charged particle −e Writing the perturbation as

δf(t, ξ, v) = f(t, ξ, v − f0(ξ, v)−−− (7)

we obtain the following first order approximation to the Boltzmann equation
assuming that the external em field is of the first order of smallness as compared
to the electrostatic field generated by the centres:

∂tδf(t, ξ, v) + (v,∇ξ)δf(t, ξ, v)− (e/m)(E0(ξ),∇v)δf(t, ξ, v)

−(e/m)(Ec(t, Q) + v ×Bc(t, Q)),∇v)f0(ξ, v) + δf(t, ξ, v)/τ(v) = 0−−− (8)

where
E0(ξ) = −∇V0(ξ)−−− (9)

To be precise, we should write f(t, ξ, v|Q) and δf(t, ξ, v|Q), the dependence
upon Q arising from the external field This equation simplifies to

∂tδf(t, ξ, v) + (v,∇ξ)δf(t, ξ, v)− (e/m)(E0(ξ),∇v)δf(t, ξ, v)

+βe(Ec(t, Q), v)f0(ξ, v) + δf(t, ξ, v)/τ(v) = 0−−− (10)

It should be noted that the total charge and current density generated by
the motion of the charges caused by the external field are respectively given by

ρ(t, Q+ ξ) = −e

∫
δf(t, ξ, v|Q)d3v −−− (11)

J(t, r) = −e

∫
vδf(t, ξ, v|Q)d3v −−− (12)

and the total scattered electromagnetic four potential produced by lattice is
given to first order by the formulas

As(t, r) = −e

M∑
k=1

∫
vδf(t, ξ, v|Qk).d

3ξ.d3v/|r −Qk − ξ| − − − (13)
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and

Vs(t, r) = −e

M∑
k=1

∫
δf(t, ξ, v|Qk).d

3ξ.d3v/|r −Qk − ξ| − − − (14)

These potentials admit a multipole expansion, with the zeroth order term in
this expansion being the most significant given by

As(t, r) ≈ −e

M∑
k=1

(vδf(t, ξ, v|Qk).d
3ξ.d3v)/|r −Qk| − − − (15)

and

Vs(t, r) = −e(

M∑
k=1

∫
δf(t, ξ, v|Qk).d

3ξ.d3v)/|r −Qk| − − − (16)

Defining space-time Fourier transforms by

X(ω,K) =

∫
X(t, r)exp(−iωt+K.r)dtd3K −−− (17)

we obtain from the above linearized Boltzmann equation in the four wave vector
domain:

[i(ω − (K, v)) + 1/τ(v)]δf(ω,K, v) + βe(Ec(t, Q), v)f0(K, v)

−(2π)(e/m)f

∫
(E0(K −K ′).∇v)δf(ω,K

′, v)d3K ′ = 0−−− (18)

Note that we have the normalizations∫
f0(r, v)d

3rd3v =

∫
f(t, r, v)d3rd3v = N −−− (19)

so that ∫
δf(t, r, v)d3rd3v = 0−−− (20)

0.2 A generalized derivation of the classical Boltz-
mann equation

Consider a system ofN indistinguishable particles described by position-velocity
pairs (ξk, vk), k = 1, 2, ..., N where ξk, vk ∈ R3. Assume that the external fields
cause a force Fext(t, ξk, vk) to be exerted on the kth particle while the internal
particle interactions cause a force Fint(t, ξk, vk|ξj , vj) to be exerted by the jth

particle on the kth particle. Boltzmann’s equation for the N th order particle
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distribution function fN (t, ξk, vk, k = 1, 2, ..., N) is the same as Liouville’s equa-
tion in mechanics assuming that the dynamics of the particles described by the
above forces keeps the total phase volume ΠN

k=1d
3ξkd

3vk invariant. This means
that the phase space divergence of the force field vanishes, ie,∑
k

(divξkFext(t, ξk, vk)+divvkFext(t, ξk, vk))+
∑
k ̸=j

(divξk(Fint(t, ξk, vk|ξj , vj))+divvk(Fint(t, ξk, vk|ξj , vj)) = 0−−−(21)

This amounts to requiring separately that

divξ1Fext(t, ξ1, v1) + divv1Fext(t, ξ1, v1) = 0−−− (22)

divξ1Fint(t, ξ1, v1|ξ2, v2) + divv1Fint(t, ξ1, v1|ξ2, v2)

+divξ2Fint(t, ξ2, v2|ξ1, v1) + divv2Fint(t, ξ2, v2|ξ1, v1) = 0−−− (23)

The N-particle Boltzmann equation is merely a statement of the the conservation
of the total number of particles in 6N-dimensional phase volume:

∂tfN +

N∑
k=1

(vk,∇ξk)fN+

N∑
k=1

(Fext(t, ξk, vk),∇vk)fN +
∑
k ̸=j

(Fint(t, ξk, vk|ξj , vj),∇vk)fN = 0−−− (24)

Integrating over ξk, vk, k = 2, 3, ..., N and using the indistinguishability of the
particles gives us

∂tf1(t, ξ1, v1) + (v1,∇ξ1)f1(t, ξ1, v1) + (Fext(t, ξ1, v1),∇v1)f1(t, ξ1, v1)

+(N − 1)

∫
(Fint(t, ξ1, v1|ξ2, v2),∇v1)f12(t, ξ1, v1, ξ2, v2)d

3ξ2d
3v2 = 0−−− (25)

provided that we assume the additional conditions

divv1Fext(t, ξ1, v1) = 0−−− (26)

divv1Fint(t, ξ1, v1|ξ2, v2) + divv2Fext(t, xi2, v2|ξ1, v1) = 0−−− (27)

For example, if the forces are produced by the electromagnetic fields gener-
ated by the external sources and the N moving charges in the non-relativistic
approximation, then

Fext(t, ξ1, v1) = (−e/m)(Eext(t, ξ1) + v1 ×Bext(t, ξ1))−−− (28)

and clearly, we have

divv1Fext(t, ξ1, v1) = divv1(v1 ×Bext(t, ξ1)) = 0−−− (29)

and further,

Fint(t, ξ1, v1|ξ2, v2) = (e2/m)(ξ1−xi2)/|ξ1−ξ2|3)+(e2/m)(v1×(v2×(ξ1−ξ2))/|ξ1−ξ2|3))−−−(30)
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Now, if w is a vector not involving v1, v2, then

v1 × (v2 × w) = (v1, w)v2 − (v1, v2)w −−− (31)

gives
divv1(v1 × (v2 × w)) = (w, v2)− (w, v2) = 0−−− (32)

so the second condition is also trivially satisfied. In the molecular chaos approxi-
mation, we approximate f12(t, ξ1, v1, ξ2, v2) by the product f1(t, ξ1, v1).f1(t, ξ2, v2)
and thus obtain a simple version of the Boltzmann equation for the one particle
distribution function:

∂tf1(t, ξ1, v1) + (v1,∇ξ1)f1(t, ξ1, v1) + (Fext(t, ξ1, v1),∇v1)f1(t, ξ1, v1)

+(N−1)(

∫
f1(t, ξ2, v2)Fint(t, ξ1, v1|ξ2, v2)d3ξ2d3v2),∇v1)f1(t, ξ1, v1) = 0−−−(33)

In the general case, without making any approximations, we can write

f12(t, ξ1, v1, ξ2, v2) = f1(t, ξ1, v1)f(t, ξ2, v2) + g12(t, ξ1, v1, ξ2, v2)−−− (34)

abbreviated in the obvious way as

f12 = f1f2 + g12 −−− (35)

where since ∫
f12d(2) = f1 −−− (36)

we must have ∫
g12d(2) = 0−−− (37)

and of course, by indistinguishability,∫
g12d(1) = 0−−− (38)

also. Here, d(k) is an abbreviation for d3ξk.d
3vk. Again, integrating the N -

particle Boltzmann equation over 3, 4, ..., N gives us the two particle Boltzmann
equation:

∂tf12 + ((v1,∇ξ1) + (v2,∇ξ2))f12+

(Fext(t, ξ1, v1|ξ2, v2),∇v1) + (Fext(t, ξ2, v2|ξ1, v1),∇v2))f12

+(N−2)

∫
(Fext(t, ξ1, v1|ξ3, v3),∇v1)+(Fext(t, ξ2, v2|ξ3, v3),∇v2))f123d(3) = 0−−−(39)

Likewise, we write

f123 = f1f2f3 + f1g23 + f2g13 + f3g12 + g123 −−− (40)

and the integrating over 3 gives us

f12 = f1f2 + g12 −−− (41)
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as required, provided that∫
g123d(3) = 0−−− (42)

