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Semi-supervised domain adaptation (SSDA) has been extensively researched due to its ability to

improve classi�cation performance and generalization ability of models by using a small amount of

labeled data on the target domain. However, existing methods cannot e�ectively adapt to the target

domain due to di�culty in fully learning rich and complex target semantic information and

relationships. In this paper, we propose a novel SSDA learning framework called semantic

regularization learning (SERL), which captures the target semantic information from multiple

perspectives of regularization learning to achieve adaptive �ne-tuning of the source pre-trained

model on the target domain. SERL includes three robust semantic regularization techniques. Firstly,

semantic probability contrastive regularization (SPCR) helps the model learn more discriminative

feature representations from a probabilistic perspective, using semantic information on the target

domain to understand the similarities and di�erences between samples. Additionally, adaptive

weights in SPCR can help the model learn the semantic distribution correctly through the

probabilities of di�erent samples. To further comprehensively understand the target semantic

distribution, we introduce hard-sample mixup regularization (HMR), which uses easy samples as

guidance to mine the latent target knowledge contained in hard samples, thereby learning more

complete and complex target semantic knowledge. Finally, target prediction regularization (TPR)

regularizes the target predictions of the model by maximizing the correlation between the current

prediction and the past learned objective, thereby mitigating the misleading of semantic

information caused by erroneous pseudo-labels. Extensive experiments on three benchmark

datasets demonstrate that our SERL method achieves state-of-the-art performance.
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I. Introduction

In recent years, deep neural networks (DNN) have brought a series of breakthroughs in many

computer vision tasks, such as image classi�cation[1][2][3][4][5][6][7], semantic segmentation[8][9][10]

[11][12][13]. However, to achieve satisfactory results, the large number of sample labels required for

deep neural network training is costly and time-consuming. Therefore, domain adaptation (DA)[14][15]

[16][17] is proposed by generalizing the knowledge learned from the source domain with rich labels to

the target domain with no or few labels. Domain adaptation can be simply divided into unsupervised

domain adaptation (UDA)[18][19][20][21][22][23][24][25] and semi-supervised domain adaptation (SSDA)

[26][27][28][29][30][31][32][33][34][35][36] according to access to target labels during training. This paper

focuses on SSDA, which performs signi�cantly better than UDA when given a small number of labeled

target samples. It can utilize a small number of labels on the target domain to expand semantic

information and learn semantic knowledge of target samples of the same category to achieve domain

alignment.

Due to its advantages of practical signi�cance, SSDA has attracted increasing attention and has been

widely studied. However, SSDA also has its speci�c challenges and issues. First, the training of the

supervised model only uses a small number of labeled target samples. The model can only learn the

extremely limited target domain knowledge and cannot generate a highly discriminative knowledge

representation for the target domain[26][34]. At the same time, due to many labeled source samples,

the feature representation learned by the model is biased toward the source domain[37]. To address

these issues, existing methods[26][27][28][29][30][31][32][33][34][35]  have proposed their solutions to

address these challenges and have witnessed signi�cant performance improvements. MCL[31]  learns

the consistency between samples, but it ignores the learning of target semantic information.

ProML[33] utilizes target labels by constructing prototypes, but the semantic information contained in

them is very limited due to the scarcity of labeled target samples. Due to the complexity of semantic

information between target samples, the knowledge representation learned by existing methods still

needs to be improved. This complex semantic information , category knowledge representation on

the target domain can better bridge the distribution di�erences between domains, encouraging the

model to generate domain-invariant but di�erentiated target features when adapting.

In this paper, we present a novel SSDA learning framework, named semantic regularization learning

(SERL), which is proposed to tackle the challenges of the SSDA tasks. As shown in Figure 1, di�erent

i. e.
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from the training paradigm of most existing SSDA methods, this paper considers a source-free

scenario, , in which target domain adaptation is performed using the source domain pre-trained

model[38]. Unlike UDA, SSDA can obtain a small amount of labeled data on the target domain, so it can

better adapt to this source-free scenario. SERL provides regularization constraints from di�erent

perspectives by fully learning the target semantic information, which can enrich the understanding of

the accurate distribution of the target domain and thus better learn the knowledge of the target

domain, as shown in Figure 2.

Figure 1. The learning scenario of our SERL framework. Di�erent from the training

paradigm of most existing SSDA methods, we adopt a source-free training strategy.

The source model comprises a feature extractor and a classi�er initialized on the

source domain. We focus on improving the target domain adaptation stage of the

model. In the target domain adaptation stage, SERL freezes the classi�er module and

�ne-tunes the feature extractor module through semantic regularization learning.

i. e.
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Figure 2. The motivation of our SERL. (a) Due to the scarcity of target semantic labels

during training, most existing SSDA methods have shortcomings in target semantic

learning, resulting in models only learning limited knowledge (e.g., only the

relationships between samples) on the target domain. When more complex

relationships exist on the target domain, such as hard and noisy samples, the model

may perform poorly due to a lack of understanding of semantic information. (b) Our

SERL utilizes the semantic information learned on the target domain from the

perspective of semantic regularization to constrain the feature representation of the

model further, thereby adapting to more complex target domain distributions.

Speci�cally, we propose semantic probability contrastive regularization (SPCR), which helps the

model aggregate features of similar samples according to the distribution of target semantic

information and keep features of heterogeneous samples away from each other. This method forces

the model to learn more discriminative semantic knowledge on the target domain from the probability

perspective. At the same time, SPCR uses adaptive weights to assign lower weights to low-con�dence

samples by combining the con�dence of contrasting examples to reduce the impact of erroneous

semantic information and help the model learn the correct target distribution. Furthermore, hard

samples are crucial to fully understand the target semantic distribution[39][40][41][42]. However,

existing SSDA methods ignore exploring hard samples due to their complex knowledge distribution.

