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The hippocampal (HP) formation is a vital component of the central nervous system in processing

memory, learning, and spatial navigation. Existing methods are obsolete to address new emerging

questions as our understanding of HP circuits and its connections advances. Hence, there is a need for

new techniques with an accessible approach for visualizing and understanding the inner connections

and circuitry.

Research requires a quick update of textbooks and a better integration of new media to facilitate the

teaching of these neural structures, which until recently, was an issue due to availability of limited

resources. For example, understanding the dynamics of neural circuits’ activities is a great challenge

in the teaching of neuroscience, because by only using pictures, drawings, and diagrams, it is not

possible to express the complete structural and functional effects that each circuit imparts. One

solution to this challenge might be the use of computational models adapted to these diverse contexts.

The construction of simple computational models can be an excellent alternative in teaching these

complex dynamics since they reduce the use of animal models, amplify and simplify structural

relationships, promote quick and easy visualization, and uncover possible functional and structural

interventions. This interactivity is crucial for a better understanding of the causal relationships

between nuclei and neural circuits. Conversely, it is important that computational models aimed at

teaching are simple so that any student, regardless of their mathematical background, can understand

and manipulate the structures and dynamics of interest.

Further, software packages that do not require programming knowledge for its use are indispensable.

However, generally this limitation also restricts the structural and dynamic representations possible

for study. Here, we demonstrate the use of Neuronify™ software, which uses simple functional
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representations of neurons and circuits. We represent the most important pathways and connections

of the HP formation by building a simpli�ed model that shows the main known relations between the

subregions [Cornus Ammonis (CA)1, CA2, CA3, and CA4] and afferent nucleus (subiculum and dentate

gyrus).

Corresponding authors: Lucas Longo, lucas.longo@unifesp.br; João A. F. Brogin, ferres.brogin@unesp.br;

Jean Faber, jean.faber@unifesp.br

Summary

The �eld of computational neuroscience has been fundamental for the increasing knowledge about the

brain machinery, its activity, and the relation between these, especially because it enables simulating and

visualizing complex brain behavior numerically, without carrying out experiments, which may lead to a

better understanding about the system in a shorter time. The present article shows a computational

model of hippocampal circuitry modeled using the software Neuronify™ to build a clear representation

of this critical structure of the central nervous system (CNS) that can be used for many purposes, the

most promising being the study and teaching of neuroscience. By considering this approach, not only can

relevant information about the hippocampus be obtained, but it can also help students to better relate

concepts covered in class to real applications, ultimately, it endorses neuroscience as an interdisciplinary

�eld.

Introduction

The �eld of education in neuroscience (RAMIREZ, 2020) faces many speci�c challenges that differ from

other areas of science because of its particularities. Speci�cally, the requirement of a special set of

pedagogic strategies and materials, the limited range of tools available for investigation (e.g.,

electrophysiological recordings, behavioral index, biochemical markers), and the complex technical

language of area of study (WILLINGHAM, 2009). The resources required to teach the different aspects of

the brain function are limiting due to various factors, e.g., books show a static view of the brain and fail to

show the dynamics in a didactic way, and animal models demand technical skill and thorough dedication

as they are dif�cult to manipulate and need to be used responsibly.
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In comparison, computational models are an interesting alternative solution since they bypass many

issues (JIRSA et al., 2014), such as forcing students to learn by simple �gures and euthanizing animals,

thus supporting initiatives like the 3Rs (replace, reuse and re�ne)

(PRESCOTT and LIDSTER, 2017). Computational models offer a fun, easy and interactive way of studying

and understanding the complexity of neural circuits and physiological processes.

However, computational models present a series of limitations. The most common is that they generally

require knowledge of programming logic (ROGALSKI and SAMURÇAY, 1990). Additionally, since the

mathematical descriptions can be too abstract, researchers investigating biological basis use it

minimally.

A few software packages exist that propose simple biological representations with user-

friendly interfaces, thus allowing anyone to manage and construct their own biological system

(KIPARISSIDES et al., 2011). Here, we use the free software Neuronify™ (NORTHCUTT, 2021), an intuitive

platform with a user-friendly interface that does not require expertise in any programming language.

Also, many other applications exist that allow the construction of different types of computational

models of biological systems, which are not restricted to neuroscience, such as PhET™, a simulator for

physics, chemistry and biology (WIEMANet al., 2008), “portal SESI educação” from Brazil, MERLOT

Biology™, and Atomify™. These simulators have a simple interface and are used for education purposes.

Despite the simple biological representations and some functional limitations offered by Neuronify™, we

were able to build the complex inner circuitry of hippocampal (HP) formation using only excitatory and

inhibitory leaky integrate-and-�re neurons, adjusting them in speci�c patterns of connectivity to

express their real dynamics. For instance, we represented the main pathways of the trisynaptic circuit

(JEFFREY and MICHAEL, 2016) and highlighted its sub�elds. By using the virtual sensors provided by the

application, we could show the temporal patterns related to the action potential of speci�c neurons of

each HP sub�eld.

Considering the HP formation neuroarchitecture (KEINATH et al., 2020), this model preserved the

disposition of semicircular-like complementary structures from dentate gyrus (DG), going through the

sub�elds of Cornu Ammonis (CA3, CA2 and CA1) to the subiculum (SUB), yielding a comprehensive view

of the circuit connections (SHIMBO et al., 2021). Additionally, we were able to construct a simpli�ed
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version of the whole HP circuitry by reducing and emphasizing its main nucleus and path connections.

Since this circuitry reduction maintains the same physiological activity outputs, it can be an important

educational approach to teach how the brain uses redundancies and ‘motifs blocks’ to process

information (WOMELSDORF et al., 2014).

In summary, we show how computational models might be useful for teaching neuroscience. We propose

an easy way to understand brain networks (CLEMENT and LOVAT, 2012) through the construction of a HP

network, its main features and connections, using Neuronify™. This work helps the study and

understanding of the HP formation, making it easy to observe the response of its parts to stimuli in

different conditions determined by the experimenter, simplifying and dynamizing the teaching-learning

process.