0.3 The quantum version of calculating the field
scattered by the charged particles in the phonon
lattice

The approximate quantum Boltzmann equation in the molecular chaos approx-
imation for the one particle density operator reads

ih∂tρ1(t) = [H0 + δH(t), ρ1(t)] + (N − 1)Tr2[V12, ρ1(t)⊗ ρ1(t)]−−− (43)

where
ρ1(t) = ρ1(t|Q), Q ∈ {Q1, ..., QM} − − − (44)

Note that in above example, in the position representation,

V12(ξ, ξ
′) = e2/|ξ − ξ′| − − − (45)

Here,

H0+δH(t) = (−h2/2m)(∇ξ+ieAc(t, Q+ξ)/h)2−eV0(ξ)−eVc(t, Q+ξ)−−−(46)

H0 = (−h2/2m)∇2
ξ − eV0(ξ)−−− (47)

and then to O(e), we get the first order perturbation to the one particle Hamil-
tonian (assuming divAc = 0, ie, we are operating in the Coulomb gauge for the
incident em wave so that Vc = 0 too)

δH(t) = (−ieh/m)(Ac(t, Q+ ξ),∇ξ)−−− (48)

Let |n >, n = 1, 2, ... denote the stationary states of the centres, ie,

H0|n >= E(n)|n >, n = 1, 2, ...−−− (49)

Then, the scattered electromagnetic four potential is calculated as follows.

As(t, r) = −Nem−1
M∑
k=1

Tr(ρ1(t|Qk)(−ih∇ξ+eAc(Qk+ξ))/|r−Qk−ξ|)−−−(50)

Vs(t, r) = −Nem−1
M∑
k=1

Tr(ρ1(t|Qk)/|r −Qk − ξ|)−−− (51)
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where in the first expression, symmetrization of the operator involved is as-
sumed. It should be noted that in a non-relativistic approximation, the scat-
tered electromagnetic field can also be directly written down without having to
go through the calculation of the four potential:

Es(t, r) = −Ne

M∑
k=1

Tr(ρ1(t|Qk)(r −Qk − ξ)/|r −Qk − ξ|3)−−− (52)

Bs(t, r) = −Ne

M∑
k=1

Tr(ρ1(t|Qk)vk × (r −Qk − ξ)/|r −Qk − ξ|3)−−− (53)

where vk is velocity operator

vk = (−ih∇ξ + eAc(Qk + ξ))/m−−− (54)

Note that for an observable X, we calculate in the position representation

Tr(ρ1(t|Q)X) =

∫
ρ1(t, ξ

′, ξ′′|Q)X(ξ′′, ξ′)d3ξ′.d3ξ′′ −−− (55)

where
ρ1(t, ξ

′, ξ′′|Q) =< ξ′|ρ1(t|Q)|ξ′′ > −−−(56)

X(ξ′′, ξ′) =< ξ′′|X|ξ′ > −−−(57)

0.4 Approximate first order solution to the quan-
tum Boltzmann equation

We write
ρ1(t) = ρ

(0)
1 + δρ1(t)−−− (58)

Then, taking

ρ
(0)
1 = Z(β)−1exp(−βH0) =

∑
n

|n > p(n) < n| − − − (59)

where

p(n) = exp(−βE(n))/Z(β), Z(β) =
∑
m

exp(−βE(m))−−− (60)

we see that ρ
(0)
1 trivially satisfies the zeroth order Boltzmann equation:

0 = ih∂tρ
(0)
1 = [H0, ρ

(0)
1 ]−−− (61)

The first order Boltzmann equation is then given by

∂tδρ1(t) = [H0, δρ1(t)] + [δH(t), ρ
(0)
1 ] + (N − 1)Tr2[V12, ρ

(0)
1 ⊗ ρ

(0)
1 ]−−− (62)
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We are herein assuming that the nonlinear term in the quantum Boltzmann
equation is of the first order of smallness, ie, of the same order of smallness
as the external em field or equivalently, of the same order of smallness as the
perturbing Hamiltonian δH(t). Note that writing

un(ξ
′) =< ξ′|n >?, n = 1, 2, ...−−− (63)

we have

V12 = e2
∑

n,m,r,s

|n > |m >< r| < s|
∫

ūn(ξ
′)ūm(ξ′′)ur(ξ

′)us(ξ
′′)d3ξ′d3ξ′′/|ξ′−ξ′′|

=
∑

n,m,r,s

|n > |m >< r| < s|a(nm|rs) =
∑
nmrs

a(nm|rs)(|n >< r|⊗|m >< s|)−−−(64)

where

a(nm|rs) =
∫

ūn(ξ
′)ūm(ξ′′)ur(ξ

′)us(ξ
′′)d3ξ′d3ξ′′/|ξ′ − ξ′′| − − − (65)

is symmetric and real w.r.t interchange of the ordered pairs (nm) and (rs). It is
also symmetric w.r.t interchange of the ordered pairs (nr) and (ms). Therefore,
by the spectral theorem, it can be diagonalized as

a(nm|rs) =
∑
p

λ(p)wp(nr)wp(ms)−−− (66)

Writing therefore

Wp =
∑
nr

wp(nr)|n >< r| − − − (67)

we get

V12 =
∑
p

λ(p)Wp ⊗Wp −−− (68)

where W ′
ps are Hermitian operators in the Hilbert space L2(R3) and λ(p) are

real numbers. Note that the symmetry of a(nm|rs) under intrerchange of (nm)
and (rs) implies that we can choose wp(nr) so that it is real and symmetric
under interchange of (nr). This in turn implies that Wp is real symmetric and
in particular Hermitian. The first order perturbed qbe given by

∂tδρ1(t) = −i[H0, δρ1(t)]−i[δH(t), ρ
(0)
1 ]−i(N−1)

∑
p

λ(p)Tr(Wpρ
(0)
1 )[Wp, ρ

(0)
1 ]−−−(69)

can now be expressed in terms of matrix elements w.r.t the unperturbed eigen-
states of the one particle Hamiltonian s

∂t < n|δρ1(t)|m >=

−iE(nm) < n|δρ1(t)|m > −i(p(m)−p(n)) < n|δH(t)|m > −i(N−1)
∑

λ(p)Tr(Wpρ
(0)
1 )(p(m)−p(n)) < n|Wp|m > −−−(70)
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where E(nm) = E(n)− E(m). Note that

Tr(Wpρ
(0)
1 ) =

∑
n

p(n) < n|Ep|n > −−−(71)

This linear differential equation is easily solved to give

< n|δρ1(t)|m >=∫ t

0

exp(−iE(nm)(t−s))[−i(p(m)−p(n)) < n|δH(s)|m > −i(N−1)
∑
p

λ(p)Tr(Wpρ
(0)
1 )(p(m)−p(n)) < n|Wp|m >]

= −ip(mn)

∫ t

0

exp(−iE(nm)(t−s)) < n|δH(s)|m > ds−i(N−1)p(mn)((1−exp(−iE(nm)t))/iE(nm))
∑
p

λ(p)Tr(Wpρ
(0)
1 ) < n|Wp|m > −−−(72)

where
p(mn) = p(m)− p(n)−−− (73)

0.5 Comparison of the quantum Boltzmann equa-
tion with the classical Boltzmann equation
using the Wigner distribution

For a given density operator ρ(t) in one particle Hilbert space, ie, in L2(R3), we
define its position space continuous matrix kernel:

ρ(t, ξ′, ξ′′) =< ξ′|ρ(t)|ξ′′ > −−−(74)

Its Wigner transform is the complex valued function of (ξ, P ) ∈ R6 defined by

ρ̂(t, ξ, P ) = C.

∫
ρ(t, ξ + q/2, ξ − q/2)exp(iP.q/h)d3q −−− (75)

where h equals Planck’s constant divided by 2π. Clearly, for appropriate choice
of the normalization constant C, we have∫

ρ̂(t, ξ, P )d3P = ρ(t, ξ, ξ)−−− (76)

namely, the probability density of the position of the particle in the state ρ and
moreover,∫

ρ̂(t, ξ, P )d3ξ =

∫
ρ(t, ξ′, ξ′′)exp(iP.(ξ′ − ξ′′)/h)d3ξ′.d3ξ′′ −−− (77)
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namely, the probability density of the momentum of the particle in the state ρ.
Further, we have the inversion formula:

ρ(t, ξ + q/2, ξ − q/2) = C ′.