To �ll this gap, we further explore the complex target relationships of hard target samples through
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hard-sample mixup regularization (HMR). After screening out easy and hard samples using the

classi�er prototype, we use easy sample guidance to learn these hard samples. Speci�cally, HMR uses

the regularization constraint of mixup[43]  to mix easy samples with hard samples. This method

further explores the potential knowledge of hard samples through the guidance of easy samples and

further helps the model learn more complex target semantic information. Finally, even if we consider

the discriminative knowledge representation and hard sample information of the target domain, there

will still be bias in semantic learning when there is much noise in the target pseudo-labels. To reduce

this misleading semantic information caused by noisy pseudo-labels, we minimize the impact of

noisy pseudo-labels from the perspective of target prediction regularization (TPR). Inspired by[44]

[45], we use the early prediction of samples to constrain the probability output of the model during the

adaptation stage to encourage the model to follow early target sample predictions and alleviate

over�tting of erroneous semantic information on the target domain.

In summary, our main contributions are as follows:

We propose a novel SSDA framework called semantic regularization learning (SERL). The proposed

SERL considers fully utilizing and learning semantic knowledge on the target domain to achieve

cross-domain adaptation when �ne-tuning the source model on the target domain.

To fully utilize the semantic relationships of the target domain, we propose three regularization

methods,  , semantic probability contrastive regularization, hard-sample mixup regularization,

and target prediction regularization, to constrain the performance of the model on the target

domain through semantic regularization strategies and further learn the knowledge of the target

domain.

Extensive experiments conducted on three standard benchmark datasets, including

DomainNet[46], O�ce-Home[47], and O�ce-31[48], have shown that our method has signi�cant

advantages over previous state-of-the-art SSDA methods.

The paper is structured as follows: In Section II, we provide an overview of prior research related to

our work. Section IIIintroduces and describes the proposed algorithm for semi-supervised domain

adaptation. In Section IV, we conduct comparative experiments to evaluate the performance of the

proposed method. Finally, the conclusions of our approach are presented in Section V.

i. e.
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II. Related Work

A. Unsupervised Domain Adaptation

To solve the problem that traditional supervised learning requires much manual annotation,

unsupervised domain adaptation (UDA) aims to transfer knowledge from a fully labeled source

domain to an unlabeled target domain. In recent years, various methods have been proposed for UDA,

and adequate progress has been achieved. Commonly used methods mainly include maximum mean

di�erence (MMD)[49], whose basic idea is to achieve migration from the source domain to the target

domain by minimizing the distance between feature distributions. DANN[50]  and JAN[51]  further

proposed using the MMD criterion to learn transfer networks by cross-region alignment of multiple

region-speci�c layers. CORAL[52]  and DUCDA[53]  proposed minimizing the domain shift by aligning

the second-order statistics of the source and target distributions. Meanwhile, with the development of

generative adversarial networks, many recent works[18][54][55][56][57][58][21][59] have used adversarial

learning for domain alignment so that knowledge from classi�ers trained on labeled source samples

can be e�ectively transferred to the target domain. In addition, considering the perspective of

conditional distributions, many related works[60][61][62]  have proven that learning conditional

distributions is of good help in reducing the di�erences in the alignment of classi�cation domains,

thereby improving the adaptability between domains. Although the UDA method has been successfully

used in many practical applications, it takes work to accurately describe the conditional distribution of

target features due to the signi�cant di�erences between some source domains and target domains

and the unreachability of target labels. Therefore, the potential of the UDA method in practical

applications is limited compared to the SSDA method.

B. Semi-supervised Domain Adaptation

Semi-supervised domain adaptation (SSDA) aims to utilize a small number of labeled samples on the

target domain. Compared with UDA, the classi�cation performance and generalization ability of the

model on the target domain can be signi�cantly improved due to the access to labeled target samples.

At present, SSDA has made much adequate progress, and the methods used in many works can be

roughly divided into cross-domain alignment methods, adversarial training methods, and semi-

supervised learning methods. In cross-domain alignment, many related works[28][45][63]

[64]  integrate various complementary domain alignment technologies. G-ABC[34]  further achieves
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semantic alignment by forcing the transfer from labeled source and target data to unlabeled target

samples. In addition, IDMNE[35]  is proposed to incorporate the label information of labeled samples

into the model to learn cross-domain class feature alignment. Utilizing the idea of adversarial

training, many related methods[26][65][66][37][27][29]  solve the SSDA problem by minimizing the

entropy between the class prototype and adjacent unlabeled target domain samples to achieve the

e�ect of adversarial training. To solve SSDA through the idea of semi-supervised learning,

MCL[31] and ProML[33] further help the model understand the target domain that lacks a large number

of labels through consistency regularization. Unlike most existing methods, DEEM[67]  considers a

source-free[38]  scenario and proposes a self-distillation method to improve entropy minimization

and help label propagation of unlabeled samples on the target domain. However, the above existing

methods all need to pay more attention to the importance of profoundly exploring the semantic

information of the target domain. This paper starts from the perspective of semantic regularization

learning and proposes the SERL framework, which helps the model more comprehensively adapt to

the actual target domain distribution by standardizing the knowledge representation learned by the

model on the target domain.

III. Methodology

A. Preliminaries and Overview

In semi-supervised domain adaptation (SSDA), the model is expected to generalize well on the target

domain with fully labeled source samples and a small number of labeled target samples. Speci�cally,

the source domain dataset   contains fully labeled data,   contains a small

amount of labeled data of the target domain, where    and    are the source domain and target

domain dataset size respectively. Here,   and   represent the labeled source image and target image

data, respectively, and    and    represent the corresponding labels. In addition to the labeled data,

there is also an unlabeled target image set    for adaptation on the target domain, which

contains unlabeled target image data, usually  . The overall objective used to optimize the

model can be expressed as a combination of the loss of the base model and the additional loss, as

follows:

S = { ,xsi ysi }Ns
i=1 L = { ,xli y

l
i}

Nl
i=1

Ns Nl

xsi xli

ysi y li

U = {xui }Nu
i=1

≫Nu Nl

= + + + ,Lall Lbase λprobLprob λmixLmix λpreLpre (1)
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where  ,    and    are scalar hyper-parameters of the loss weights and  ,  , and 

 represent semantic probability contrastive regularization, hard-sample mixup regularization and

target prediction regularization respectively.