Methods

The computational model describes the main circuits of the hippocampus and its correlations

considering its input-output information. By a motif-based approach (BRAGANZA et al., 2018) of

subregions in HP formation, patterns of recursion, inhibition, and propagation of input signals were

established, thus setting the connections between these microcircuits. The motif representation uses the

minimum number of neurons (excitatory and inhibitory) and synapses, hence emphasizing its main

structural connections and functional relationships. This representation makes the model description

more intuitive, and morphologically accurate to a HP slice. We used the software Neuronify™ since it is

user-friendly with simple features built speci�cally for educational purposes (ELBEZ et al., 2018). The

software’s interface is a simple “grab and drop” system, where the users only need to select the

components, they want to display on the screen. In the simulator, glutamatergic and cholinergic neurons

were labeled as excitatory, and GABAergic as inhibitory. Additionally, the mossy �bers (MF), perforant

path (PP) and Schaffer collaterals (SC) were plotted as neurons, and not axons. The information �ow

crossing these paths were maintained under the same environmental conditions. Therefore, by

representing these �bers as neurons, we were able to control the cell parameters needed to hold the

concomitant �ow of discharge.
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Furthermore, the sensors and current sources provided by the software allowed a simultaneous testing

process, which made it possible to improve the model during its construction. These sensors offer vast

possibilities for analyzing the model, by measuring the activity in any neuron or group of neurons when

the input has a speci�c chosen characteristic (Figure 1).

Figure 1: General portrait of Neuronify™ main features. This assembly shows some of the most important

components of the software: the option for creating, opening and saving �les; the appearance of the neurons,

both excitatory and inhibitory, when plotted and connected; the options for sensors that measure the nodes

�ring by different kinds of plot, such as voltmeter, �ring rate plot, spike detector, and a loudspeaker that

emits a noise when the selected neuron �res; and the current sources, with a variety of possibilities for

stimulating the network by direct or alternating current and generators of spike with regular, irregular or

user-de�ned activation (by using a camera or touching the generator).

The HP circuit has many redundancies and is essentially constructed by links between smaller circuits

called motifs (HANGYA et al, 2014). According to Braganza and Beck (BRAGANZA and BECK, 2018), a

circuit motif is “a conserved anatomical pattern of connections between speci�c cell types.” Since motifs

are the basic blocks of HP circuitry, understanding these blocks is critical in the implementation of any

equivalent computational model.
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To construct the whole HP circuitry, a total number of 226 excitatory and inhibitory neurons were used

and displayed in patterns according to reviewed literature (THOMPSON et al., 2008). This construct

allowed the analysis of activity of each sub�eld and component of the HP circuit (Figure 3).

We identi�ed and separated HP formation to determine the speci�c functionalities of each part (KRAGEL

et al., 2021). The �ve main features of the sub�elds can be understood as follows: �rst, sparsity of DG, i.e.,

less intensity of output compared to the input; second, the recurrence of stimulation of the CA3 with

strong and localized inhibition; third, selectivity of excitatory output by inhibitory feedback of CA2;

fourth, the information cadenced �ow with collateral excitation of CA1; �fth, the relative temporal

synchronization of spikes as output through simultaneous excitation coupled to inhibitory feedback of

SUB (DE BRIGARD, 2014).

The six motifs were set to match these features. We selected alternative motifs, as follows, that could be

incorporated in the network to generate the effects of interest only by using a combination of excitatory

and inhibitory neurons:

a) Simple Feedforward Excitation: motif relates to the simple and forward propagation of an excitatory

signal, causing it to arrive at downstream structures.

b) Simple Feedback Inhibition: motif responsible for inhibiting activity on a upstream neuron in a network,

preventing it from �ring as much as it was previous to excitation of the feedback inhibition network.

c) Simple Feedforward Inhibition: similar to ‘Simple Feedback Inhibition’ where the inhibition occurs on a

downstream neuron instead of an upstream neuron.

d) Recurrent Excitation: a motif characterized by a postsynaptic excitatory neuron that feeds back to the

presynaptic one, therefore reinforcing the signal that it receives.

e) Simple Feedback Excitation: similar to ‘Recurrent Excitation’ where the signal ampli�ed by the recursion

between two excitatory interneurons induces a robust representation of a given attribute.

f) Global Feedback Inhibition: promotes a selective pattern of activation of the excitatory postsynaptic

neurons. An inhibitory neuron selectively chooses which of the neurons are going to �re by varying its

synaptic weights while the other neurons remain “silent.”
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Figure 2: Main circuit-motifs used. This list of constructions shows the motifs needed for building this

model. These motifs are useful in computational neuroscience since they simplify complex structures by

logical pieces with a not speci�c anatomic correspondence that is repeated through an area of the nervous

system. a) This motif known as “simple feedforward excitation” relates to linear propagation of the signal

from one cell to another. Computational mechanism: signal propagation. Computational / behavioral

function: linear propagation of information. b) This motif known as “simple feedback inhibition” is

characterized by inhibitory feedback that limits the maximum excitation of a neuron and may represent a

way to control the output of the structure in network. A variation of this motif was also used, in which the

presynaptic neuron was inhibited instead of the neuron that stimulates the inhibitory neuron but resulting in

the same effect. Computational mechanism: output normalization. Computational / behavioral function:

controlling maximum output / sparsity. c) This motif known as “simple feedforward inhibition” basically

plots an inhibitory neuron, which is able to limit the range of activation of another cell by amplifying the

possible levels of excitability the next cell will be exposed to. Computational mechanism: input

normalization. Computational / behavioral function: increasing the dynamic range. d) This motif known as
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“simple feedback excitation” contains a postsynaptic neuron exciting the presynaptic neuron, reinforcing the

arriving signal by its repetition between the cells. Computational mechanism: repetition. Computational /

behavioral function: reinforcement of the signal. e) This motif known as “recurrent excitation” is made of

excitatory neurons stimulating each other in order to amplify the signal, generating a robust representation

of a determined feature. Computational mechanism: ampli�cation. Computational / behavioral function:

robust feature representation. f) This motif known as “global feedback inhibition” presents a characteristic

connectivity between its components, with a row of excitatory neurons establishing synapses with an

inhibitory cell that feedbacks them, causing an effect called “k-winners take all.” It means that the “k”

selected cells that receive a less intense inhibitory feedback will �re while the rest of the neurons will stay

inactive, being an effective way to discriminate a pattern of interest to a network. Computational mechanism:

k-winners take all. Computational / behavioral function: pattern discrimination.

The above motifs are attributed to every structure of the HP formation. DG has a wide presence of simple

feedforward excitation and inhibition as well as feedback inhibition. CA3 has feedforward excitation and

inhibition, feedback excitation and inhibition, and recurrent excitation. CA2 has feedforward excitation,

and simple and global feedback inhibition. CA1 has feedforward excitation, feedback excitation and

inhibition, and recurrent excitation. SUB has feedforward excitation and feedback inhibition. Thus, each

constructed region shows the peculiarities in its organization similar to a HP slice.