∫
ρ̂(t, ξ, P ).exp(−iP.q/h)d3P −−− (78)

or equivalently,

ρ(t, ξ′, ξ′′) = C ′
∫

ρ̂(t, (ξ′ + ξ′′)/2, P )exp(−iP.(ξ′ − ξ′′)/h)d3P −−− (79)

In order to compare the quantum Boltzmann equation with the classical Boltz-
mann equation, we transform the former to give an equation for the Wigner dis-
tribution function ρ̂(t, ξ, P ) and then expand this equation in powers of Planck’s
constant to show that the zeroth order term is simply the classical Boltzmann
equation for the one particle distribution in phase space and that higher order
terms in powers of Planck’s constant give quantum corrections to the classical
Boltzmann equation.

We write down the non-relativistic quantum Boltzmann equation for charged
particles interacting mutually on a pairwise basis and also with an external
electromagnetic field as

ih∂tρ(t) = [H0 + δH(t), ρ(t)] + (N − 1)Tr2[V12, ρ(t)⊗ ρ(t)]−−− (80)

where

H0 = (−h2/2m)∇2
ξ−eV0(ξ), δH(t) = −(ieh/m)(A(t, ξ),∇ξ)−eV (t, ξ)−−−(81)

In the position representation, the term [δH(t), ρ(t)] is represented by the kernel

(−ieh/m)[(A(t, ξ′),∇ξ′)ρ(t, ξ
′, ξ′′) + divξ′′(A(t, ξ′′)ρ(t, ξ′, ξ′′))]

−e[(V (t, ξ′)− V (t, ξ′′))ρ(t, ξ′, ξ′′)]−−− (82)

because for any function f of position, we have using integration by parts,∫
ρ(t, ξ′, ξ′′)(A(t, ξ′′),∇ξ′′)f(ξ

′′)dξ′′

= −
∫

divξ′′(ρ(t, ξ
′, ξ′′)A(t, ξ′′))f(ξ′′)dξ′′ −−− (83)

Now making the Coulomb gauge choice divA = 0, we get the result that the
position space representation of [δH(t), ρ(t)] is given by

[δH(t), ρ(t)](ξ′, ξ′′) =

(−ieh/m)[(A(t, ξ′),∇ξ′)ρ(t, ξ
′, ξ′′) + (A(t, ξ′′),∇ξ′′)ρ(t, ξ

′, ξ′′))]

−e[(V (t, ξ′)− V (t, ξ′′))ρ(t, ξ′, ξ′′)]−−− (84)
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Now we compute the Wigner transform of this quantity. First observe that
the Wigner transform of the second term, namely of the kernel F (t, ξ′, ξ′′) =
(V (t, ξ′)− V (t, ξ′′))ρ(t, ξ′, ξ′′) is given upto O(h) terms by

F̂ (t, ξ,Q) =

∫
F (t, ξ + hq/2, ξ − hq/2)exp(−iP.q)dq

=

∫
(V (t, ξ + hq/2)− V (t, ξ − hq/2))ρ(t, ξ + hq/2, ξ − hq/2)exp(−iP.q)dq

= h

∫
(q,∇ξV (t, ξ))ρ(t, ξ + hq/2, ξ − hq/2)exp(−iP.q)dq

= (−∇ξV (t, ξ)), ih∇P )ρ̂(t, ξ, P )−−− (85)

since

ρ̂(t, ξ, P ) =

∫
ρ(t, ξ + hq/2, ξ − hq/2)exp(−iP.q)dq −−− (86)

Thus, theWigner transform of F1(t, ξ
′, ξ′′) = (−i/h)F (t, ξ′, ξ′′) = (−i/h)(V (t, ξ′)−

V (t, ξ′′))ρ(t, ξ′, ξ′′) is given by

F̂1(t, ξ, P ) = (−∇ξV (t, ξ),∇P )ρ̂(t, ξ, P )−−− (87)

which has the desired form of the contribution of the electrostatic field to the
classical Boltzmann equation in position-momentum space. Next we observe
that the Wigner transform of the first term, namely of the kernel

G(t, ξ′, ξ′′) = (A(t, ξ′),∇ξ′)ρ(t, ξ
′, ξ′′) + (A(t, ξ′′),∇ξ′′)ρ(t, ξ

′, ξ′′))−−− (88)

is given by

Ĝ(t, ξ, P ) =

∫
(A(t, ξ+hq/2),∇1)ρ(t, ξ+hq/2, ξ−hq/2)+(A(t, ξ−hq/2),∇2)ρ(t, ξ+hq/2, ξ−hq/2))exp(−iP.q)dq−−−(89)

where ∇1 denotes gradient w.r.t ξ1 = ξ + hq/2 and ∇2 w.r.t ξ2 = ξ − hq/2. We
can write

∇ξ = ∇1 +∇2 −−− (90)

∇q = (h/2)(∇1 −∇2)−−− (91)

and hence,

(h/2)∇1 = (h/2)∇ξ +∇q, (h/2)∇2 = (h/2)∇ξ −∇q −−− (92)

Thus,
(h/2)Ĝ(t, ξ, P ) =∫

[(A(t, ξ+hq/2), (h/2)∇ξ+∇q)ρ(t, ξ+hq/2, ξ−hq/2)+(A(t, ξ−hq/2), (h/2)∇ξ−∇q)ρ(t, ξ+hq/2, ξ−hq/2)]exp(−iP.q)dq−−−(93)
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Expanding the vector potential upto O(h2) terms, we see that the term involving
gradient of the vector potential is given by

(h2/2)

∫
(q,∇ξ)A(t, ξ),∇q)ρ(t, ξ + hq/2, ξ − hq/2)exp(−iP.q)dq

= (ih2/2)

∫
[((q,∇ξ)A(t, ξ), P )ρ(t, ξ + hq/2, ξ − hq/2))].exp(−iP.q)dq

= (A,j(t, ξ), P )∂Pj ρ̂(t, Q, P ) = Ak,j(t, ξ)Pk∂Pj ρ̂(t, Q, P )−−− (94)

except for a proportionality constant.

Now, we assume that that magnetic field is nearly a constant in space over
each central region. This means that if we denote the position of the centre by
xi0, then

A(t, ξ) ≈ B(t, ξ0)× (ξ − ξ0)/2−−− (95)

or equivalently, in terms of components,

Ak(t, ξ) = ϵ(krs)Br(t, ξ0)(ξs − ξ0s)/2−−− (96)

so that

Ak,j(t, ξ) = ϵ(krj)Br(t, ξ0) ≈ ϵ(krj)Br(t, ξ)/2−−− (97)

and hence,

Ak,j(t, ξ)Pk∂Pj ρ̂(t, Q, P ) = ϵ(krj)Br(t, ξ)Pk∂Pj ρ̂(t, Q, P )

= (P ×B(t, ξ),∇P )ρ̂(t, Q, P )−−− (98)

which is exactly the contribution of the magnetic field to the classical Boltzmann
equation.

0.6 Identifying the quantum corrections to Boltz-
mann’s equation coming from the nonlinear
term

qbe stands for quantum Boltzmann equation. The main reason behind these
calculations is to show that if some basic parameters of the optical fibre are
known like the positions of the centres of charges, then, in principle, we can
compute the scattered classical electromagnetic field produced by the charges
around these centres and hence design the counter potential or counter TPCP
map to effect its cancellation.

Before however doing so, we first discuss a method for estimating the Lind-
blad noise term in the simplest form of the qbe. This equation reads

∂tρ(t) = (−i/h)[H0+δH(t), ρ(t)]+θ(ρ(t))−(i/h)(N−1)Tr2[V12, ρ(t)⊗ρ(t)]−−−(99)
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where θ is the Lindblad term which is to be estimated. We assume that

θ(ρ) =

p∑
k=1

αkθk(ρ)−−− (100)

where the θ′ks are known maps on the space of density matrices and the α′
ks are

parameters to be estimated. Before however introducing an algorithm based
on the maximum likelihood method for estimating the α′

ks, we shall explain
how to transform the Lindblad term and the nonlinear term to the Wigner
distribution domain. First consider the nonlinear term. In the position domain,
it is expressible as

F (ξ1, ξ
′
1) = Tr2[V12, ρ⊗ ρ](ξ1, ξ

′
1) =∫

V (ξ1, ξ2)ρ(ξ1, ξ
′
1)ρ(ξ2, ξ2)dξ2 −−− (101)

and hence its Wigner transform is

F̂ (xi1, P1) =

∫
F (xi1 + hq/2, ξ1 − hq/2)exp(−iP1.q)dq =

∫
V (ξ1 + hq/2, ξ2)ρ(ξ1 + hq/2, ξ1 − hq/2)ρ̂(xi2, P2)exp(−iP1.q)dP2dξ2dq

= (

∫
V (ξ1, ξ2)ρ̂(ξ2, P2)d]xi2dP2)ρ̂(ξ1, P1)

+
∑
n≥1

(n!)−1(h/2)n(

∫
V

(n)
1 (ξ1, ξ2)ρ̂(ξ2, P2)dξ2dP2)

∫
qnρ(ξ1+hq/2, ξ1−hq/2)exp(−iP1.q)dq

= (

∫
V (ξ1, ξ2)ρ̂(ξ2, P2)d]xi2dP2)ρ̂(ξ1, P1)

+
∑
n≥1

(n!)−1(1/2)n(

∫
V

(n)
1 (ξ1, ξ2)ρ̂(ξ2, P2)dξ2dP2)(ih∂P1

)nρ̂(ξ1, P1)−−− (102)

In this way, it becomes a long but straightforward calculation to obtain quantum
corrections to the classical Boltzmann equations coming from the nonlinear
terms.