For the model trained on the source domain, we �rst use the cross-entropy loss to train the feature

extractor    and the linear classi�er  . For the source data  , we employ the

standard cross-entropy objective:

Following  [38][67], we freeze    and train    when the model adapts to the target domain. An

overview of our SERL framework in the target adaptation stage is illustrated in Figure 3. Following [33],

we generate the strong augment view for each unlabeled target sample  , represented as  . The

target samples are then fed to the same feature extractor    and classi�er    to obtain the

probabilistic predictions  ,  , and the model is further adapted by the proposed semantic

regularization learning. For the labeled target data, we employ the standard cross-entropy objective:

where    is the standard cross-entropy loss. For the unlabeled target data, we employ the cross-

entropy objective for its pseudo-label:

where    is the pseudo-label of  . Then, we utilize the mutual information

maximization objective to encourage individually certain and globally diverse predictions:

where the entropy metric   and   is the number of di�erent categories.

Following [67], we use a KNN-based pseudo-label propagation method. In the neighbor graph, we can

obtain one-hot pseudo-labels of unlabeled data through global propagation from labeled and low-

uncertainty target data. Finally, the base learning objective on the target domain can be derived as

follows:

λprob λmix λpre Lprob Lmix

Lpre

g(⋅) f(⋅) S = { ,xsi ysi }Ns
i=1

= (p( | ), ).Ls
1

Ns

∑
i=1

Ns

LCE ysi x
s
i ysi (2)

f(⋅) g(⋅)

xui x̂
u
i

g(⋅) f(⋅)

pui p̂
u
i

= (p( | ), ),Ll
1

Nl

∑
i=1

Nl

LCE y li x
l
i y li (3)

LCE

= (p( | ), ),Lu
1

Nu

∑
i=1

Nu

LCE yui xui yui (4)

= arg maxyui pui xui

= H(p( | )) −H( p( | )),Lmi
1

Nu

∑
i=1

Nu

yui xui ∑
i=1

Nu

yui xui (5)

H(p(y|x)) = log∑
c
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= + + .Lbase Ll Lu Lmi (6)
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On this basis, we will further introduce the proposed learning framework and how the training

objective achieves further learning of the target domain through semantic probability contrastive

regularization  , hard-sample mixup regularization  , and target prediction regularization 

.

Figure 3. Illustration of our proposed semantic regularization learning (SERL) framework. Left: The model

initialized on the source domain is adaptively �ne-tuned on the target domain. The labeled target data and

the strong and weak augmented versions of the unlabeled target data are input to the feature extractor  ,

then sent to the classi�er  , and further learned the target domain knowledge through semantic

regularization. The two feature extractors and classi�ers used share parameter weight. Right: (a) Semantic

probability contrastive regularization (SPCR) adaptively learns discriminative features through target

semantic information and helps the model obtain a more con�dent probability output. (b) Hard-sample

mixup regularization (HMR) uses the semantic information of easy samples to guide the model in learning

the distribution of hard target samples, helping the model learn more complex target domain

distributions. (c) Target prediction regularization (TPR) is used to minimize the misleading of erroneous

semantic information to the model from the perspective of noise labels and help the model learn the true

target domain distribution information.

B. Semantic Probability Contrastive Regularization

After the model is initialized on the source domain, it will be �ne-tuned on the target domain, and this

process will not access the source domain data so that we can convert this semi-supervised domain

adaptive process into a semi-supervised �ne-tuning process for the target domain. However, due to

domain di�erences, the model still performs poorly on the target domain, even if it sees rich label

information during the initialization of the source domain.

Lprob Lmix

Lpre

g

f
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In recent years, contrastive learning[68][69][70][71][72][73][74][75]  has been proven to be an adequate

representation learning method, which helps models better understand data and learn helpful

knowledge representations in unsupervised or semi-supervised scenarios by constraining sample

representation. As a representative work, the self-supervised contrastive loss InfoNCE[68]  takes the

following format:

where the   represents the positive sample of feature embedding  ,   represents the indicator

function and   is the temperature coe�cient.

In instance-based contrastive learning, two di�erent augmented views from the same sample should

be shown to represent similar features. However, the knowledge learned only considering instance-

level relationships is limited in complex target domains. SupCon[70]  learns more complex inter-

sample relationships by introducing semantic information. It is equivalent to applying semantic

information regularization constraints to the model, which helps improve the generalization

performance of the model on the target domain. However, it is only applied to label-rich supervised

learning, and feature-based contrastive learning cannot represent the actual target distribution of

feature representations of many unlabeled target samples, which will impair the generalization ability

of the classi�er on the target domain[72]. Inspired by[72][76], we consider using semantic probability

contrastive regularization based on adaptive weights to help the model better adapt to the target

domain. Speci�cally, we consider the following loss:

where   represents the predicted probability of the positive target sample   and the adaptive weight 

 is de�ned as follows:

The adaptive weights give lower weights to low-con�dence samples, which can help mitigate the

impact of false constraints and reduce misunderstandings about the proper distribution of the target

domain.

= − log ,LInfoNCE ∑
i=1

2Nu exp( ⋅ /τ)zi z+
i

1(j ≠ i) exp( ⋅ /τ)∑
2Nu

j=1 zi zj

(7)

z+
i zi 1(j ≠ i)

τ = 0.15

= − log ,Lprob ∑
i=1

2Nu

∑
k=1

2Nu

wik

exp( ⋅ /τ)pui pu+
k

exp( ⋅ /τ)∑
2Nu

j=1 1j≠i pui puj

(8)

pu+
k

k

wik

=wik

⎧

⎩
⎨
⎪

⎪

1

⋅pui pu
k

0

if k = i,

if  arg max = arg max ,pui pu
k

otherwise.