We emulated the regions on Neuronify™ using only excitatory and inhibitory neurons. The current

sources and sensors were tested during and after each region was composed. We maintained default

neuron settings (threshold, resting potential, refractory period, membrane resistance and membrane

capacitance) for easy manipulation of the network. Alternatively, we implemented a de�ciency of a

voltage-dependent sodium channel by changing the membrane’s threshold potential (HEYNE et al.,

2020), while maintaining other properties to equalize every neuron feature. These networks highlighted

the spike patterns in relation to the structural connectivity of the cells.

Model building started with characterizing the activity of each portion of HP formation followed by

determining the motifs present in in vivo models. Small and enough arti�cial neurons were connected

according to the selected motifs emulating the robust features in a topologically accurate network. To

emphasize the educational purpose of the network, we created connections similar to that of a

histological HP slice (Figure 3).
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Figure 3: Hippocampus in human brain, mouse hippocampal slice, schematic hippocampal formation, and

complete portrait of the computational model of hippocampal formation. a) Schematic representation of

the location of the two hippocampi inside a rat brain. Cellular and Molecular Neurophysiology, fourth edition.

Elsevier, 2015. Copyright™. b) Drawing of a transversal slice of the hippocampus by Ramon y Cajal, 1911. c) The

illustration simply represents the main structures of hippocampal formation, with the most relevant

efferences indicated by the blue arrows. EC II: entorhinal cortex II; EC III: entorhinal cortex III; PP: perforant

path; DG: dentate gyrus; MF: mossy �bers; CA1-3: Cornu Ammonis; SC: Schaffer collaterals; SUB: subiculum;

EC V: entorhinal cortex V. d) Hippocampal slice in the brain of a wistar rat in a coronal section stained with

cresyl violet. (Own source) e) By plotting 226 neurons with a complex machinery of synapses, the
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neuroarchitecture of hippocampal formation could be preserved whereas its activity could be well

demonstrated. Basically, and classically, the information arrives from the EC II and EC III, �ows through the

“gate,” which is the DG by PP up to the CA3 - that receives its afferences mainly by the MF, processes and

conducts the information together to the CA2 and CA1 and, in the SUB, shapes the signals directed to

neocortex, �rstly received in the EC V.

The medial entorhinal cortex (MEC), subregions II (EC II) and III (EC III), was represented by a row of

excitatory neurons composed of six sources of input. This row of neurons received connections from

current sources chosen by the researcher. These represent the main pathways by which signals arrive at

the HP formation in DG (TATU and VUILLIER, 2014). These six excitatory neurons were designed to

project efferent to the DG, CA3 and CA1. A feedforward excitation motif allowed the efferents to receive

versatile types of input from the current sources provided by Neuronify™.

In DG, the neurons were arranged into a C-shape form with alternating excitatory-inhibitory- excitatory

three-layer structure similar to the actual cytoarchitecture of the archicortex (MORAIS et al., 2020). The

structure had a total number of 16 excitatory neurons which was the minimum number of cells suf�cient

to emulate HP functions, while, creating an easy-to- view network. Experimentally, the number of

neurons demonstrated the expected performance without compromising the �delity of the activity.

Similar logic was extended to represent other subregions. The second layer strongly inhibits the others,

letting only three neurons, adjacent to the superior limit of the DG representing mossy neurons, without

inhibitory input, with 12 inhibitory neurons and a large number of synapses. In turn, the excitatory

neurons connect with other excitatory neurons positioned laterally or frontally and at least to one

inhibitory neuron that feeds back to them. The last layer consists of 16 excitatory neurons including three

mossy neurons. Through the layers, feedforward excitation, feedback inhibition and feedforward

inhibition can be observed.

In our model, eight excitatory neurons represent the anatomical input from the “mossy neurons” from

the DG to the CA3 sub�eld, such that four neurons each represent the �bers and the receivers of the input.

Additionally, we used two neurons in the inferior part of the DG representing input from the SC. For the

connections from EC II, we used two neurons directly connected from the PP, which are the main

pathway of �bers from the neocortex to HP formation (AMANI et al., 2021).

Further, the sub�elds’ inner connections were randomly plotted, with 12 excitatory neurons and 3

inhibitory ones showing SC stimulation to each other with a strong aspect of inhibition. However, they
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were organized in a way that allowed any amount of input signals to be �ltered by the inhibitory neurons,

strategically connected to afferent neurons and excitatory interneurons. This characteristic is better

observed in its portion adjacent to DG, almost located in its hilus, where CA4 can be found (EZAMA et al.,

2021).

Another important feature of this part of the hippocampus is the recursion observed between the MF

from the DG and the �rst afferent pyramidal cells in CA3. This recursion corresponds to the

reinforcement of arriving information that will be only processed into the hippocampus by the action of

biochemical and electrophysiological mechanisms, thus enhancing the learning (BARTSCH and WULFF,

2015). To represent this recursion, we used the motifs feedforward excitation and feedback excitation

coupled to inhibitory feedback in CA3 to limit the excitability of the signal-receiver cells.

Next, we represent the connections between CA2 and CA3 (DING, L. et al., 2020). We used four afferent

cells from CA3 connecting to the surrounding neurons in a pattern characterized by inhibitory feedback

that limits the excitability of these cells and the other ones connected to them. Therefore, one of these

pyramidal neurons’ synapses onto one inhibitory cell and the other three pyramidal neurons synapse

onto two inhibitory neurons each. Also, these afferents establish connections to one excitatory neuron to

keep the information �owing to the CA2. Computationally, a greater number of connections between

both excitatory and inhibitory neurons were required to generate the huge activation attached to a high

level of inhibitory feedback in CA2. This structure required a total number of 11 excitatory and 4

inhibitory neurons.

Furthermore, we must consider that CA3’s border with CA2 is not precise since these sub�elds are not

anatomically well established (MAHZER and HASSAN, 2021). However, a “transition area” that is still a

part of CA3 shows a gradual regularization of motifs more related to CA2. This area also has efferents

directly to CA1. Assuming the role of SC, we placed three neurons between the area and CA1 to mediate

these connections. Hence, the way out CA3 leads information to CA2 by three layers of neurons connected

in a pattern of feedforward excitation coupled to feedback inhibition, maintaining the pseudo-

unidirectional propagation of information (SUN et al., 2021). The boundary of the transition area is

immediately after the last (upper) excitatory cell, where the SC is present. Here, SC was modeled by ten

excitatory and six inhibitory neurons disposed in connectivity patterns that mix the partially randomly

plotted CA3 neurons with great recursion and limitation of excitability paired to the continuous

propagation and inhibitory feedback typically seen in CA2.
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Furthermore, CA2 has a feature of global feedback inhibition (MCHUGH et al, 2021), by which it

selectively enhances synapses according to the stimulus provided (NAVAKKODE et al, 2022). In our model,

this feature was represented by a feedback system of three neurons, one from each layer to the same

inhibitory neurons where synapses might have their weights changed to strengthen few connections

over others, thus composing the global feedback inhibition motif.