0.7 Quantum corrections to Boltzmann’s equa-
tion coming from the external scalar poten-
tial field terms

We now become more explicit by evaluating exactly all the higher order quantum
correction terms caused by external field and mutual interaction effects.
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Specifically, to all orders, the Wigner transform of the external electostatic
potential term F1(t, ξ

′,x′′) = (−i/h)(V (t, ξ′)− V (t, ξ′′))ρ(t, ξ′, ξ′′) is given by

F̂1(t, ξ, P ) = (−i/h)

∫
(V (t, ξ+hq/2)−V (t, ξ−hq/2))ρ(t, ξ+hq/2, ξ−hq/2)exp(−iP.q)dq

= (−2i/h)
∑
n≥0

((2n+1)!)−1(h/2)2n+1(∂2n+1
ξ V (t, ξ))

∫
q2n+1ρ(t, ξ+hq/2, ξ−hq/2)exp(−iP.q)dq

(−2i/h)
∑
n≥0

((2n+ 1)!)−1(−ih/2)2n+1(∂2n+1
ξ V (t, ξ))(−i∂P )

2n+1ρ̂(t, ξ, P )

= −
∑
n≥0

((2n+1)!)−1(−1)nh2n/22n+1(∂2n+1
ξ V (t, ξ))(−i∂P )

2n+1ρ̂(t, ξ, P )−−−(103)

The zeroth degree term in Planck’s constant is (−∂ξV (t, ξ), ∂P )ρ̂(t, ξ, P ) which
may be identified with the classical contribution while the higher degree terms
in Planck’s constant are proportional to h2n(∂⊗2n

ξ , ∂⊗2n
P )ρ̂(t xi, P ), n ≥ 1 and

can be identified with quantum corrections to the classical contribution.

0.8 Quantum Boltzmann equation taking into
account Lindblad coupling to a noisy bath:Estimating
the Lindblad parameters based on sequen-
tial POVM’s

We now express the qbe with Lindblad term in the form

∂tρ(t) = δ.θ(ρ(t)|α) + F (ρ(t))−−− (104)

where δ is small perturbation parameter and F (ρ) = −i[H, ρ]−iδ.(N−1)Tr2[V12, ρ⊗
ρ]. In doing thus, we are assuming that the contribution of the nonlinear mutual
interaction term in the qbe is of the same order of smallness O(δ) as the con-
tribution coming from the Lindlbad term. A more satisfactory way that avoids
such an assumption is to assume first that the nonlinear term is absent and then
obtain the perturbation series T0 for the linear differential equation defined by
the Hamiltonian and Lindblad term alone and then include the nonlinear term
and obtain the perturbation series with respect to this term assuming the zeroth
order solution being given by T0. Yet another way to obtain the perturbation
series that avoids doing two perturbation expansions is to assume that the Lind-
blad term is O(δ) while the nonlinear term is much smaller of O(δm) where m
is a positive integer and then expand the solution density in powers of δ.

The Lindlbad term has the expansion

θ(ρ|α) =
∑
k

α(k)θk(ρ)−−− (105)
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Using perturbation theory, we can express the solution in the form

ρ(t) = Tt,s(ρ(s)|α) = Tt,s(α)[ρ(s)], t > s−−− (106)

where Tt,s is a nonlinear evolution operator expressed as a power series in the
parameter vector α. Specifically, we can write upto O(δ). Assume that a POV
measurement {M(a) : a = 1, 2, ...,K} is performed on the system at times
t1 < t2 < ... < tN with the outcomes noted at each stage. Then, according to
the collapse postulate of quantummechanics after a measurement, the sequential
probability of obtaining outcomes a1, ..., aN at these measurements allowing for
qbe plus Lindblad evolution in-between two measurements is given by

P (a1, ..., aN ; t1, ..., tN |α) =

Tr[
√
M(aN ))TtN ,tN−1

(α)[
√

M(aN−1TtN−1,tN−2
(α)[

√
M(a(N − 2))...

Tt2,t1(α)[
√
M(a1)Tt1,0(α)[ρ(0)]

√
M(a1)]...

√
M(aN−2]

√
M(aN−1)]

√
M(aN )]−−−(107)

The maximum likelihood method then involves maximizing this joint sequential
probability w.r.t α. There appears to be no other satisfactory method for es-
timating the Lindlbad noise terms coming from the random perturbing Hamil-
tonian produced by the lattice of charged phonons with charges surrounding
them in order to generate the counter potential or counter TPCP term for noise
cancellation.

0.9 Quantum Boltzmann equation taking into
account non-demolition noisy measurements
using the Belavkin filter

Another more complex way to estimate the Lindblad parameters is based on
the continuous non-demolition method developed by V.P.Belavkin. This in-
volves first dilating the Lindblad dynamics into a unitary evolution on the joint
state of the system and bath phonons and then estimating the evolving state of
the system alone on a real time basis using non-demolition measurements. It
should be noted here that the Belavkin equation for the system state evolution
is being applied to the joint state of all the N indistinguishable particles of the
system. We then partially trace out this Belavkin equation over all but one of
the N particles to obtain a quantum Boltzmann equation for one particle that
takes into account non-demolition measurement noise. Specifically, the Belavkin
equation for the state estimate ρB(t) of the N particles is given by

dρB(t) = −i[H, ρB(t)]dt+θ(ρB(t)|α)dt+F1(t, ρB(t))(dY (t)−F2(t, ρB(t))dt), H =

N∑
k=1

Hk+
∑

1≤k<j≤N

Vkj−−−(108)

where dY is the measurement noise differential, F1(t, ρB) is of the form MρB +
ρBM

∗ − Tr(ρB(M +M∗))ρB , or in short, F1 is a linear-quadratic function of
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ρB and F2(t, ρB) = Tr(ρB(M +M∗)), or in short, F2 is linear in ρB . Note that
ρB ,M are operators in the N -fold tensor product of the one particle Hilbert
space H1 and that M is invariant under any permutation of the particles.

Partial tracing out this equation over H⊗N−1
1 results in an equation of the

form

dρB1(t) = −i[H1, ρB1(t)]dt− i(N − 1)Tr2[V12, ρB1(t)⊗ ρB1(t)]dt

+
∑
k

f1k(t, ρB1(t)|α).θ1k(ρB1(t)|α)dt+
∑
k

f2k(t, ρB1(t)|α).θ2k(ρB1(t)|α)dY (t)−−−(109)

Note that in arriving at this approximate equation, we use the molecular chaos
approximation:

ρB(t) ≈ ρB1(t)
⊗N −−− (110)

and we also use the assumption that the Lindblad noise coupling operators
for the particles to the bath are symmetric w.r.t permutations of the particles.
θ1k, θ2k are linear maps depending on the parameters α acting in the space of
one particle system operators. f1k is a polynomial function of ρB1 of degree N ,
specifically, ∑

k

f1k(t, ρB1|α)θ1k(ρB1|α) = Tr23...N−1(F1(t, ρ
⊗N
B1 ))

= Tr23...N−1(Mρ⊗N
B1 + ρ⊗N

B1 M∗)− Tr(ρ⊗N
B1 (M +M∗))ρB1)−−− (111)

is a polynomial in ρB1 containing only N th and (N + 1)th degree terms and∑
k

f2k(t, ρB1(t)|α)θ2k(ρB1|α) = −Tr23...N (F1(t, ρ
⊗N
B1 )F2(t, ρ

⊗N
B1 ))−−− (112)

is a polynomial in ρB1 containing only (2N)th and (2N + 1)th degree terms.
Thus, f1k is a polynomial in ρB1 containing only (N − 1)th and N th degree
terms while f2k is a polynomial in ρB1 containing only (2N − 1)th and (2N)th

degree terms.

