L]
30 January 2025, Preprint vi - CC-BY 4.0 Qelo S PREPRINT

Research Article

Source-Free Semantic Regularization
Learning for Semi-Supervised Domain
Adaptation

Xinyang Huang!

1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, China

Semi-supervised domain adaptation (SSDA) has been extensively researched due to its ability to
improve classification performance and generalization ability of models by using a small amount of
labeled data on the target domain. However, existing methods cannot effectively adapt to the target
domain due to difficulty in fully learning rich and complex target semantic information and
relationships. In this paper, we propose a novel SSDA learning framework called semantic
regularization learning (SERL), which captures the target semantic information from multiple
perspectives of regularization learning to achieve adaptive fine-tuning of the source pre-trained
model on the target domain. SERL includes three robust semantic regularization techniques. Firstly,
semantic probability contrastive regularization (SPCR) helps the model learn more discriminative
feature representations from a probabilistic perspective, using semantic information on the target
domain to understand the similarities and differences between samples. Additionally, adaptive
weights in SPCR can help the model learn the semantic distribution correctly through the
probabilities of different samples. To further comprehensively understand the target semantic
distribution, we introduce hard-sample mixup regularization (HMR), which uses easy samples as
guidance to mine the latent target knowledge contained in hard samples, thereby learning more
complete and complex target semantic knowledge. Finally, target prediction regularization (TPR)
regularizes the target predictions of the model by maximizing the correlation between the current
prediction and the past learned objective, thereby mitigating the misleading of semantic
information caused by erroneous pseudo-labels. Extensive experiments on three benchmark

datasets demonstrate that our SERL method achieves state-of-the-art performance.
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I. Introduction

In recent years, deep neural networks (DNN) have brought a series of breakthroughs in many
computer vision tasks, such as image classification[2IBIILI5161[7] semantic segmentation@l[ﬂl“—o]
mIN2103) However, to achieve satisfactory results, the large number of sample labels required for
deep neural network training is costly and time-consuming. Therefore, domain adaptation (DA)241015]
(2610371 s proposed by generalizing the knowledge learned from the source domain with rich labels to
the target domain with no or few labels. Domain adaptation can be simply divided into unsupervised
domain adaptation (UDA)MM@@M and semi-supervised domain adaptation (SSDA)
[261[271[281[291[301[311[321(331(341351[36] according to access to target labels during training. This paper
focuses on SSDA, which performs significantly better than UDA when given a small number of labeled
target samples. It can utilize a small number of labels on the target domain to expand semantic
information and learn semantic knowledge of target samples of the same category to achieve domain

alignment.

Due to its advantages of practical significance, SSDA has attracted increasing attention and has been
widely studied. However, SSDA also has its specific challenges and issues. First, the training of the
supervised model only uses a small number of labeled target samples. The model can only learn the
extremely limited target domain knowledge and cannot generate a highly discriminative knowledge
representation for the target domain[261341 At the same time, due to many labeled source samples,
the feature representation learned by the model is biased toward the source domainB37 To address

these issues, existing methods[261[271[2811201(301(311[321[33][341(35] have proposed their solutions to

address these challenges and have witnessed significant performance improvements. MCLI3U learns
the consistency between samples, but it ignores the learning of target semantic information.
ProMLB3 utilizes target labels by constructing prototypes, but the semantic information contained in
them is very limited due to the scarcity of labeled target samples. Due to the complexity of semantic
information between target samples, the knowledge representation learned by existing methods still
needs to be improved. This complex semantic informations. e., category knowledge representation on
the target domain can better bridge the distribution differences between domains, encouraging the

model to generate domain-invariant but differentiated target features when adapting.

In this paper, we present a novel SSDA learning framework, named semantic regularization learning