In CA1, 23 neurons were used to maintain proportional numbers in the sub�elds of the three- layer

structure. This con�guration was suf�ciently large to conduct experiments even in a non- scienti�c

computer, while also including the pattern of linear propagation feedforward excitation and inhibitory

feedback mechanisms.

In our model, CA1 also received input directly from EC III by PP, showing a different pattern of

organization. This pattern was represented as a row of excitatory neurons that stimulate itself located

before the SUB layer (BÖHM et al., 2018). The con�guration was adopted to maximize the stimulation of

the network since beyond the SUB layer the information will �ow from the HP formation to the

neocortex.

In summary, a total number of 15 excitatory and 15 inhibitory neurons were plotted, where 27 of them

were designed to keep the feedforward excitation coupled to feedback inhibitions. The last three

excitatory neurons denote recurrent connections, thus stimulating each other to enhance the activation

of the organized region and start the relative temporal synchronization of the signal.

The SUB structure was designed to be a continuation of the three-layer architecture, but the layers are

less independent. Here, the propagation of the signal takes collateral direction and is not linear as seen in

CA2 and CA1. Each neuron is con�gured to stimulate two other neurons in the following row until the end

of the SUB, projecting its efferents to the three terminal neurons labeled as entorhinal cortex V (EC V)

which is a part of the lateral entorhinal cortex (LEC) (NILSSEN et al., 2019). The LEC receives three to �ve

spikes from SUB sequentially and spreads the information to the adjacent neocortex (YU et al., 2021).

Considering the con�guration of this area, 18 excitatory and 18 inhibitory neurons were plotted

maintaining this connectivity pattern of inhibitory feedback and forward and collateral excitation (using

the motifs of feedback inhibition and feedforward excitation).
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Results

Using this computational model, we propose a simple platform that allows the study of the structural

con�guration and functional activities of each sub�eld of the HP formation, and their relationships. By

placing the virtual sensors on each subregion, it was possible to observe the interdependence and the

type of information processing that each region performs with respect to the other, and relative to the

whole HP circuit.

HP sub�eld formations and their dynamics

The signal �rst arrives at the DG of the HP formation. The pattern of eliciting action potentials is sparse

and wide-distributed around the structure, because the granular cells (excitatory neurons) are exposed to

intense inhibition. Information gets to DG through PP from EC II and EC III and its activity clearly shows

fewer spikes in comparison to that of its neighborhood (PIATTI et al., 2013; Figure 5).

Figure 4: Activity of dentate gyrus. The signal coming from the medial entorhinal cortex (EC) II is processed

in a way that sparsity (less spikes in the output when compared with the input) is widely observed, not

because of a greater number of inhibitory neurons, but by the number of synapses they establish with the

granular (excitatory) ones.
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From DG, information �ows to CA3 through the axons of mossy glutamatergic neurons in MF. Since

Neuronify™ cannot build an autapse, MF were plotted as excitatory neurons receiving feedforward input

from DG and feedback input from pyramidal neurons of CA3 to simulate an autapse of CA3 pyramidal

neuron. This motif is based on a learning rule (BECKER, 2005) according to the synchronization of spikes

of postsynaptic and presynaptic neurons as a regulator for strengthening an associative memory.

It is possible to observe recurrent excitation and feedback inhibition (with feedforward excitation,

feedback excitation, recurrent excitation, feedforward inhibition and feedback inhibition motifs)

between the pyramidal and basket cells in CA3, which is part of the hippocampus proper and located on

the fornix (BENEAR et al., 2020). They can be found all over the hippocampus in circuits of feedback

inhibition, and hilar interneurons, propagating signals in convergent and divergence patterns (Figure 3).

Besides these main components, CA3 receives information directly from EC II and shows two main

outputs: CA2, continuing from the fornix, and CA1, through SC (CACUCCI et al., 2017), composing the

well-studied trisynaptic circuit (DG, CA3, CA1, SUB).

Figure 5: Activity of Cornus Ammonis (CA) 3. A considerable variety of patterns of spikes are observed as a

result of the different kinds of connections, inputs, and types of cells in this �eld. The portion next to

dentate gyrus (DG) shows randomized patterns of connectivity that respect the purpose of softening the

signal since the following part receives the main and stronger input. Thereafter, a region in the “curve” mixes

these characteristics with the features of CA2, with a simpler propagation of the information attached to a

simple inhibitory feedback system.
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CA2 connections followed a basic pattern with three layers of inner pathways representing linear

propagation and feedback inhibition (Figure 4; HIRASE et al, 2003). Its pathways have been well

characterized recently and data suggests that this structure is important for social memory (TZAKIS et

al., 2019).

Figure 6: Activity of Cornus Ammonis (CA)2. The linear propagation of information is easily observed by the

voltage sensor as the spikes occur almost simultaneously between the layers and with a relatively huge

temporal separation provided by the individual inhibitory feedback (that is given by the inhibitory neurons).

Besides these, the feature of global inhibitory feedback practiced by two inhibitory neurons that plays the role

of “gates,” functioning as nodes that decide which neurons will �re by the weights of their efferent synapses

are notable.

The last part of hippocampus proper is CA1, whose circuitry was designed partly in continuity with CA2

and partly mixed with the components of SUB in a more complex con�guration of afferents and efferent.

The sub�elds CA1 receives input directly from EC III by PP (Figure 5). It works as an information

integrator, being a fundamental part of hippocampus in processing memory, learning, and spatial

navigation. Spatial navigation is especially relevant due to the molecular particularities of some of its

cells (grid cells and place cells) responsible for mapping the world around us (SOLTESZ and LOSONCZY,

2018).

Despite the widely accepted notion that CA3 connects to CA1, recent studies (SHI et al., 2013) indicate a
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bidirectional propagation between CA3 and CA1, where the path from CA3 to CA1 is much more

developed. Hence, we plotted only a portion of partial random synapses, so that the signals from CA1

could �ow to CA3. Since the literature is unclear whether the recurrent excitation between some neurons

of CA1 exists, we plotted it only once.