It should be noted that once the non-demolition measurements Y (.) upto
time t are made, we get access to the one particle state ρB1, and we can then
using this state and the above Belavkin-Boltzmann equation, estimate the Lind-
blad parameters α by performing further measurements on each particle’s state.
It should be noted that prior to making the non-demolition measurements, we
do not have access to the system state, only after performing the measurements
Y (.), we get the Belavkin estimate of the one particle state. It should be noted
that by the non-demolition property of the Belavkin measurements Y (.), the
future evolution of observables in the HPS dynamics is not affected. We can
also using this Belavkin equation, design algorithms for nearly cancelling out the
effects of Lindblad noise by applying quantum control along the lines indicated
in the thesis of Lec-Bouten.
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0.10 Lec-Bouten’s method of Lindblad noise can-
cellation

Lec-Bouten’s method of noise cancellation: In the simplest case of a single
particle, the Belavkin state estimate at time t + dt is given in terms of its
controlled estimate at time t by the equation

ρB(t+dt) = ρc(t)+dt.θ(ρc(t))+F1(t, ρc(t)).(dY (t)−F2(t, ρc(t))dt)−−− (113)

where

θ(ρB(t)) = −i[H, ρB ]− (1/2)
∑
k

(LkL
∗
kρB + ρB .LkL

∗
k − 2L∗

kρBLk)−−− (114)

We design the control operator (not necessarily unitary since Z is not restricted
to be Hermitian)

Uc(t, t+ dt) = exp(−iZdY (t))−−− (115)

over the time interval [t, t+ dt] where Z is a Hermitian system operator like H.
Note that Lk is also a system operator but not necessarily Hermitian. Applying
this control operation to ρB(t+ dt) gives us the controlled state at time t+ dt
as (We are assuming that the non-demolition measurement is quadrature, ie,
the input measurement process is a quantum Brownian motion and does not
contain any counting/Poisson/Conservation process component. Therefore, we
have by quantum Ito’s formula, (dY )2 = dt)

ρc(t+ dt) = Uc(t, t+ dt)ρB(t+ dt)Uc(t, t+ dt)∗ =

(1−iZdY−Z2dt/2).(ρc(t)+dt.θ(ρc(t))+F1(t, ρc(t)).(dY (t)−F2(t, ρc(t))dt))(1+iZdY−Z2dt/2)

= ρc(t) + dt.θ(ρc(t)) + F1(t, ρc(t)).(dY (t)− F2(t, ρc(t))dt)

−i[Z, ρc(t)]dY (t)−(dt/2)(Z2ρc(t)+ρc(t)Z
2−2Zρc(t)Z)−i[Z,F1(t, ρc(t))]dt−−−(116)

The idea then is to choose the system operator Z, so that

∥ θ(ρc)− (1/2)(Z2ρc + ρcZ
2 − 2ZρcZ)− i[Z,F1(t, ρc)] ∥2 −−−(117)

is minimized. To see how this works, suppose that L is a skew-Hermitian system
operator. Then L∗ = −L and if we assume that

θ(ρc) = (−1/2)(LL∗ρc + ρcLL
∗ − 2L∗ρcL) =

(1/2)(L2ρc + ρcL
2 − 2LρcL)−−− (118)

and further taking M = L,

F1(t, ρc) = Mρc+ρcM
∗−Tr(ρc(M +M∗))ρc = Lρc−ρcL = [L, ρc]−−− (119)
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Then, taking Z = −iL (Note that Z will then be Hermitian), we get

θ(ρc)− (1/2)(Z2ρc + ρcZ
2 − 2ZρcZ)− i[Z,F1(t, ρc)] =

= (1/2)(L2ρc+ρcL
2−2LρcL)+(1/2)(L2ρc+ρcL

2−2LρcL)−[L, [L, ρc]] = 0−−−(120)

More generally, we can conceive of a situation in which the measurement com-
prises of p > 1 non-demolition noise processes Y1, ..., Yp. In that case the
Belavkin filter has the form

dρB(t) = −i[H, ρB ]− (1/2)
∑
k

(LkL
∗
kρB + ρBLkL

∗
k − 2L∗

kρBLk)

+
∑
k

(ρBLk+L∗
kρB−Tr(ρB(Lk+L∗

k))ρB)(dYk(t)−Tr(ρB(Lk+L∗
k))dt)−−−(121)

Again, we try to cancel out a part of the Lindblad process noise by means of
the control unitary

Uc(t, t+dt) = Πp
k=1exp(−iZkdYk) = Πp

k=1(1−iZkdYk−Z2
kdt/2) = 1−i

∑
k

ZkdYk−(1/2)(
∑
k

Z2
k)dt−−−(122)

since Y ′
ks are quadratures with dYkdYj = δkjdt.

0.11 Frequency aspects of the scattered electro-
magnetic field in the classical Boltzmann
equation

Consider first the simple case when there is just one centre generating a potential
U(r) in which a large number N point charges, each of charge q execute motion.

By jointly solving the nonlinear classical Boltzmann equation and Maxwell’s
equations for the scattered field, we easily deduce the fact that the scattered elec-
tromagnetic field is a nonlinear functional of the incident electromagnetic field
and the initial equilibrium approximate joint Gaussian density of the phonon
positions and velocities. Specifically, if we neglected the quadratic nonlinear in-
teraction terms in the classical Boltzmann equation, then the Boltzmann equa-
tion would be linear with a driving term being proportional to the equilibrium
phonon density. This equation would be

∂tf(t, r, v)+(v,∇r)f(t, r, v)−(q/m)(∇U(r),∇v)f(t, r, v)+(q/m)(Ec(t, r)+v×Bc(t, r),∇v)f(t, r, v) = 0−−−(123)

Here, we are assuming that the binding potential U(r) for each particle is the
same. We write

f(t, r, v) = f0(r, v) + δf(t, r, v)−−− (124)

with
f0(r, v) = Z−1exp(−β(qU(r) +mv2/2))−−− (125)
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and after substituting this and making cancellations, we get our final equation
as

∂tδf(t, r, v)+(v,∇r)δf(t, r, v)−(q/m)(∇U(r),∇v)δf(t, r, v)−βq(Ec(t, r), v)f0(r, v)

+(q/m)(Ec(t, r) + v ×Bc(t, r),∇v)δf(t, r, v) = 0−−− (126)

This equation is exact provided that we neglect the quadratic nonlinear inter-
action term

Q(f, f)(t, r, v) = (N−1)q(

∫
f(t, r′, v′)(r−r′)d3r′d3v′/|r−r′|3,∇v)f(t, r, v)+(N−1)q(

∫
f(t, r′, v′)v′×(r−r′)d3r′d3v′/|r−r′|3,∇v)f(t, r, v)−−−(127)

Suppose now that we take into account this quadratic term but retain only those
terms in it that are linear in δf1. Then, we see that the zeroth order equation
for the equilibrium density satisfies the nonlinear integro-differential equation

(v,∇r)f0(r, v)− q(∇U(r),∇v)f0(r, v) +Q(f0, f0)(r, v) = 0−−− (128)

We can solve this perturbatively by assuming Q(f0, f0) to be small and writing

f0(r, v) = f00(r, v) + δf0(r, v)−−− (129)

where
f00(r, v) = Z−1exp(−β(mv2/2 + qU(r)))−−− (130)

satisfies the unperturbed equilibrium equation

(v,∇r)f00(r, v)− q(∇U(r),∇v)f00(r, v) = 0−−− (131)

and δf0(r, v) will then satisfy the first order perturbed equilibrium equation:

(v,∇r)δf0(r, v)− q(∇U(r),∇v)δf0(r, v) = −Q(f00, f00)(r, v)−−−−(132)

or in terms of operators, the formal solution is

δf0(r, v) = −[(v,∇r)δf0(r, v)− q(∇U(r),∇v)]
−1Q(f00, f00)(r, v)−−− (133)

Remark: Suppose we have a density of particles in phase space f(x). The in-
teraction energy of these particles with an external potential U1(x) is

∫
f(x)U1(x)dx

and the pairwise interaction energy of the particles has the form (1/2)
∫
U2(x, y)f(x)f(y)dxdy.