(9)
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Compared with instance-level contrastive learning, we learn a more realistic target domain

distribution by constraining the probability distribution of samples with the same semantic

information. At the same time, we constrain the similarity of the target samples from a probability

perspective. Speci�cally, for two samples  ,  :

where   represents the product of two unsupervised samples,   represents the equivalence, and 

  represents the logical AND relationship. Eq. 10 indicates that when optimizing  , the model

forces the product between similarities to be maximized ( , the product is 1), which is equivalent to

the probability value corresponding to the predicted category ( ,  ) being 1. It encourages

the prediction of the model to be close to the one-shot vector,  , to make con�dent judgments on

the target sample with the same semantic label, which helps to capture the semantic information on

the target domain more e�ectively and has unique advantages in improving model performance.

Di�erent from  [77][71], we do not need a large batch size or sample queue to build comparison

relationships, which can further save model memory consumption.

C. Hard-sample Mixup Regularization

Through semantic probability contrastive regularization, the model has been able to have a basic

understanding of the sample relationships between target domains. However, when we consider a

more complex target domain relationship,  , there are a certain number of complex samples on the

target domain, which are usually distributed near the decision boundary and have low con�dence,

making it challenging to learn the complete target distribution further. Existing SSDA methods ignore

this problem, which makes them perform poorly in the face of complex target domain distributions.

Mixup is proven to reduce the over�tting tendency of the model by introducing a certain degree of

regularization  [43][78][79][80]. Therefore, we can consider using Mixup to mix the semantic

information of samples with di�erent di�culty levels so that the model can better learn the complex

semantic feature distribution of the target domain rather than adapt to the easy target distribution.

An important issue is partitioning samples with varying degrees of di�culty through existing models.

Previous work  [81]  revealed that the weight vector of the trained last layer classi�er converges to a

high-dimensional geometric structure, which maximizes the separation of paired angles for all

classi�ers. Another work  [82]  uses the weight vector of the classi�er to construct pseudo-source

i j

⋅ = 1 ⇔pui puj  argmax( ) = argmax( )pui puj

∧ max( ) = max( ) = 1.pui puj
(10)

⋅pui puj ⇔

∧ Lprob

i. e.

i. e. argmax( )pui

i. e.

i. e.
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domain samples to help model learning compensate for the lack of source domain knowledge. Inspired

by these works, we use the weight vectors of pre-trained classi�ers on the source domain as anchors

to divide easy and complex samples. Speci�cally, we �rst de�ne the classi�er weight vectors 

  of each category on the source domain as category anchors, search for and divide a

certain number of easy and hard samples on unlabeled target domain data based on their distance

from the anchors:

where    and    represent the number of easy and hard samples,    means

taking the �rst    numbers,    and    mean sorting the objects from small to large/from

large to small,   represents the cosine distance between samples, and   and   represent

the set of easy and hard samples for the  -th category.

To further enhance the understanding of semantic information, we connect easy and hard samples

with their augmented versions  ,    to construct a vector represented as 

 and  . Furthermore, we will mix   and 

 to construct the following mixed training samples:

where    is the mixup coe�cient sampled from a random Beta distribution  ,  .

Following [78], we formulate the hard-sample mixup regularization loss as:

where   represents the   regularization.

Unlike the cross-entropy loss, it is bound and more robust due to the sensitivity to corrupted labels.

The guidance of easy samples can help the model reduce the predicted distribution �uctuations

between easy and hard samples when complex samples exhibit features more distinct from the source

domain distribution[42]. At the same time, this method imposes more complex semantic

regularization constraints on the model, reducing the di�erence in semantic learning between easy

and hard target samples, thereby helping the model better adapt to more complex target domain

distributions.

{ , , … , }c1 c2 cc

= argTOPK(min(dist⟨g( ), ⟩), ),xeasyc xu cc N
easy
u (11)

= argTOPK(max(dist⟨g( ), ⟩), ),xhardc xu cc N hard
u (12)

N
easy
u N hard

u argTOPK(⋅,N)

N min (⋅) max (⋅)

dist⟨⋅, ⋅⟩ x
easy
c xhardc

c

x̂
easy

x̂
hard

= concate( , )X easy xeasy x̂
easy = concate( , )Xhard xhard x̂

hard
X easy

Xhard

Xmix
i

ymix
i

= θ + (1 − θ) ,X
easy
i Xhard

j

= θ + (1 − θ) ,y
easy
i yhardj

(13)

θ Beta(α,α) α = 1

= ∥f(g( )) − , (14)Lmix
1

Nu

∑
i=1

Nu

Xmix
i ymix

i ∥2
2

∥⋅∥2 l2

qeios.com doi.org/10.32388/4T33D8 12

https://www.qeios.com/
https://doi.org/10.32388/4T33D8


D. Target Prediction Regularization

Our method relies on pseudo-labels generated by the model to form semantic information and use

this as regularization information on the target domain without accessing source domain data during

training. Even if the learning of the model considers the discriminative knowledge of the target

domain and hard sample information, the learning is still biased when there is much noise in the

target pseudo-label. Therefore, it is necessary to reduce the model from being misled by the semantic

information generated by incorrect pseudo-labels. However, existing SSDA methods ignore this

impact, which will cause the model to generate noise due to domain shift and mislead the learning of

clustering structures[75]. To reduce the misguidance brought by erroneous semantic information to

the model, we minimize the impact of erroneous pseudo-labels from the perspective of prediction

regularization and further help the model learn correct target domain distribution knowledge.

Inspired by[45][83][84][44], we exploit the early training phenomenon to address the potential spurious

label noise problem. Speci�cally, the early training phenomenon shows that classi�ers can predict

mislabeled samples with relatively high accuracy in the early adaptation stage before memorizing

mislabeled target data. To leverage predictions made during early training, we employ early learning

regularization (ELR), encouraging model predictions to adhere to early sample predictions. The

regularization term is given by:

where   is the target probability output at epoch  ,   is the moving average

prediction and   is the hyper-parameter.