(SERL), which is proposed to tackle the challenges of the SSDA tasks. As shown in Figure 1, different
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from the training paradigm of most existing SSDA methods, this paper considers a source-free
scenario,i. e., in which target domain adaptation is performed using the source domain pre-trained
modell38], Unlike UDA, SSDA can obtain a small amount of labeled data on the target domain, so it can
better adapt to this source-free scenario. SERL provides regularization constraints from different
perspectives by fully learning the target semantic information, which can enrich the understanding of
the accurate distribution of the target domain and thus better learn the knowledge of the target

domain, as shown in Figure 2.
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Figure 1. The learning scenario of our SERL framework. Different from the training
paradigm of most existing SSDA methods, we adopt a source-free training strategy.
The source model comprises a feature extractor and a classifier initialized on the
source domain. We focus on improving the target domain adaptation stage of the
model. In the target domain adaptation stage, SERL freezes the classifier module and

fine-tunes the feature extractor module through semantic regularization learning.
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Figure 2. The motivation of our SERL. (a) Due to the scarcity of target semantic labels
during training, most existing SSDA methods have shortcomings in target semantic
learning, resulting in models only learning limited knowledge (e.g., only the
relationships between samples) on the target domain. When more complex
relationships exist on the target domain, such as hard and noisy samples, the model
may perform poorly due to a lack of understanding of semantic information. (b) Our
SERL utilizes the semantic information learned on the target domain from the
perspective of semantic regularization to constrain the feature representation of the

model further, thereby adapting to more complex target domain distributions.

Specifically, we propose semantic probability contrastive regularization (SPCR), which helps the
model aggregate features of similar samples according to the distribution of target semantic
information and keep features of heterogeneous samples away from each other. This method forces
the model to learn more discriminative semantic knowledge on the target domain from the probability
perspective. At the same time, SPCR uses adaptive weights to assign lower weights to low-confidence
samples by combining the confidence of contrasting examples to reduce the impact of erroneous
semantic information and help the model learn the correct target distribution. Furthermore, hard
samples are crucial to fully understand the target semantic distribution[3U401l411[42] - However,
existing SSDA methods ignore exploring hard samples due to their complex knowledge distribution.

To fill this gap, we further explore the complex target relationships of hard target samples through
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hard-sample mixup regularization (HMR). After screening out easy and hard samples using the
classifier prototype, we use easy sample guidance to learn these hard samples. Specifically, HMR uses
the regularization constraint of mixupL43-1 to mix easy samples with hard samples. This method
further explores the potential knowledge of hard samples through the guidance of easy samples and
further helps the model learn more complex target semantic information. Finally, even if we consider
the discriminative knowledge representation and hard sample information of the target domain, there
will still be bias in semantic learning when there is much noise in the target pseudo-labels. To reduce
this misleading semantic information caused by noisy pseudo-labels, we minimize the impact of
noisy pseudo-labels from the perspective of target prediction regularization (TPR). Inspired byl441
[45] we use the early prediction of samples to constrain the probability output of the model during the
adaptation stage to encourage the model to follow early target sample predictions and alleviate

overfitting of erroneous semantic information on the target domain.

In summary, our main contributions are as follows:

+ We propose a novel SSDA framework called semantic regularization learning (SERL). The proposed
SERL considers fully utilizing and learning semantic knowledge on the target domain to achieve
cross-domain adaptation when fine-tuning the source model on the target domain.

o To fully utilize the semantic relationships of the target domain, we propose three regularization
methods, 7. e., semantic probability contrastive regularization, hard-sample mixup regularization,
and target prediction regularization, to constrain the performance of the model on the target
domain through semantic regularization strategies and further learn the knowledge of the target
domain.

* Extensive experiments conducted on three standard benchmark datasets, including
DomainNet!49l Office-Homel#7l and Office-311481 have shown that our method has significant

advantages over previous state-of-the-art SSDA methods.

The paper is structured as follows: In Section II, we provide an overview of prior research related to
our work. Section Illintroduces and describes the proposed algorithm for semi-supervised domain
adaptation. In Section IV, we conduct comparative experiments to evaluate the performance of the

proposed method. Finally, the conclusions of our approach are presented in Section V.
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II. Related Work