Figure 7: Activity of CA1. Features of feedforward propagation are combined with feedback inhibition

between the three neuronal layers, besides a bidirectional spreading of the signal in singular and random

excitatory neurons (one every layer), which coupled with recursion between three neurons next to the

subiculum (SUB), gives this region the main role in the processing of information by a spectacular variety of

connections

The output coming from HP formation is forwarded to SUB, whose connections look less random than

CA3 but is equally complex, with feedforward propagation applied to excitatory convergence and

feedback inhibitory (STAFSTROM, 2005). The normalized output reaches LEC in EC V, spreading itself to

the neocortex around (Figure 6).
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Figure 8: Activity of SUB and the output. Beyond a linear propagation of the signal (restricted to feedforward

neurons of only its own layer a divergent pattern by which the spikes gradually and partially synchronize up

to the �nal portion of subiculum (SUB) is observed, leading the information to medial entrohinal cortex (EC) V

with clustered spikes, in series of three to �ve shoots every stimulus.

Not all features of inputs and outputs of hippocampus could be modeled. Yet, the spike activity in each of

the sub�elds by sensors provided by the software match well when compared with biological HP slices

(REYES-GARCIA et al., 2018). Thus, his simple model aids in the discussion and understanding of

structural connections and its associated activities. The difference seen between the model and

biological sample is a good opportunity to discuss the universality and redundancies of the neural

circuits. Therefore, throughout the process of building the simple model, it is even possible to formulate

predictions and hypotheses using solely the structural and functional modi�cations (Figure 9) of the

circuit.
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Figure 9: Portrait of full hippocampal activity. Wide view of the complete model working, with the behaviors

of each �eld of hippocampal formation being shown smaller than in Figures 2-7. It is possible to visualize the

“entire pathway” of the main circuit: information coming from the medial entrohinal cortex (EC) II and EC III

and passing through the whole hippocampal formation until it arrives again at the neocortex by EC V.

Computational simpli�cation of HP circuitry

The establishment of circuit motifs allowed a subsequent construction of a simpler version of the HP

circuitry. We observed a broader view of the �ow of information in the structure, thus making it easier to

visualize the HP activities (WOMELSDORF and EVERLING, 2015). Here, we were able to reproduce most of

the complex HP activities and preserve its main recurrent connections, motifs con�gurations, while

using only 31 cells, 21 excitatory and 10 inhibitory (Figure 10).

By turning the complex network into a simpler one, we asked whether it is possible that the brain uses

redundancies between neural connections, perhaps for code protection? Reducing the structures and

connection rules of HP circuitry can be an interesting educational strategy since it can simplify the

understanding of its functional aspects.
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Figure 10: Simpli�cation of the model of hippocampal circuitry a) With 31 neurons, it was possible to

emulate the main activity of each subregion of hippocampal formation by this motif-driven model (by

comparing these recordings with the ones in Figures 5-9 it is possible to �nd a good compatibility level). b)

The activity of each subregion and the reason for these speci�c �ring patterns are described in the article.

This model’s simpli�cation shows how effective the motif-approach is. Specially in context of limited

computational power, simpli�ed models like this can be of great applicability depending on the purpose

of the experimenter. Additionally, they indicate the effectiveness of neural redundancies since they tend

to appear in structures according to their functionalities (INGALLS et al., 2015; GOOGLE QUANTUM IA,

2021). 

Discussion

Despite the simpli�cation of the proposed model, it demonstrates high accuracy related to the

neuroarchitecture and functional correspondence with real HP circuitry (Figure 11). We believe this type
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of model and modeling practice can be very useful for teaching and learning neuroscience, such as

studying the HP formation, connectivity between neural networks, and electrophysiological properties of

neuronal cells.
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Figure 11: Comparison between activity of the general model and its simpli�cation. a) Activity of dentate

gyrus of the general model. b) Activity of dentate gyrus of the simpli�ed model. c) Activity of Cornus
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Ammonis (CA) 3-CA2 of the general model. d) Activity of CA3-CA2 of the simpli�ed model. e) Activity of CA1

of the general model. f) Activity of CA1 of the simpli�ed model. g) Output of subiculum of the general model.

h) Output of subiculum of the simpli�ed model.

The simplicity of the platform and biological structures provides anyone a highly accessible way to study

this model using basic computers, tablets or even cell phones. Also, it overcomes the limitation of books

that fail to demonstrate the cell dynamics.

Computational models like the one proposed here are an interesting alternative for teachers and students

interested in understanding the function and structure of the hippocampus or any other brain region.

The teaching and learning dynamics open many possibilities not offered by traditional lessons. The

model allows for interacting with each structure, manipulating it with different input sources, measuring

sensors, changing electrical properties of cells or even varying the position and connectivity of neurons

in any region of interest, all through a simple screen and easy mechanism without harming any animals.

While computational models are useful for education in neuroscience, they have some key limitations.

For example, we need to determine how to faithfully represent a realistic and complex HP formation in

Neuronify™. Despite it being a user-friendly and stable platform, there are limited options to modify the

biophysical aspects of cells. To solve this problem, we cluster a variety of cell types into only two

categories: (1) every neuron related to a neurotransmitter capable of inducing a depolarization in the cell

membrane of a postsynaptic neuron was plotted as excitatory, and (2) every neuron with the opposite

effect on postsynaptic membrane potential were designed as inhibitory. Moreover, other neuronal

biophysics features including resting potential, membrane capacitance, resistive current were

standardized such that discharge patterns were generated via circuit motifs.

Thus, modeling using the circuit motifs approach successfully represent the HP circuitry. The approach

allowed the simultaneous prediction of computation effects and construction by only organizing the

structure. The choice of the right motifs was crucial, since they determine the functional aspects of each

region represented individually and together.
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In case of DG, we implemented the sparsity described in this region. Instead of only minimizing the

relative �ring rate between the output and the input, we also needed to limit the number of inhibitory

cells without creating many synapses between an inhibitory and excitatory neuron. To �x this problem, a

proportion of 8:3 was set between the excitatory and inhibitory cells to balance the number of cells and

the required properties.

Similarly, in CA3, the challenges included representing the afferent pathways from MF with the strong

recurrent connections and coupling these afferent neurons to its inhibitory mechanism. Furthermore,

the �rst signal of action potentials is propagated, processed, and directed to CA2, precisely through the

excitatory-inhibitory neural process. To implement this, we de�ned motifs to properly �t to the

dynamics and partially randomize the cell positions.