Note that minimizing Eq. 15 forces    to be close to  . Therefore, Eq. 15 prevents the model from

remembering target label noise by forcing the model predictions to stay close to the moving average

predictions    of these most likely accurate target labels, further reducing the impact of noisy

semantic information on the model brought about misguidance. Combined with all the components

mentioned above, the whole algorithm of our SERL can be described using Algorithm 1.

= log(1 − ),Lpre
1

Nu

∑
i=1

Nu

y~ut
⊤

i puti ((15))

puti t = β + (1 − β)y~uti y~u(t−1)
i puti

β = 0.7

puti y~uti

y~ut
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SF Method R C R P P C C S S P R S P R Mean

S+T 55.6 60.6 56.8 50.8 56.0 46.3 71.8 56.9

DANN[50] 58.2 61.4 56.3 52.8 57.4 52.2 70.3 58.4

ENT[85] 65.2 65.9 65.4 54.6 59.7 52.1 75.0 62.6

MME[26] 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4

UODA[65] 72.7 70.3 69.8 60.5 66.4 62.7 77.3 68.5

BiAT[66] 73.0 68.0 71.6 57.9 63.9 58.5 77.0 67.1

APE[37] 70.4 70.8 72.9 56.7 64.5 63.0 76.6 67.6

STar[63] 74.1 71.3 71.0 63.5 66.1 64.1 80.0 70.0

DECOTA[64] 79.1 74.9 76.9 65.1 72.0 69.7 79.6 73.9

CDAC[27] 77.4 74.2 75.5 67.6 71.0 69.2 80.4 73.6

CLDA[86] 76.1 75.1 71.0 63.7 70.2 67.1 80.1 71.9

ECACL[28] 75.3 74.1 75.3 65.0 72.1 68.1 79.7 72.8

ASDA[29] 77.0 75.4 75.5 66.5 72.1 70.9 79.7 73.9

MCL[31] 77.4 74.6 75.5 66.4 74.0 70.7 82.0 74.4

ProML[33] 78.5 75.4 77.8 70.2 74.1 72.4 84.0 76.1

SLA[32] 79.8 75.6 77.4 68.1 71.7 71.7 80.4 75.0

IDMNE[35] 79.6 76.0 79.4 71.7 75.4 73.5 82.1 76.8

G-ABC[34] 80.7 76.8 79.3 72.0 75.0 73.2 83.4 77.5

✓ DEEM[67] 79.7 78.1 77.0 71.9 77.7 76.7 85.4 78.1

✓ SERL (Ours) 90.5 88.8 90.2 89.1 90.1 87.1 93.3 89.9

Table I. Accuracy (%) on DomainNet under the settings of 1-shot and ResNet-34 as backbone networks.
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SF Method R C R P P C C S S P R S P R Mean

S+T 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0

DANN[50] 59.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7

ENT[85] 71.0 69.2 71.1 60.0 62.1 61.1 78.6 67.6

MME[26] 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9

UODA[65] 75.4 71.5 73.2 64.1 69.4 64.2 80.8 71.2

BiAT[66] 74.9 68.8 74.6 61.5 67.5 62.1 78.6 69.7

APE[37] 76.6 72.1 76.7 63.1 66.1 67.8 79.4 71.7

STar[63] 77.1 73.2 75.8 67.8 69.2 67.9 81.2 73.2

DECOTA[64] 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6

CDAC[27] 79.6 75.1 79.3 69.9 73.4 72.5 81.9 76.0

CLDA[86] 77.7 75.7 76.4 69.7 73.7 71.1 82.9 75.3

ECACL[28] 79.0 77.3 79.4 70.6 74.6 71.6 82.4 76.4

ASDA[29] 79.4 76.7 78.3 70.2 74.2 72.1 82.3 76.2

MCL[31] 79.4 76.3 78.8 70.9 74.7 72.3 83.3 76.5

ProML[33] 80.2 76.5 78.9 72.0 75.4 73.5 84.8 77.4

SLA[32] 81.6 76.0 80.3 71.3 73.5 73.5 82.5 76.9

IDMNE[35] 80.8 76.9 80.3 73.2 75.4 73.9 82.8 77.5

G-ABC[34] 82.1 76.7 81.6 73.7 76.3 74.3 83.9 78.2

✓ DEEM[67] 80.5 79.0 77.5 74.9 80.0 75.9 88.5 79.5

✓ SERL (Ours) 91.8 89.1 91.9 89.9 92.1 87.5 94.3 90.9

Table II. Accuracy (%) on DomainNet under the settings of 3-shot and ResNet-34 as backbone networks.
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SF Method R C R P R A P R P C P A A P A C A R C R C A C P Mean

S+T 39.5 75.3 61.2 71.6 37.0 52.0 63.6 37.5 69.5 64.5 51.4 65.9 57.4

DANN[50] 52.0 75.7 62.7 72.7 45.9 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0

ENT[85] 23.7 77.5 64.0 74.6 21.3 44.6 66.0 22.4 70.6 62.1 25.1 67.7 51.6

MME[26] 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7

UODA[65] 49.6 79.8 66.1 75.4 45.5 58.8 72.5 43.3 73.3 70.5 59.3 72.1 63.9

DECOTA[64] 47.2 80.3 64.6 75.5 47.2 56.6 71.1 42.5 73.1 71.0 57.8 72.9 63.3

ASDA[29] 51.6 80.9 66.9 75.9 49.7 60.5 71.0 44.9 73.2 70.6 58.7 72.8 64.7

IDMNE[35] 52.6 81.8 67.5 77.3 50.7 59.7 73.7 49.6 72.6 71.4 62.5 76.2 66.3

✓ DEEM[67] 62.5 82.1 68.5 79.0 62.1 65.4 76.5 60.3 76.1 74.6 63.3 75.4 70.5

✓ SERL (Ours) 74.4 92.8 78.0 89.4 70.6 72.2 86.7 74.7 86.1 84.3 72.7 86.8 80.6

Table III. Accuracy (%) on O�ce-Home under the settings of 1-shot using VGGNet-16 as the backbone

network.
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SF Method R C R P R A P R P C P A A P A C A R C R C A C P Mean