According the the maximum entropy principle, the equilibrium density f0(x)
will be obtained by maximizing the entropy −

∫
f(x).ln(f(x))dx subject to the

total energy constraint

E =

∫
f(x)U1(x)dx+

∫
f(x)f(y)U2(x, y)dxdy

Using Lagrange multipliers to take care of this constraint as well as the density
constraint

∫
f(x)dx = 1, the functional to be maximized is thus given by

S(f, µ) = −
∫

f(x)ln(f(x))dx−µ(E−
∫

f(x)U1(x)dx−(1/2)

∫
f(x)f(y)U2(x, y)dxdy)−λ(1−

∫
f(x)dx)
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and setting the variational derivative δS(f).δf(x) = 0 at f = f0 give us the
result that f0 satisfies

−ln(f(x))− 1 + µ(U1(x) +

∫
U2(x, y)f(y)dy + λ = 0

Formally, we can express this as the following implicit functional equation

f(x) = C.exp(µ(U1(x) + (U2f)(x))

where the constants C, µ are determined from the energy and particle con-
straints. It is easy to see that the above nonlinear equation for f0 derived as
the stationary Boltzmann equation can also be arrived from this argument by
an appropriate choice of the functions U1, U2, namely x = (r, v), U1(r, v) =
mv2/2+qU(r) and U2(r, v; r

′, v′) defined in terms of the kernel of the quadratic
form Q(f, f) and finally, µ = −β.

Now, taking the quadratic term Q into account, the exact equation satisfied
by δf is given by

∂tδf(t, r, v)+(v,∇r)δf(t, r, v)−(q/m)(∇U(r),∇v)δf(t, r, v)+(q/m)(Ec(t, r)+v×Bc(t, r),∇v)f0(r, v)

+(q/m)(Ec(t, r)+v×Bc(t, r),∇v)δf(t, r, v)+2Q(f0, δf)(t, r, v)+Q(δf, δf)(t, r, v) = 0−−−(134)

where
f0 = f00 + δf0 −−− (135)

as above. Note that the polarization identity gives

Q(f, g) = (Q(f+g, f+g)−Q(f−g, f−g))/4 = (Q(f+g, f+g)−Q(f, f)−Q(g, g))/2−−−(136)

The above equation is exact provided that we assume that the solution to the
equilibrium equation for f0 is exact. Note that this becomes a linear integro-
partial differential equation for δf(t, r, v) provided that we neglect the last term
Q(δf, δf). Writing therefore,

δf = δf1 + δf2, f0 = f00 + δf0 −−− (137)

where δf1 is of the first order of smallness and δf2 is of the second order of
smallness while f00 is of zeroth order and δf0 is of the first order of smallness,
we find that the respective equations satisfied by δf1 and δf2 are

∂tδf1(t, r, v)+(v,∇r)δf1(t, r, v)−(q/m)(∇U(r),∇v)δf1(t, r, v)−βq(Ec(t, r), v)f00(r, v) = 0−−−(138)

if we assume that the incident field Ec, Bc is of the first order of smallness and
the kernel of Q is also of the first order of smallness, so that Q(f0, δf1) becomes
of the second order of smallness, and

∂tδf2(t, r, v) + (v,∇r)δf2(t, r, v)− (q/m)(∇U(r),∇v)δf2(t, r, v)
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+(q/m)(Ec(t, r)+v×Bc(t, r),∇v)(δf0(r, v)+δf1(t, r, v))+2Q(f0, δf1)(t, r, v) = 0−−−(139)

Remark: Note that (v × Bc(t, r),∇v)f00(r, v) = 0 because f00 is Gibbsian
with energy mv2/2 + qU(r). The story will be complete once we comppute the
scattered fields in the non-relativistic approximation as

Es(t, r) = Nq

∫
(δf0(r

′, v′)+δf1(t, r
′, v′)+δf2(t, r

′, v′))(r−r′)d3r′d3v′/|r−r′|3−−−(140)

Bs(t, r) = Nq

∫
(δf0(r

′, v′)+δf1(t, r
′, v′)+δf2(t, r

′, v′))v′×(r−r′)d3r′d3v′/|r−r′|3−−−(141)

It is clear from the above equations that δf1(t, r, v) is a linear function of the
incident electric field Ec while δf2(t, r, v) is a linear-quadratic function of the
incident electric and magnetic fields Ec, Bc. The linear term in the equation for
δf2 comes from (q/m)(Ec(t, r) + v × Bc(t, r),∇v)δf0(r, v) while the quadratic
term comes from (q/m)(Ec(t, r) + v × Bc(t, r),∇v)δf1(t, r, v). Note that δf1 is
independent of the incident magnetic field Bc. It follows that if Ec, Bc contain
frequencies only in a band I, then δf1 will contain frequencies only in the band
I while δf2 will contain frequencies only in the band I ∪ (I + I). Note that δf0
time independent and hence contributes only to the dc term in the scattered
electric and magnetic fields which are not of much interest to us.

0.12 Frequency spectrum of scattered field from
the quantum Boltzmann equation

The two and three particle density operators can be expressed in the form

ρ12 = ρ1⊗ρ1+g12, ρ123 = ρ1⊗ρ1⊗ρ1+ρ1⊗g23+ρ2⊗g13+ρ3⊗g12+g123−−−(142)

where for consistency, Tr2g12 = 0, T r3g123 = 0 with g12, g123 being invariant
under particle permutations. These operators satisfy the following differential
equations derived from the original N -particle Schrodinger equations by forming
partial traces over N − 1 and N − 2 particles respectively.

∂tρ1 = −i[H1, ρ1]− i(N − 1)Tr2[V12, ρ12]−−− (143)

∂tρ12 = −i[H1 +H2 + V12, ρ12]− i(N − 2)Tr3[V13 + V23, ρ123 −−− (144)

These are exact equations. Substituting the above expressions for ρ12 and ρ123
and making appropriate cancellations, we derive the following exact equations:

∂tρ1 = −i[H1, ρ1]− i(N − 1)Tr2[V12, ρ1 ⊗ ρ1 + g12]−−− (145)

∂tg12 = −i[H1 +H2 + V12, g12]− i[V12, ρ1 ⊗ ρ1 ⊗ ρ1]

+i.T r2[V12, ρ1 ⊗ ρ1]⊗ ρ1 + iρ1 ⊗ Tr2[V12, ρ1 ⊗ ρ1]
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+i.ρ1 ⊗ Tr2[V12, g12]− i(N − 2).T r3[V13, ρ1 ⊗ g23 + ρ3 ⊗ g12]

−i(N−2).T r3[V23, ρ2⊗g13+ρ3⊗g12]− i(N−2).T r3[V13+V23, g123]−−− (146)

Likewise we can derive exact equations for g123..r, r = 3, 4, ..., N in terms of
ρ1, g12...k, k = 2, 3, ..., r + 1. The quantum Boltzmann equation upto the rth

order involves neglecting g12...r+1, so that the system of equations closes on
itself at the rth stage. For example, if we require the qbe upto order two, then
we must neglect g123. These equations are then given by

∂tρ1 = −i[H1, ρ1]− i(N − 1)Tr2[V12, ρ1 ⊗ ρ1 + g12]−−− (147)

∂tg12 = −i[H1 +H2 + V12, g12]− i[V12, ρ1 ⊗ ρ1 ⊗ ρ1]

+i.T r2[V12, ρ1 ⊗ ρ1]⊗ ρ1 + iρ1 ⊗ Tr2[V12, ρ1 ⊗ ρ1]

+i.ρ1 ⊗ Tr2[V12, g12]− i(N − 2).T r3[V13, ρ1 ⊗ g23 + ρ3 ⊗ g12]

−i(N − 2).T r3[V23, ρ2 ⊗ g13 + ρ3 ⊗ g12]−−− (148)

Note that g12, g23, g13 are identical copies of each other but acting in the Hilbert
spaces Hi ⊗ Hjwith(i, j) = (1, 2), (2, 3), (1, 3) respectively with the Hi, i =
1, 2, ..., N being identical copies of each other. Likewise, ρi, i = 1, 2, 3 are
identical copies of each other but acting in the Hilbert spaces Hi, i = 1, 2, 3
respectively.