Thus, they could keep their effects even without being restricted to a single and particular organization,

but also be able to work in alternative scenarios, e.g., –conditions where the environmental variables

could not be fully captured by a simpli�ed model.

The representation of the CA2 sub�eld addressed selective activation mechanism using the global

feedback inhibition motif, which enabled an acceptable level of selectivity that can be virtually modulated

by the user. The implementation of this mechanism emphasized the importance of motifs as modular

units for building neural circuits.

The CA1 subregion was one of the hardest to implement since it represents different features and speci�c

connections that must be well described. The �rst portion of CA1 in this model was characterized by the

cadence of the signal while the second portion was characterized by a recursion mechanism through

which the signal is ampli�ed before arriving at SUB. These characteristics could be implemented because

we conjugated the motifs of feedforward excitation and recurrent excitation with feedback inhibition.

Lastly, the SUB region’s biggest challenge was to implement the related synchronization of action

potentials, so they could represent constructive interference patterns. The solution was to couple the

simple feedforward excitation linearly and collaterally to the simple feedback inhibition motif. Thus, the

neurons could start �ring simultaneously, triggering three to �ve action potentials per stimuli as
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described by the literature (AGGLETON et al., 2015; XU et al., 2016).

Considering all these points, one of the main limitations of this model is its physiological simplicity.

Physiological details such as cell types and speci�c potentials of each neuron could not be fully addressed

mainly due to the features of Neuronify™. Nevertheless, this simplicity can be seen as an interesting

feature, since the model is more intuitive and easier to manipulate during the learning process. Another

limitation to consider is the output measurements. The sensors only allow individual neuron measures,

not neuronal populations. Particularly it measures only extracellular spike-train activities and does not

allow local �eld potential measurements (VINCK et al., 2012). Additionally, the stimulation of the network

is limited to six options provided by the software that act directly on a selected neuron, without being

able to cause an extracellular-like stimulation that simultaneously excites a group of neurons next to an

electrode.

Despite these restrictions, the platform and the model itself present many possibilities for analyzing the

signals in each node of the network. We believe this model can be a good object for teaching

hippocampus circuitry and its correspondent dynamics. It can even work as an initial step for research on

HP disorders based on modifying the connections of the subregions and balancing the functions of each

region.

One of the most interesting achievements through this computational model was the demonstration of

circuit redundancy, where we were able to reproduce the main aspects of HP circuitry using a motif

approach. It provides a good opportunity for students to discuss the arrangement of complex brain

networks and how to improve the ef�cacy of information processing while maintaining energy

consumption.

Conclusions

Using the Neuronify™ computational platform we were able to implement a model of the hippocampus

circuit. The model primarily satis�ed the structural architecture encompassing the pathways between

the main subregions. Despite the limitations of the platform, such as the use of only excitatory and

inhibitory neurons and the restricted biophysical modulation of the cells, we reproduced the main

mechanisms of activity modulation using speci�c circuit blocks. This implementation by block, known

as motifs, was fundamental to better understand the structural relations between each subregion and to
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reproduce their activities.

The model proved to be very robust and at the same time malleable for virtual interventions such as

synaptic interruption, short circuit construction, and stimulation. The simplicity of the computation

model, along with the user-friendly interface of the platform, makes it important in interactive teaching

and learning of neuroscience concepts. This model can potentially contribute to studying other similar

dynamics, thus is capable of enriching and assisting the teaching process inside and outside the

experimental laboratories.

Acknowledgments

This work was partially funded by CNPq - Conselho Nacional de Desenvolvimento Cientí�co e

Tecnológico and to the CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

foundation. INNT - Instituto Nacional de Neurociência Translacional.

We would also like to thank Prof. Vinicius Rosa Cota and Heitor Terra for the important discussions about

the model.

References

AGGLETON, J.; CHRISTIANSEN, K. The subiculum: the heart of the extended hippocampal system.

Progress in Brain Research, v. 219, p. 65–82, maio 2015.

AMANI, M. et al. Rapid Aging in the Perforant Path Projections to the Rodent Dentate Gyrus. The

Journal of Neuroscience, v. 41, n. 10, p. 2301–2312, 10 Mar 2021.

BARTSCH, T. and WULFF, P. The hippocampus in aging and disease: From plasticity to vulnerability.

Elsevier Neuroscience, v. 309, p. 1–16, 19. Nov 2015.

BECKER, S. A computational principle for hippocampal learning and neurogenesis. Hippocampus, v.

15, p. 722–738, 2005.

BENEAR, S.; NGO, C.; OSLON, I. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric

Disease: A Review. Brain Connectivity, v. 10, n. 7, p. 331–354. Sep 2020.

BÖHM, C. et al. Routes to, from and within the subiculum. Cell and Tissue Research, v. 373, n. 3, p. 557–

563. May 2018.

BRAGANZA, O.; BECK, H. The Circuit Motif as a Conceptual Tool for Multilevel Neuroscience. Cell Press

Reviews, v. 41, n. 3, Mar 2018.

qeios.com doi.org/10.32388/4T2NIN 25

https://doi.org/10.1016/bs.pbr.2015.03.003
https://doi.org/10.1523/JNEUROSCI.2376-20.2021
https://doi.org/10.1016/j.neuroscience.2015.07.084
https://doi.org/10.1002/hipo.20095
https://doi.org/10.1089/brain.2020.0749
https://doi.org/10.1089/brain.2020.0749
https://doi.org/10.1007/s00441-018-2848-4
https://doi.org/10.1016/j.tins.2018.01.002
https://www.qeios.com/
https://doi.org/10.32388/4T2NIN


CACUCCI, F.; SALINAS, P.; WILLS, T. J. Hippocampus Activity-Driven Maturation of Neural Circuits for

Navigation. Cell Press Current Biology, v. 27, p. 428--430, 5. Jun 2017.

CLEMENT, N. D., LOVAT, T. Neuroscience and Education: Issues and Challenges for Curriculum.

Curriculum Inquiry, v. 42, n. 4, p. 534-557, 2012.

DE BRIGARD, F. What Does the Hippocampus Do? Scienti�c American Mind, v. 25, n. 3,

May 2014.

DING, L. et al. Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely- Moving Mice.

The Journal of Neuroscience, v. 40, n. 30, p. 5797–5806, 22 Jul 2020.

DRAGLY, S.-A. et al. Neuronify: An Educational Simulator for Neural Circuits. eNeuro, v. 4, n. 2, 9 Mar

2017.