S+T 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9

DANN[50] 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9

ENT[85] 48.3 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8

MME[26] 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6

UODA[65] 57.6 83.6 67.5 77.7 54.9 61.0 77.7 55.4 76.7 73.8 61.9 78.4 68.9

APE[37] 56.0 81.0 65.2 73.7 51.4 59.3 75.0 54.4 73.7 71.4 61.7 75.1 66.5

DECOTA[64] 59.9 83.9 67.7 77.3 57.7 60.7 78.0 54.9 76.0 74.3 63.2 78.4 69.3

ASDA[29] 59.3 83.6 68.0 78.3 56.8 61.8 78.6 55.7 75.3 74.0 63.3 78.9 69.5

IDMNE[35] 60.2 84.4 69.3 77.9 59.2 62.6 77.7 58.2 76.7 74.9 64.6 79.3 70.4

✓ DEEM[67] 69.3 86.6 69.8 79.3 66.3 64.0 80.1 64.0 77.8 75.6 63.7 78.3 72.9

✓ SERL (Ours) 79.6 92.8 78.4 90.0 78.3 72.8 90.1 78.4 86.8 89.6 74.2 91.5 83.5

Table IV. Accuracy (%) on O�ce-Home under the settings of 3-shot using VGGNet-16 as the backbone

network.
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SF Method

1-shot 3-shot

D A W A Mean D A W A Mean

S+T 50.0 50.4 50.2 62.4 61.2 61.8

DANN[50] 54.5 57.0 55.8 65.2 64.4 64.8

ENT[85] 50.0 50.7 50.4 66.2 64.0 65.1

MME[26] 55.8 57.2 56.5 67.8 67.3 67.6

BiAT[66] 54.6 57.9 56.3 68.5 68.2 68.3

APE[37] - - - 67.6 69.0 68.3

CLDA[86] 62.7 64.6 63.6 72.5 70.5 71.5

CDAC[27] 62.8 63.4 63.1 70.0 70.1 70.0

STar[63] 56.8 59.8 58.3 69.0 69.1 69.1

IDMNE[35] - - - 71.3 71.0 71.2

G-ABC[34] 65.7 67.9 66.8 73.1 71.0 72.0

✓ DEEM[67] 75.7 76.6 76.2 76.8 78.5 77.7

✓ SERL (Ours) 79.0 81.1 80.1 82.1 82.5 82.3

Table V. Accuracy (%) on O�ce-31 under the settings of 1-shot and 3-shot using AlexNet as the backbone

network.

IV. Experiment

A. Datasets

We evaluate our proposed method on three widely used datasets, including DomainNet[87], O�ce-

Home[47], and O�ce-31[48]. For fairness of comparison, we have one or three samples on the target

domain during training for each category in di�erent datasets.
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DomainNet is a signi�cant benchmark dataset designed to evaluate multi-source domain adaptation

methods composed of 345 classes, six domains: Clipart, Infographics, Painting, Real, Sketch, and

Quickdraw, and each domain contains 126 image categories. Similar to MME[26], we use a subset of the

DomainNet as one of our evaluation benchmarks. We only select four domains: Real (R), Clipart (C),

Painting (P), and Sketch (S), because other domains and categories may contain excessive sample

noise. Following MME[26], we conduct adaptation experiments on seven scenarios on these four

domains.

O�ce-Home is a medium-sized SSDA benchmark dataset with many challenging object recognition

domain adaptation scenarios. It consists of four domains: Art (A), Clipart (C), Products (P), and Real

(R). The dataset contains images of 65 object classes typically constructed in o�ce and home

environments for each domain. We consider 12 domain adaptation scenarios compared with previous

SSDA methods to achieve a fair comparison.

O�ce-31 is a small dataset containing three domains: Amazon (A), DSLR (D), and Webcam (W), with

31 categories on each domain. Following MME[26], we choose Amazon (A) as the target domain

because compared to Webcam (W) and DSLR (D), each category in Amazon has su�ciently rich

samples. Therefore, we only consider two adaptation scenarios on this small SSDA dataset: ”W A”

and “D A.”

B. Implementation Details

We select three feature extraction backbones, including AlexNet[1], VGGNet-16[88], and ResNet-

34[2] with pre-trained weights on ImageNet[1]. Similar to[38][67], for AlexNet and VGGNet-16, we add

a bottleneck layer after the last layer of the feature extractor. We then use a classi�er with a

normalized, fully connected layer. For ResNet-34, we remove the last layer of the feature extractor,

add a bottleneck layer like the previous backbone network, and use a classi�er with fully connected

layers. We randomly select three mini-batches from  ,  , and   during each iteration. For batch

sizes, they are 64, 32, and 64 for AlexNet, 32, 16, and 32 for VGGNet-16, and 48, 24, and 48 for

ResNet-34. The learning rates of the feature extractor, bottleneck layer, and classi�er are set to 0.001,

0.01, and 0.01, respectively, and the weight decay is 0.0005. The loss weights  ,  , and   are

speci�ed as 0.3, 60, and 3, respectively. The number of easy samples    and hard samples 

 are 15. We adopt the widely used Randaugmnt[89] as the strong data augmentation strategy. Our

→

→
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experiments were implemented using Pytorch[90] and run on an RTX 3090 GPU. We use three di�erent

randomized seeds to obtain fairer experimental results.