To simplify matters further, we consider the qbe upto first order obtained
by setting g12 = 0: Setting q = −e, we get

∂tρ1 = −i[H1, ρ1]− i(N − 1)Tr2[V12, ρ1 ⊗ ρ1]−−− (149)

With
H1 = H0 + δH1(t)−−− (150)

where

H0 = p21/2m+V0(r1), p1 = −i∇r1 , δH1(t) = (−ie/m)(A(t, r1),∇r1)−eV (t, r1)+e2A(t, r1)
2/2m = δH11(t)+δH12(t)−−−(151)

where δH11(t) is O(e) while δH12(t) is O(e2), and with

ρ1 = ρ0 + δρ1 + δρ2, ρ0 = Z(β)−1exp(−βH0)−−− (152)

where δρ1 is O(e) and δρ2 is O(e2), and we assume that the V12 is O(e2) because
it is the electrostatic interaction potential energy between to charged particles
of charge −e. Thus upto O(e2), we obtain the equations

∂tδρ1 = −i[H0, δρ1]− i[δH11, ρ0]−−− (153)

∂tδρ2 = −i[H0, δρ2]−i[δH11, δρ1]−i[δH12, ρ0]−i(N−1)Tr2[V12, ρ0⊗ρ0]−−−(154)

These have respective solutions with U0(t) = exp(−itH0):

δρ1(t) = −i

∫ t

0

Ad(U0(t− s))([δH11(s), ρ0])ds−−− (155)
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δρ2(t) = −i

∫ t

0

Ad(U0(t− s))([δH11(s), δρ1(s)] + [δH12(s), ρ0(s)])ds

−i(N − 1)(

∫ t

0

Ad(U0(s))ds)(Tr2[V12, ρ0 ⊗ ρ0])

= −
∫
0<s′<s<t

Ad(U0(t− s))ad(δH11(s))Ad(U0(s− s′))ad(δH11(s
′))(ρ0)dsds

′

−i

∫ t

0

Ad(U0(t−s))([δH12(s), ρ0])ds−i(N−1)(

∫ t

0

Ad(U0(s))ds)(Tr2[V12, ρ0⊗ρ0])−−−(156)

Noting that δH11 is linear in the electromagnetic potentials while δH12 is
quadratic in the same, it follows that δρ1 is linear in the electromagnetic field
while δρ2 contains a quadratic term in the electromagnetic field plus another
term that does not involve the electromagnetic field and that varies with time
as

∫ t

0
exp(−iad(H0)s) = (1 − exp(−itad(H0))/iad(H0). This second term con-

tains frequencies of the form En − Em where En is the nth excited stationary
energy level of the unperturbed Hamiltonian H0. Combining these results, we
deduce that upto second order, the one particle state ρ1(t) will contain a dc
term and terms that are linear-quadratic in the incident electromagnetic field
multiplied by terms that are linear in Ad(U0(t)) and in addition, terms that are
independent of the electromagnetic field but linear in Ad(U0(t)). Noting that
Ad(U0(t)) consists of frequencies corresponding to all energy differences (divided
by Planck’s constant which we are setting equal to one) of the stationary levels,
we see that the frequencies in the one particle state ρ1(t), apart from the dc term
are En−Em, En−Em±ω,En−Em+ω±ω′, En−Em+Er−Es+ω±ω′ where
n,m, r, s vary over all positive integers that index the stationary one particle
energy levels while ω, ω′ vary over all the frequencies in the incident electromag-
netic field. Carrying out the perturbation expansion of the one particle density
operator to higher and higher orders, we find that it will contain all the frequen-
cies that can be expressed as sums of En −Em and integer linear combinations
of the frequencies present in the incident electromagnetic field. Of course these
higher order terms will be diminished in amplitude by powers of the electronic
charge. However, the presence of such a wide spectrum of frequencies as com-
pared to that present in the incident field indicates that the field scattered by
the charged particles will be nearly white noise w.r.t time.
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0.13 Complete derivation of the quantum Boltz-
mann equation for the one and two particle
density estimates in quantum filtering the-
ory

Consider the HPS qsde

dU(t) = (−(iH + P )dt+
∑
k

(LkdAk(t)− L∗
kdAk(t)

∗))U(t)−−− (157)

where Ak, k = 1, 2, ..., p are annihilation processes and A∗
k, k = 1, 2, ..., p are the

corresponding creation processes satisfying the quantum Ito formula

dAkdA
∗
j = δkjdt−−− (158)

and
P = (1/2)

∑
k

LkL
∗
k −−− (159)

provides the quantum Ito correction term that guarantees unitarity of U(t).
System operators X evolve according to noisy Heisenberg dynamics:

jt(X) = U(t)∗XU(t)−−− (160)

A simple calculation using quantum Ito’s formula shows that

djt(X) = jt(θ0(X))dt+
∑
k

(jt(θ1k(X))dAk + jt(θ2k(X))dA∗
k)−−− (161)

where
θ0(X) = i[H,X]− (PX +XP ) +

∑
l

LkXL∗
k

= i[H,X]− (1/2)
∑
k

(LkL
∗
kX +XLkL

∗
k − 2LkXL∗

k)−−− (162)

θ1k(X) = [X,Lk], θ2k(X) = [L∗
k, X]−−− (163)

We make several non-demolition measurements (V.P.Belavkin)

Yok(t) = U(t)∗Yik(t)U(t), Yik(t) = c(k)Ak(t)+c̄(k)Ak(t)
∗, k = 1, 2, ..., p−−−(164)

A simple calculation shows that

dYok(t) = c(k)dAk + c̄(k)dA∗
k − jt(c̄(k)Lk + c(k)L∗

k)dt, k = 1, 2, ..., p−−− (165)

In other words, these measurements correspond to measuring the signals−(c(k)Lk+
c̄(k)L∗

k) after unitary evolution plus noise. The output measurement Abelian
algebra is given by

ηo(t) = σ(Yok(s) : s ≤ t, k = 1, 2, ..., p)−−− (166)
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The quantum filter is

πt(X) = E(jt(X)|ηo(t))−−− (167)

We define the Abelian process C(t) via the qsde

dC(t) =
∑
k

fk(t)C(t)dYok(t), C(0) = 1−−− (168)

Then, the orthogonality principle for conditional expectations yields

E((jt(X)− πt(X))C(t)) = 0−−− (169)

Taking differentials of this equation and using the arbitrariness of the functions
fk(t) gives us

E((djt(X)− dπt(X))|ηo(t)) = 0−−− (170)

E((djt(X)−dπt(X))dYok(t)|ηo(t))+E((jt(X)−πt(X))dYok(t)|ηo(t)) = 0−−−(171)

Here, conditional expectations are taken with the bath in the coherent state

|ϕ(u) >= exp(−(1/2) ∥ u ∥2)|e(u) > −−−(172)

where
u = (uk(t) : k = 1, 2, ..., p, t ∈ R+)−−− (173)

We may assume

dπt(X) = Ft(X)dt+
∑
k

Gkt(X)dYok(t)−−− (174)

since dYok(t)
2 = |c(k)|2dt. The orthogonality equations give us

πt(θ0(X))+
∑
k

(uk(t)πt(θ1k(X))+ūk(t)πt(θ2k(X))−Ft(X)−
∑
k

(c(k)uk(t)+c̄(k)ūk(t)−πt(c̄(k)Lk+c(k)L∗
k))Gkt(X) = 0−−−(175)

πt(X)πt(c̄(k)Lk+c(k)L∗
k)−πt(X(c̄(k)Lk+c(k)L∗

k))+c̄(k)πt(θ1k(X))−|c(k)|2Gkt(X) = 0, k = 1, 2, ..., p−−−(176)

The second equation gives us

|c(k)|2Gkt(X) = πt(X)πt(Mk+M∗
k )−πt(MkX+XM∗

k ),Mk = c̄(k)Lk−−−(177)

Defining the following time varying system operators

Nk(t) = −Mk + c(k)uk(t) = −c̄(k)Lk + c(k)uk(t), k = 1, 2, ..., p−−− (178)

we can finally express the Belavkin quantum filter in the form

dπt(X) = πt(θ0(X) +
∑
k

(uk(t)θ1k(X) + ūk(t)θ2k(X)))dt
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+
∑
k

|c(k)|−2[πt(Nk(t)X+XNk(t)
∗)−πt(X)πt(Nk(t)+Nk(t)

∗)][dYok(t)−πt(Nk(t)+Nk(t)
∗)dt]−−−(179)

Taking the dual of this equation by defining

πt(X) = Tr(ρB(t)X)−−− (180)

we get the following Belavkin equation for the filtered state ρB(t) after choosing
|c(k)| = 1(without any loss of generality):

dρB(t) = θ∗0(ρB(t)) +
∑
k

(uk(t)θ
∗
1k(ρB(t)) + ūk(t)θ

∗
2k(ρB(t)))

+
∑
k

[ρB(t)Nk(t)+Nk(t)
∗ρB(t)−Tr(ρB(t)(Nk(t)+Nk(t)

∗))ρB(t)].[dYok(t)−Tr(ρB(t)(Nk(t)+Nk(t)
∗))dt]−−−(181)

In order to derive the quantum Boltzmann equation from this, we shall assume
that

Nk(t) =
∑
j

Nkj(t)
⊗N −−− (182)

where N is the number of particles in the system. This amounts to saying
that the system Hilbert space is H⊗N