ELBEZ, H. et al. Visualization Techniques in SNN Simulators. 3rd International Conference on

Multimedia Information Processing, 2018.

EZAMA, L. et al. Functional connectivity of the hippocampus and its sub�elds in resting-state

networks. The European Journal of Neuroscience, v. 53, n. 10, p. 3378–3393, 5 May 2021.

GERGUES, MARK. M. et al. Circuit and molecular architecture of a ventral hippocampal network.

Nature Neuroscience, v. 23, p. 1444–1452, 14 Sep 2020.

GIAP et al. The Hippocampus Anatomy, Pathophysiology, and Regenerative Capacity. Journal of Head

Trauma Rehabilitation, v. 15, n. 3, p. 875–894, 2000.

GOOGLE QUANTUM IA. Exponential suppression of bit or phase errors with cyclic error correction.

Nature, v. 595, n. 7867, p. 383–387, Jul 2021.

HANGYA, B. et al. From circuit motifs to computations: mapping the behavioral repertoire of cortical

interneurons. Elsevier Current Opinion in Neurobiology, v. 26, p. 117–124, Jun 2014.

HEYNE, H. O. et al. Predicting functional effects of missense variants in voltage-gated sodium and

calcium channels. Science Translational Medicine, v. 12, n. 556, 12 Aug 2020.

HIRASE, H. et al. Organization of cell assemblies in the hippocampus. Nature, v. 424, p. 552–556, 31 Jul

2003.

INGALLS, B.; BEMBENEK, E. Exploiting stoichiometric redundancies for computational ef�ciency and

network reduction. In Silico Biology, v. 12, n. 1–2, p. 55–67, 2015.

JEFFREY, L., MICHAEL, K. Mature Granule Cells of the Dentate Gyrus - Passive Bystanders or Principal

Performers in Hippocampal Function? Neuroscience & Biobehavioral Reviews, v. 64, 03 Mar 2016.

JIRSA, V.K. et al. On the nature of seizure dynamics. Brain, v. 137, p. 2210-2230, Aug 2014.

qeios.com doi.org/10.32388/4T2NIN 26

https://doi.org/10.1016/j.cub.2017.04.006
https://doi.org/10.1016/j.cub.2017.04.006
https://doi.org/10.1111/j.1467-873X.2012.00602.x
http://doi.org/10.1038/scientificamericanmind0514-39
https://doi.org/10.1523/JNEUROSCI.0099-20.2020
https://doi.org/10.1523/ENEURO.0022-17.2017
https://hal.archives-ouvertes.fr/hal-02887481
https://doi.org/10.1111/ejn.15213
https://doi.org/10.1111/ejn.15213
https://doi.org/10.1038/s41593-020-0705-8
https://doi.org/10.1097/00001199-200006000-00003
https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1016/j.conb.2014.01.007
https://doi.org/10.1016/j.conb.2014.01.007
https://doi.org/10.1126/scitranslmed.aay6848
https://doi.org/10.1126/scitranslmed.aay6848
https://doi.org/10.1038/nature01834
https://doi.org/10.3233/isb-140464
https://doi.org/10.3233/isb-140464
https://doi.org/10.1016/j.neubiorev.2016.02.021
https://doi.org/10.1016/j.neubiorev.2016.02.021
https://doi.org/10.1093/brain/awu133
https://www.qeios.com/
https://doi.org/10.32388/4T2NIN


KEINATH, A.T. et al. DG–CA3 circuitry mediates hippocampal representations of latent information.

Nature Neuroscience, v. 11, p. 3026, 2020.

KIPARISSIDES, A. et al. ‘Closing the loop’ in biological systems modeling — From the in silico to the in

vitro. Elsevier Automatica, v. 47, n. 6, p. 1147–1155, Jun 2011.

KRAGEL, J. E. et al. Rapid coordination of effective learning by the human hippocampus. Science

Advances, v. 7, n. 25, 18 jun. 2021.

LATIMER, B. et al. Open Source Software Tools for Teaching Neuroscience. The Journal of

Undergraduate Neuroscience Education, v. 16, n. 3, p. A197–A202, 3 Sep 2018.

LI, Y.; MU, Y.; GAGE, F. H. Development of Neural Circuits in Adult Hippocampus. Current

Topics in Developmental Biology, v. 87, p. 149–174, 2009.

MAHZER, K.; HASSAN, R. Histological, histochemical, and immunohistochemical studies of

hippocampus in male New Zealand rabbits. Anatomical Record, v. 304, n. 2, p. 393–399, Feb 2021.

MCHUGH, T. J. et al. CA2 inhibition reduces the precision of hippocampal assembly

reactivation. Neuron, v. 109, n. 22, p. 3674–3687, 17 Nov 2021.

MORAIS, P. L. A. DE G. et al. Cytoarchitecture and myeloarchitecture of the entorhinal cortex of the

common marmoset monkey (Callithrix jacchus). The Journal of Comparative Neurology, v. 528, n. 8, p.

1307–1320, Jun 2020.

NAVAKKODE, S. et al. Enhanced long-term potentiation and impaired learning in mice lacking

alternative exon 33 of CaV1.2 calcium channel. Nature Translational Psychiatry, v. 12, 10 Jan. 2022.

NILSSEN, E. et al. Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and

medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus, v. 29, n. 12, p.

1238–1254, Dec 2019.

NORTHCUTT, K. V. Cooperative Group Learning in Undergraduate Neuroscience: Using Simulations to

Complement Problem-Solving Assignments. The Journal of Undergraduate Neuroscience Education, v.

19, n. 2, p. A201–A209, 19 Jun 2021.

PIATTI, V. C.; EWELL, L. A.; LEUTGEB, J. K. Neurogenesis in the dentate gyrus carrying the message or

dictating the tone. Frontiers in Neuroscience, v. 7, 4 Apr 2013.

PRESCOTT, M. J. and LIDSTER, K. Improving quality of science through better animal welfare: the

NC3Rs strategy. Lab Animal, v. 46, n. 4, p. 152-156, 2017.

RAMIREZ, J. J. Undergraduate neuroscience education: Meeting the challenges of the 21st century.