A. Unsupervised Domain Adaptation

To solve the problem that traditional supervised learning requires much manual annotation,
unsupervised domain adaptation (UDA) aims to transfer knowledge from a fully labeled source
domain to an unlabeled target domain. In recent years, various methods have been proposed for UDA,
and adequate progress has been achieved. Commonly used methods mainly include maximum mean
difference (MMD)42), whose basic idea is to achieve migration from the source domain to the target
domain by minimizing the distance between feature distributions. DANN!39) and JAN(32! further
proposed using the MMD criterion to learn transfer networks by cross-region alignment of multiple
region-specific layers. CORAL[32] and DUCDA!53! proposed minimizing the domain shift by aligning
the second-order statistics of the source and target distributions. Meanwhile, with the development of
generative adversarial networks, many recent works(181(541(551(56](57)(581(21)(59] haye used adversarial
learning for domain alignment so that knowledge from classifiers trained on labeled source samples
can be effectively transferred to the target domain. In addition, considering the perspective of
conditional distributions, many related works!©2l61l62] haye proven that learning conditional
distributions is of good help in reducing the differences in the alignment of classification domains,
thereby improving the adaptability between domains. Although the UDA method has been successfully
used in many practical applications, it takes work to accurately describe the conditional distribution of
target features due to the significant differences between some source domains and target domains
and the unreachability of target labels. Therefore, the potential of the UDA method in practical

applications is limited compared to the SSDA method.

B. Semi-supervised Domain Adaptation

Semi-supervised domain adaptation (SSDA) aims to utilize a small number of labeled samples on the
target domain. Compared with UDA, the classification performance and generalization ability of the
model on the target domain can be significantly improved due to the access to labeled target samples.
At present, SSDA has made much adequate progress, and the methods used in many works can be
roughly divided into cross-domain alignment methods, adversarial training methods, and semi-
supervised learning methods. In cross-domain alignment, many related works[281(451(63]

[64) integrate various complementary domain alignment technologies. G-ABCI34]) further achieves
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semantic alignment by forcing the transfer from labeled source and target data to unlabeled target
samples. In addition, IDMNEL3A s proposed to incorporate the label information of labeled samples
into the model to learn cross-domain class feature alignment. Utilizing the idea of adversarial
training, many related methods[261(631[661[371[271[29] solve the SSDA problem by minimizing the
entropy between the class prototype and adjacent unlabeled target domain samples to achieve the
effect of adversarial training. To solve SSDA through the idea of semi-supervised learning,
McLL3U and ProMLI33! further help the model understand the target domain that lacks a large number
of labels through consistency regularization. Unlike most existing methods, DEEMLO7] considers a
source-freel38] scenario and proposes a self-distillation method to improve entropy minimization
and help label propagation of unlabeled samples on the target domain. However, the above existing
methods all need to pay more attention to the importance of profoundly exploring the semantic
information of the target domain. This paper starts from the perspective of semantic regularization
learning and proposes the SERL framework, which helps the model more comprehensively adapt to
the actual target domain distribution by standardizing the knowledge representation learned by the

model on the target domain.

I11. Methodology

A. Preliminaries and Overview

In semi-supervised domain adaptation (SSDA), the model is expected to generalize well on the target
domain with fully labeled source samples and a small number of labeled target samples. Specifically,
the source domain dataset S = {z$,y’}2*, contains fully labeled data, £ = {z!, ! M. contains a small
amount of labeled data of the target domain, where N; and N, are the source domain and target
domain dataset size respectively. Here, z¢ and z! represent the labeled source image and target image
data, respectively, and y; and yf represent the corresponding labels. In addition to the labeled data,
there is also an unlabeled target image set & = {z*}Y* for adaptation on the target domain, which
contains unlabeled target image data, usually N, > N;. The overall objective used to optimize the
model can be expressed as a combination of the loss of the base model and the additional loss, as

follows:

Lall = Lbase + )\prob Lprob + )\miz Lmiz + )\pre Lpre, (1)
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where Apob, Amiz and Ay are scalar hyper-parameters of the loss weights and Lyop, Limiz, and
Ly, represent semantic probability contrastive regularization, hard-sample mixup regularization and

target prediction regularization respectively.

For the model trained on the source domain, we first use the cross-entropy loss to train the feature
extractor g(-) and the linear classifier f(-). For the source data S = {z?,y}",, we employ the
standard cross-entropy objective:

= ZLCE CTHESNTR (2)

511

Following [381167] e freeze f(-) and train g(-) when the model adapts to the target domain. An
overview of our SERL framework in the target adaptation stage is illustrated in Figure 3. Following [33],
we generate the strong augment view for each unlabeled target sample z¥, represented as ;. The
target samples are then fed to the same feature extractor g(-) and classifier f(-) to obtain the
probabilistic predictions p¥, p;, and the model is further adapted by the proposed semantic

regularization learning. For the labeled target data, we employ the standard cross-entropy objective:

Li=— ZLCE CHEDRTR (3)

where L¢g is the standard cross-entropy loss. For the unlabeled target data, we employ the cross-

entropy objective for its pseudo-label:

:—ZLCE p(y|=}), yi"), (4)

where y! = argmaxp} is the pseudo-label of z}. Then, we utilize the mutual information

maximization objective to encourage individually certain and globally diverse predictions:
1 &

Limi = N ; (p(y}'|=} ZP yi'lzy) (5)
where the entropy metric #(p(y|z)) = >__, px log px and c is the number of different categories.
Following [67] we use a KNN-based pseudo-label propagation method. In the neighbor graph, we can
obtain one-hot pseudo-labels of unlabeled data through global propagation from labeled and low-

uncertainty target data. Finally, the base learning objective on the target domain can be derived as

follows:

Lbase = Ll + Lu + Lmi . (6)
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On this basis, we will further introduce the proposed learning framework and how the training
objective achieves further learning of the target domain through semantic probability contrastive

regularization Ly, , hard-sample mixup regularization L,,;,, and target prediction regularization

Lpre.-
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Figure 3. Illustration of our proposed semantic regularization learning (SERL) framework. Left: The model
initialized on the source domain is adaptively fine-tuned on the target domain. The labeled target data and
the strong and weak augmented versions of the unlabeled target data are input to the feature extractor g,
then sent to the classifier f, and further learned the target domain knowledge through semantic
regularization. The two feature extractors and classifiers used share parameter weight. Right: (a) Semantic
probability contrastive regularization (SPCR) adaptively learns discriminative features through target
semantic information and helps the model obtain a more confident probability output. (b) Hard-sample
mixup regularization (HMR) uses the semantic information of easy samples to guide the model in learning
the distribution of hard target samples, helping the model learn more complex target domain
distributions. (c) Target prediction regularization (TPR) is used to minimize the misleading of erroneous

semantic information to the model from the perspective of noise labels and help the model learn the true

target domain distribution information.

B. Semantic Probability Contrastive Reqgularization

After the model is initialized on the source domain, it will be fine-tuned on the target domain, and this
process will not access the source domain data so that we can convert this semi-supervised domain
adaptive process into a semi-supervised fine-tuning process for the target domain. However, due to
domain differences, the model still performs poorly on the target domain, even if it sees rich label

information during the initialization of the source domain.
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In recent years, contrastive learningl681l691(701(711(721[731[741[75] has been proven to be an adequate
representation learning method, which helps models better understand data and learn helpful
knowledge representations in unsupervised or semi-supervised scenarios by constraining sample
representation. As a representative work, the self-supervised contrastive loss InfoNCELS8] takes the

following format:

2N, exp(z; - Z+ T
LInfoNCE = _Zlog — : ( l‘ 1 / ) ,
ST SR £ ) exple - /7)

(7)

where the z;" represents the positive sample of feature embedding z;, 1(j # i) represents the indicator

function and 7 = 0.15 is the temperature coefficient.

In instance-based contrastive learning, two different augmented views from the same sample should
be shown to represent similar features. However, the knowledge learned only considering instance-
level relationships is limited in complex target domains. SupCoan] learns more complex inter-
sample relationships by introducing semantic information. It is equivalent to applying semantic
information regularization constraints to the model, which helps improve the generalization
performance of the model on the target domain. However, it is only applied to label-rich supervised
learning, and feature-based contrastive learning cannot represent the actual target distribution of
feature representations of many unlabeled target samples, which will impair the generalization ability
of the classifier on the target domainl72l Inspired byLE]UQ, we consider using semantic probability
contrastive regularization based on adaptive weights to help the model better adapt to the target

domain. Specifically, we consider the following loss:

2y Iy exp(p} - py" /7)
Lprob = Z Z Wi, IOg A . b ’ (8)
i=1 k=1 2 i=1 Lizi exp(pj - pj/7)

where p’,j* represents the predicted probability of the positive target sample k and the adaptive weight

wyy, is defined as follows:

1 if k =1,
wig = | Py - py if argmaxp] = argmaxpy, (9)
0 otherwise.