1 where H1 is the one particle Hilbert
space. Henceforth, we shall denote the N -particle Belavkin filtered state ρB(t)
by simply ρ(t) and ρ12...r(t) is the r-particle filtered state:

ρ12...r(t) = Trr+1...Nρ(t)−−− (183)

We can write the quantum Boltzmann decomposition of ρ(t) as

ρ(t) = ρ1(t)
⊗N +

N∑
r=2

∑
ρ1(t)

⊗N−r ⊗ g12...r(t)−−− (184)

where the inner sum here is over all particle permutations, ie, over all the
(
N
r

)
ways of partitioning {1, 2, ..., N} into two subsets, the first containing N − r
elements and the second containing r elements. More precisely, this inner sum
is to be interpreted as ∑

ρ1(t)
⊗N−r ⊗ g12...r(t)

=
∑

1≤i1<i2<...<ir≤N

gi1i2...ir (t)⊗ (ρir+1
(t)⊗ ...⊗ ρiN (t))−−− (185)

where for any given r = 2, ..., N , gi1i2...iN (t) is a copy of g12...r(t), but acting in
the Hilbert space ⊗r

j=1Hij and of course for any i = 1, 2, ..., N , ρi is a copy of
ρ1 but acts in Hi. Note that the above assumption on the structure of Nk(t)
is equivalent to saying that the bath acts in an indistinguishable way on all the
particles. This will be true if

H =
∑
k

Hk +
∑

1≤k<j≤N

Vkj −−− (186)
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Lk =
∑
j

L⊗N
kj , u(t) =

N⊕
k=1

uk(t)−−− (187)

The last assumption implies that the coherent state |e(u) > is given by

|e(u) >= |e(⊕uk) >=

N⊗
k=1

|e(uk) > −−−(188)

where the u′
ks are the same for all k.

Note that for consistency in the form of ρ, ie, the (r+1)th marginal ρ12...r+1

should induce the rth marginal ρ12...r on partial tracing out over Hr+1, we
require that

Trr+1g12...r+1 = 0, r = 1, 2, ..., N − 1−−− (189)

It is clear that
ρ12...r = Trr+1...Nρ

= ρ⊗r
1 + Trr+1...N

∑
2≤k≤N

∑
(i1,...,ik)⊂(1,2,...,N)

gi1...ik ⊗ ρik+1
⊗ ...⊗ ρiN

= ρ⊗r
1 + Trr+1...N

∑
2≤k≤N−r

gi1...ik ⊗ ρik+1
⊗ ...⊗ ρiN −−− (190)

because if k > N − r, then

Trr+1...Ngi1...ik ⊗ ρik+1
⊗ ...ρiN = 0−−− (191)

because this partial (N−r)th order partial trace will involve at least one partial
trace of gi1...ik since k > N − r, and any order partial trace of gi1...ik is zero.

We shall now make the calculations upto second order, ie, assume that
g12...r = 0, 3 ≤ r ≤ N . This amounts to saying that

ρ ≈ ρ⊗N
1 +

∑
ρ⊗N−2
1 ⊗ gN−1,N −−− (192)

where the sum is over all two element sets obtained by (N − 1, N) by general
two point subsets (i1, i2)i1 < i2. The relevant first and second marginal qbe’s
are obtained by subsitituting this expression for the joint state into the Belavkin
filter

dρ(t) = θ∗0(ρ(t)) +
∑
k

(uk(t)θ
∗
1k(ρ(t)) + ūk(t)θ

∗
2k(ρ(t)))

+
∑
k

[ρ(t)Nk(t)+Nk(t)
∗ρB(t)−Tr(ρ(t)(Nk(t)+Nk(t)

∗))ρ(t)].[dYok(t)−Tr(ρ(t)(Nk(t)+Nk(t)
∗))dt]−−−(193)

and taking (N −1)th and N th order partial traces of the resulting equation. We
evaluate the different terms:

Tr23...Nd(ρ) = Tr23...N

N−1∑
k=0

ρ⊗k
1 ⊗ dρ1 ⊗ ρN−k−1 = dρ1 −−− (194)
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since Trdρ1 = 0. Next,

Tr34...Ndρ = dρ12 = d(ρ⊗2
1 ) + g12) = dρ1 ⊗ ρ1 + ρ1 ⊗ dρ1 + dg12 −−− (195)

Next,

Tr23....Nθ∗0(ρ) = (−1/2)Tr23..N
∑
k

(LkL
∗
kρ+ ρLkL

∗
k − 2L∗

kρLk)−−− (196)

Now,

Tr23...N (LkL
∗
kρ) = Tr23...N

∑
j,m

(LkjL
∗
km)⊗N (ρ⊗N

1 + ρ⊗N−2
1 ⊗ g12 + ...)

=
∑
jm

(Tr(LkjL
∗
kmρ1))

N−1)LkjL
∗
kmρ1+(N−1)

∑
jm

(Tr(LkjL
∗
kmρ1))

N−2Tr2((LkjL
∗
km)⊗2g12)−−−(197)

Likewise,
Tr23...N (ρLkL

∗
k)

=
∑
jm

(Tr(ρ1(LkjL
∗
km))N−1)ρ1LkjL

∗
km+(N−1)

∑
jm

(Tr(ρ1LkjL
∗
km)N−2Tr2(g12(LkjL

∗
km)⊗2)−−−(198)

and
Tr23...N (L∗

kρL
∗
k)

=
∑
jm

(Tr(L∗
kmρ1Lkj))

N−1)L∗
kmρ1Lkj+(N−1)

∑
jm

(Tr(L∗
kmρ1Lkj)

N−2Tr2((L
∗
km)⊗2g12(Lkj)

⊗2)−−−(199)

Combining these three formulas, we get

Tr23...N (θ∗0(ρ)) = (−1/2)Tr23...N
∑
k

(LkL
∗
kρ+ ρLkL

∗
k − 2L∗

kρLk) =

−(1/2)
∑
kjm

(Tr(LkjL
∗
kmρ1))

N−1)(LkjL
∗
kmρ1 + ρ1LkjL

∗
km − 2L∗

kmρ1Lkj)

−((N−1)/2)
∑
kjm

(Tr(LkjL
∗
kmρ1))

N−2(Tr2((LkjL
∗
km)⊗2g12)+Tr2(g12(LkjL

∗
km)⊗2)−2.T r2((L

∗
km)⊗2g12(Lkj)

⊗2))−−−(200)

Again, we find that

Tr34...N (LkL
∗
kρ) =

∑
jm

(Tr(LkjL
∗
kmρ1)

N−2((LkjL
∗
km)⊗2)ρ⊗2

1 )

+(N−2)(Tr(LkjL
∗
kmρ1))

N−3Tr3((LkjL
∗
km)⊗3(ρ1⊗g23+ρ2⊗g13+ρ3⊗g12))−−−(201)

and hence by an obvious extension, we get

Tr34...Nθ∗0(ρ) =

−(1/2)
∑
kjm

Tr(LkjL
∗
kmρ1)

N−2((LkjL
∗
km)⊗2ρ⊗2

1 + ρ⊗2
1 (LkjL

∗
km)⊗2
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−2(L∗
km)⊗2ρ⊗2

1 .L⊗2
kj )

−((N−2)/2)
∑
kjm

(Tr(LkjL
∗
kmρ1))

N−3.T r3((LkjL
∗
km)⊗3(ρ1⊗g23+ρ2⊗g13+ρ3⊗g12)

+(ρ1 ⊗ g23 + ρ2 ⊗ g13 + ρ3 ⊗ g12)(LkjL
∗
km)⊗3

−2.(L∗
km)⊗3(ρ1 ⊗ g23 + ρ2 ⊗ g13 + ρ3 ⊗ g12)(Lkj)

⊗3)−−− (202)

Proceeding along these lines, it becomes clear how to evaluate the partial
traces of the original Belavkin filter equation with the second order approxima-
tion. The calculations are lengthy but straightforward if we proceed along the
lines indicated.

0.14 Conclusions

We have discussed several aspects of the classical and quantum Boltzmann equa-
tions in the context of identical electromagnetically interacting charges and have
applied it to the problems of computing the scattered electromagnetic field by
the charged particles when a field in incident upon the particles in a permuta-
tion invariant way. We have also discussed the quantum Boltzmann equation for
the Belavkin quantum filter based on non-demolition measurements again when
the noisy bath acts symmetrically on all the system particles. We have com-
pared the quantum Boltzmann equation with the classical Boltzmann equation
by replacing the quantum density operator in the position representation by its
Wigner transform in the particle phase space. Corrections in powers of Planck’s
constant appear in the quantum Boltzmann equation that are not present in
the classical Boltzmann equation.
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