Elsevier Neuroscience Letters, v. 739, p. 1–9, 20 Nov 2020.

qeios.com doi.org/10.32388/4T2NIN 27

https://doi.org/10.1038/s41467-020-16825-1
https://doi.org/10.1016/j.automatica.2011.01.013
https://doi.org/10.1016/j.automatica.2011.01.013
https://doi.org/10.1126/sciadv.abf7144
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6153012/
https://doi.org/10.1002/ar.24418
https://doi.org/10.1002/ar.24418
https://doi.org/10.1016/j.neuron.2021.08.034
https://doi.org/10.1016/j.neuron.2021.08.034
https://doi.org/10.1002/cne.24814
https://doi.org/10.1002/cne.24814
https://doi.org/10.1002/cne.24814
https://doi.org/10.1002/cne.24814
https://doi.org/10.1038/s41398-021-01683-2
https://doi.org/10.1038/s41398-021-01683-2
https://doi.org/10.1002/hipo.23145
https://doi.org/10.1002/hipo.23145
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437360/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437360/
https://doi.org/10.3389/fnins.2013.00050
https://doi.org/10.3389/fnins.2013.00050
https://doi.org/10.1038/laban.1217
https://doi.org/10.1038/laban.1217
https://doi.org/10.1016/j.neulet.2020.135418
https://www.qeios.com/
https://doi.org/10.32388/4T2NIN


REYES-GARCIA, S. et al. Different patterns of epileptiform-like activity are generated in the sclerotic

hippocampus from temporal lobe epilepsy. Nature Scienti�c Reports, v. 8, n. 1, p. 7116, 8 May 2018.

ROGALSKI, J. and SAMURÇAY, R. Acquisition of Programming Knowledge and Skills. Elsevier

Psychology of Programming, n. 2.4, p. 157–174, 1990.

SHI, Y. et al. Bidirectional Global Spontaneous Network ActivityPrecedes the Canonical Unidirectional

Circuit Organization in the Developing Hippocampus. Journal of Comparative Neurology, v. 552, n. 9, p.

2192–2208, 15 Jun 2014.

SHIMBO, A.; IZAWA, E.-I.; FUJISAWA, S. Scalable representation of time in the hippocampus. Science

Advances, v. 7, n. 6, p. 1–14, 3 Feb 2021.

SOLTESZ, I.; LOSONCZY, A. CA1 pyramidal cell diversity enabling parallel information processing in

the hippocampus. Nature Neuroscience, v. 21, p. 484,493, Apr 2018.

STAFSTROM, C. E. The Role of the Subiculum in Epilepsy and Epileptogenesis. Epilepsy Currents, v. 5,

n. 4, p. 121–129, Jul 2005.

SUN, Q. et al. Frequency-Dependent Synaptic Dynamics Differentially Tune CA1 and CA2 Pyramidal

Neuron Responses to Cortical Input. The Journal of Neuroscience, v. 41, n. 39, p. 8103–8110, 29 Sep 2021.

TATU, L.; VUILLIER, F. Structure and vascularization of the human hippocampus. Frontiers of

Neurology and Neuroscience, v. 34, p. 18–25, 16 Apr 2014.

THOMPSON, C. L. et al. Genomic Anatomy of the Hippocampus. Neuron Cell Press, v. 60, p. 1010–1021,

26 Dec 2008.

TZAKIS, N.; HOLAHAN, M. R. Social Memory and the Role of the Hippocampal CA2 Region. Frontiers

in Behavioral Neuroscience, v. 13, p. 233, 1 out. 2019.

VINCK, M. et al. Improved measures of phase-coupling between spikes and the Local Field Potential.

Journal of Computational Neuroscience, v. 33, n. 1, p. 53–75, Aug 2012.

WIEMAN, C. E.; ADAMS, W. K.; PERKINS, K. K. PhET: Simulations That Enhance Learning. Science, v.

322, p. 682–683, 31 Oct 2008.

WILLINGHAM, D. T. Three problems in the marriage of neuroscience and education. Cortex, v. 45, p.

544–545, Apr 2009.

WOMELSDORF, T. et al. Dynamic circuit motifs underlying rhythmic gain control, gating and

integration. Nature Neuroscience, v. 17, p. 1031–1039, 28 Jul 2014.

WOMELSDORF, T.; EVERLING, S. Long-Range Attention Networks: Circuit Motifs Underlying

Endogenously Controlled Stimulus Selection. ScienceDirects Trends in Neuroscience, v. 38, n. 11, p.

682–700, Nov 2015.

qeios.com doi.org/10.32388/4T2NIN 28

https://doi.org/10.1038/s41598-018-25378-9
https://doi.org/10.1038/s41598-018-25378-9
https://doi.org/10.1016/B978-0-12-350772-3.50015-X
https://doi.org/10.1002/cne.23528
https://doi.org/10.1002/cne.23528
https://doi.org/10.1126/sciadv.abd7013
http://10.0.4.14/s41593-018-0118-0
http://10.0.4.14/s41593-018-0118-0
https://doi.org/10.1111/j.1535-7511.2005.00049.x
https://doi.org/10.1523/JNEUROSCI.0451-20.2021
https://doi.org/10.1523/JNEUROSCI.0451-20.2021
https://doi.org/10.1159/000356440
https://doi.org/10.1016/j.neuron.2008.12.008
https://doi.org/10.3389/fnbeh.2019.00233
https://doi.org/10.1007/s10827-011-0374-4
https://doi.org/10.1126/science.1161948
https://doi.org/10.1016/j.cortex.2008.05.009
https://doi.org/10.1038/nn.3764
https://doi.org/10.1038/nn.3764
https://doi.org/10.1016/j.tins.2015.08.009
https://doi.org/10.1016/j.tins.2015.08.009
https://www.qeios.com/
https://doi.org/10.32388/4T2NIN


XU, X. et al. Noncanonical connections between the subiculum and hippocampal CA1. The Journal of

Comparative Neurology, v. 524, n. 17, p. 3666–3673, Dec 2016.

YU, X. et al. Lateral entorhinal cortex supports the development of prefrontal network activity that

bridges temporally discontiguous stimuli. Hippocampus, v. 31, n. 12, p. 1285–1299, Dec 2021.

Supplementary data: available at https://doi.org/10.32388/4T2NIN

Declarations

Funding: CNPq - Conselho Nacional de Desenvolvimento Cientí�co e Tecnológico CAPES - Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior INNT - Instituto Nacional de Neurociência

Translacional

Potential competing interests: The author(s) declared that no potential competing interests exist.

qeios.com doi.org/10.32388/4T2NIN 29

https://doi.org/10.1002/cne.24024
https://doi.org/10.1002/hipo.23389
https://doi.org/10.1002/hipo.23389
https://doi.org/10.32388/4T2NIN
https://www.qeios.com/
https://doi.org/10.32388/4T2NIN