C. Comparison With State-of-the-Arts

In this section, we compare the classi�cation performance of our proposed SERL method with

previous state-of-the-art SSDA algorithms, including S+T, DANN[50], ENT[85], MME[26], UODA[65],

BiAT[66], APE[37], STar[63], DECOTA[64], ECACL[28], ASDA[29], MCL[31], SLA[32], CLDA[86], CDAC[27],

ProML[33], DEEM[67], IDMNE[35], G-ABC[34]. Note that S+T refers to the method of training an

adaptive model by supervising only labeled samples from two domains, DANN[50]  applies standard

cross-entropy loss to SSDA by using it to some labeled samples on the target domain. SLA[32]  is a

plug-and-play SSDA method, and we consider combining it with CDAC[27], the best result reported in

their paper.

1. Results on DomainNet

Tables I and II present the quantitative comparison results of our proposed method with numerous

existing alternatives on the DomainNet benchmark. For the large dataset DomainNet, we use 1-shot

and 3-shot settings and ResNet-34 with a relatively deep network structure as the corresponding

backbone network. It can be seen from the results that our method outperforms all previous methods

in all scenarios on 1-shot and 3-shot settings and achieves enormous advantages. Speci�cally, SERL

improves the previous best-performing SSDA algorithm DEEM in the 1-shot and 3-shot settings of all

adaptive scenarios, respectively, with the average accuracy increased by 11.8% and 11.4%. It is worth

noting that DEEM is also based on the source-free SSDA method, but our performance is better, which

is all attributed to our semantic regularization learning method. Most of the existing methods use the

source-with training paradigm. Compared with them, we have improved the average accuracy of G-

ABC by 12.4% and 12.7% in the 1-shot and 3-shot settings, respectively. By comparing the two tables,

we can �nd that the performance in the 1-shot setting is slightly inferior to the improvement in the 3-

shot setting. This means that our method requires more supervision to realize its potential better

since more labeled target examples help better to learn the semantic information of the target domain.
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2. Results on O�ce-Home

To further validate the feasibility of the proposed SERL framework in SSDA scenarios, Tables III and IV

present the quantitative results and comparison of our method in benchmark O�ce-Home compared

to previous methods. We conducted experiments on the dataset using VGGNet-16 as the backbone

network in 1-shot and 3-shot settings and all 12 O�ce-Home adaptation scenarios. It is worth noting

that our method outperforms all existing methods in all scenarios and signi�cantly outperforms the

source-free SSDA method DEEM by 10.1% for 1-shot and 10.6% for 3-shot and the source-with

method IDMNE by 14.3% for 1-shot and 13.1% for 3-shot in terms of average accuracy, further

demonstrating the superiority of our method.

3. Results on O�ce-31

Table V shows the results of our comparison with existing methods on O�ce-31. O�ce-31 is a small

dataset, and in order to maintain consistency with existing methods, we use AlexNet with a relatively

small number of layers to conduct experiments under 1-shot and 3-shot. It can be seen from the

results that the average accuracy of our method under the 1-shot setting is 80.1%, and the average

accuracy under the 3-shot setting is 82.3%, respectively surpassing the existing state-of-the-art

SSDA method DEEM 3.9% and 4.6%. Compared with DomainNet and O�ce-Home, its performance

improvement is relatively limited. This is because O�ce-31 contains a few images and is a relatively

simple SSDA dataset. In contrast, DomainNet and O�ce-Home have richer image data, providing

more challenging environments and room for improvement. This shows that our method is more

capable of handling more complex domain adaptation scenarios than existing methods, proving the

superiority of the proposed method on SSDA tasks.

D. Ablation Study

1. Each Main Component

We conducted ablation studies on the main components in 1-shot and 3-shot settings for DomainNet

R C and R P, as shown in Table VI. Rows 2-4 show that each component can produce signi�cant

improvements. Rows 5-7 show that each combination still improves performance, indicating the

versatility of the proposed module. At the same time, the SPCR module and the TPR module can bring

more signi�cant improvements to the model than the HMR module. This is because, in the SPCR and

→ →
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TPR modules, the model has learned good feature representations for most samples on the target

domain, resulting in a limited number of potentially hard samples, so the improvement is relatively

limited. The best performance is achieved when all components of the model are activated.

Num. R C R P Mean

1 ✓       79.0 77.8 78.4

2 ✓ ✓     86.4 83.9 85.2

3 ✓   ✓   81.1 79.8 80.5

4 ✓     ✓ 83.7 81.9 82.8

5 ✓ ✓ ✓   87.4 85.8 86.6

6 ✓ ✓   ✓ 88.9 87.6 88.3

7 ✓   ✓ ✓ 84.3 83.1 83.7

8 ✓ ✓ ✓ ✓ 90.5 88.8 89.7

Table VI. Accuracy (%) of ablation study on DomainNet under the settings of 1-shot with the ResNet-34

backbone.

2. Source-Free Learning Framework

To prove the importance of the source-free training framework, we show the ablation experimental

results in di�erent cross-domain scenarios of O�ce-Home in Figure 4. When source-free training

strategies and label propagation methods are not considered, the performance of the model will drop

to the lowest point. This shows that the source-free training framework can allow the model to focus

on learning a more accurate target domain distribution, thereby signi�cantly improving the

performance of the model. \addedSince the target domain has only a small amount of labeled data,

while the source domain has a large amount of labeled data for supervision. The number of this part of

supervision signals creates a strong contrast between the source domain and the target domain. When

there are only a few labeled data, the model can easily rely on the characteristics of the source domain

to make decisions. When considering either alone, the performance of the model drops signi�cantly

compared to the performance of the complete model. In particular, the source-free training method

Lbase Lprob Lmix Lpre → →
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can bring more signi�cant performance improvement to the model. This is because source-free only

considers �ne-tuning the source model on the target domain, which can reduce the impact of source

domain samples on the adaptation of the target domain during training, allowing the model to focus

more on learning semantic information on the target domain.

Figure 4. The impact of source-free learning frameworks on performance. The experiments were

conducted in three scenarios of O�ce-Home under the 1-shot setting. SF stands for source-free

training paradigm, and LP stands for label propagation.

3. Probability Contrast and Adaptive Weight in SPCR

We investigated speci�c techniques mentioned in SPCR to prove the e�ectiveness of our SPCR further,

as shown in Table VII. It is worth noting that when nothing is considered, the model degrades to the

InfoNCE loss, as shown in Eq. 7. When considering learning discriminative features from the

probability space, the model performance improves signi�cantly because the model is forced to output

more con�dent representation information and can be combined with the knowledge learned by the

classi�er to allow the feature extractor to learn more compact target representation clusters. When

considering adding adaptive weights, the model can adaptively learn relevant target representations

for objects of the same category with di�erent con�dence levels, thereby achieving the best

performance.
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Probability Contrast Adaptive Weight O�ce-Home R P DomainNet C S Mean

    84.0 83.1 83.6

✓   88.6 87.6 88.1

✓ ✓ 92.8 89.1 91.0

Table VII. Accuracy (%) of ablation study for Probability Contrast and Adaptive Weight in SPCR with 1-

shot setting.

E. Further Analysis

1. Sensitivity of  ,   and 

We show the impact of the loss balance parameters  ,   and   on the classi�cation accuracy

under the O�ce-Home C A scenario in Figure 5. It can be observed that when  ,  ,

and  , the trained model achieves the highest performance in image classi�cation.

Figure 5. The e�ect of di�erent loss balance parameters λprob, λmix, and λpre on the model classi�cation

accuracy in the O�ce-Home C→A and DomainNet R→C scenario under the 1-shot setting.

2. Sensitivity of   and   in HMR

Regarding the number of easy and hard samples we mentioned in HMR,  ,    and  , we

further analyze its impact on model performance, as shown in Figure 6. It can be seen from the results

that the blue part is mainly concentrated in areas with a small number of samples, which shows that

the model performs poorly when the number of mixed samples is small. The model performance

→ →
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improves when the number of mixed samples is gradually increased. This proves that the model can

learn new target domain semantic representations by gradually adding the number of target samples.

Figure 6. Variation in model performance for di�erent numbers of easy and

hard samples   for the 1-shot setting in

the P A scenario of the O�ce-Home dataset.

3. Sensitivity of Labeled Samples

In Figure 7, we show histograms comparing our method with existing methods under di�erent labeled

samples. Our method still maintains optimal performance even with more labeled data. At the same

time, as the number of labels increases, the improvement of methods gradually decreases. This

phenomenon suggests diminishing returns to more labels, eventually leading to a fully supervised

learning situation.

, ∈ {5, 10, 15, 20, 25, 30}N
easy
u N hard

u

→
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Figure 7. Histogram of quantitative comparison under di�erent number of labeled samples settings on

DomainNet R S.

4. Spectral Analysis

To further analyze the discriminability of the learned features, following[91][92], we perform singular

value decomposition (SVD) analysis on the feature matrices extracted under the 1-shot setting for the

O�ce-31 W A and D A scenario. The results are shown in Figure 8. Relative to SERL, the largest

singular values of the feature matrices of S+T and DEEM are signi�cantly larger than the other

singular values, greatly weakening the information signal of the feature vectors corresponding to

smaller singular values. Such a sharp distribution of singular values implies a deterioration of

distinguishability. However, the singular values of the feature matrices learned by our proposed SERL

successfully reduce the large di�erence between the largest value and the remaining values while

maintaining higher values, which implies that more dimensions corresponding to smaller singular

values positively a�ect the classi�cation and intuitively improve the discriminability of the features.

→

→ →
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Figure 8. The SVD analysis of feature matrices obtained by di�erent methods in di�erent 1-shot scenarios.

F. Feature Visualization

1. Feature Aggregation

As shown in Figure 9, we use t-SNE[93] to visualize the changes in deep features during training. For

DomainNet R S, where the domain di�erence is relatively small, the model trained only on the

source domain can better aggregate most of the same features. However, it performs poorly in O�ce-

Home C P, where the domain di�erence is relatively signi�cant. However, as training proceeds,

learned features from di�erent domains belonging to the same class are mapped nearby and clustered

together, while those from di�erent classes are clearly separated, and the clusters are more evenly

distributed. The results show that using the proposed SERL can produce domain-invariant and

di�erentiated target features, helping the model perform well on the target domain.

→

→
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Figure 9. Feature visualization using t-SNE[93]. We randomly selected seven categories and assigned them

di�erent colors for the 3-shot scenes of DomainNet R S and O�ce-Home C P. The red box shows

obvious di�erences.

2. Attention Visualization

In Figure 10, we use the Grad-CAM[94]  to visualize the attention maps of the model for di�erent

categories of target samples in the DomainNet dataset after target domain adaptation. Whether the

model faces easy samples with relatively easy backgrounds or hard samples with relatively complex

backgrounds, the model can capture the key information of the target samples, which is due to the

assistance of our SERL for the model to learn the semantic information on the target domain.

Figure 10. The Grad-CAM[94] visualization of the features generated by our SERL for di�erent samples in

the DomainNet dataset.

→ →
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V. Conclusion

This paper proposes a novel SSDA learning framework called semantic regularization learning (SERL),

which provides regularization constraints by learning semantic information from the target data,

thereby better learning the representation distribution of the target domain. This paper considers

�ne-tuning the feature extractor on the target domain based on the source pre-trained model. Firstly,

semantic probability contrastive regularization helps the model learn more discriminative feature

representations, using semantic information on the target domain to understand the similarities and

di�erences between samples. At the same time, it encourages the model to make con�dent judgments,

helping to capture the semantic information on the target domain more fully. Then, hard-sample

mixup regularization is proposed to learn more complex target domains by reducing the �uctuation of

predictive distributions between easy and hard samples through a guidance strategy for easy samples.

Finally, target prediction regularization corrects erroneous target predictions by maximizing the

correlation between the prediction output and the early learned target, reducing the misleading of

false semantic information. Extensive experiments and comprehensive analysis with good

performance on three benchmark datasets demonstrate the superiority of our method, which

signi�cantly surpasses existing methods and achieves impressive results.
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