The adaptive weights give lower weights to low-confidence samples, which can help mitigate the
impact of false constraints and reduce misunderstandings about the proper distribution of the target

domain.
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Compared with instance-level contrastive learning, we learn a more realistic target domain
distribution by constraining the probability distribution of samples with the same semantic
information. At the same time, we constrain the similarity of the target samples from a probability

perspective. Specifically, for two samples ¢, j:

p! - p! =1 & argmax(p}) = argmax(p}) 10)
A max(pj) = max(p}) = 1.

where p;’ - p} represents the product of two unsupervised samples, < represents the equivalence, and
A represents the logical AND relationship. Eq. 10 indicates that when optimizing L., the model
forces the product between similarities to be maximized (3. e., the product is 1), which is equivalent to
the probability value corresponding to the predicted category (i. ., argmax(p}*)) being 1. It encourages
the prediction of the model to be close to the one-shot vector, i. e., to make confident judgments on
the target sample with the same semantic label, which helps to capture the semantic information on
the target domain more effectively and has unique advantages in improving model performance.
Different from 77 we do not need a large batch size or sample queue to build comparison

relationships, which can further save model memory consumption.

C. Hard-sample Mixup Regularization

Through semantic probability contrastive regularization, the model has been able to have a basic
understanding of the sample relationships between target domains. However, when we consider a
more complex target domain relationship, i. e., there are a certain number of complex samples on the
target domain, which are usually distributed near the decision boundary and have low confidence,
making it challenging to learn the complete target distribution further. Existing SSDA methods ignore
this problem, which makes them perform poorly in the face of complex target domain distributions.
Mixup is proven to reduce the overfitting tendency of the model by introducing a certain degree of
regularization [431[781(71(80] Therefore, we can consider using Mixup to mix the semantic
information of samples with different difficulty levels so that the model can better learn the complex

semantic feature distribution of the target domain rather than adapt to the easy target distribution.

An important issue is partitioning samples with varying degrees of difficulty through existing models.
Previous work (81! revealed that the weight vector of the trained last layer classifier converges to a
high-dimensional geometric structure, which maximizes the separation of paired angles for all

classifiers. Another work 82! uses the weight vector of the classifier to construct pseudo-source
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domain samples to help model learning compensate for the lack of source domain knowledge. Inspired
by these works, we use the weight vectors of pre-trained classifiers on the source domain as anchors
to divide easy and complex samples. Specifically, we first define the classifier weight vectors
{c1,¢s,...,c.} of each category on the source domain as category anchors, search for and divide a
certain number of easy and hard samples on unlabeled target domain data based on their distance

from the anchors:

5% = arg TOPK (min(dist(g(z"), cc)), Ne*Y), (11)
zhord = arg TOPK (max(dist (g(z"), c,)), N, (12)

€

where N;*¥ and NJ}¢ represent the number of easy and hard samples, argTOPK (-, N) means

taking the first N numbers, min (-) and max (-) mean sorting the objects from small to large/from
large to small, dist(-,-) represents the cosine distance between samples, and z¢** and z%"? represent
the set of easy and hard samples for the c-th category.

To further enhance the understanding of semantic information, we connect easy and hard samples

with their augmented versions z°%, z"*"

to construct a vector represented as
XY = concate(z®, ") and X4 = concate(z"*?, z"**). Furthermore, we will mix X and
Xhard to construct the following mixed training samples:

lemc _ eXieasy + (1 o H)X]}-Lard,

) 13
yimzz — ay;‘wy + (1 _ g)yjl'mrd, ( )

where 6 is the mixup coefficient sampled from a random Beta distribution Beta(a,a), a = 1.

Following [78] we formulate the hard-sample mixup regularization loss as:
1 Qu _ _
Lise = o= O IF@(X) —yr=[3, (14)
u =1

where ||-||2 represents the I, regularization.

Unlike the cross-entropy loss, it is bound and more robust due to the sensitivity to corrupted labels.
The guidance of easy samples can help the model reduce the predicted distribution fluctuations
between easy and hard samples when complex samples exhibit features more distinct from the source
domain distributionl42l. At the same time, this method imposes more complex semantic
regularization constraints on the model, reducing the difference in semantic learning between easy
and hard target samples, thereby helping the model better adapt to more complex target domain

distributions.
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D. Target Prediction Regularization

Our method relies on pseudo-labels generated by the model to form semantic information and use
this as regularization information on the target domain without accessing source domain data during
training. Even if the learning of the model considers the discriminative knowledge of the target
domain and hard sample information, the learning is still biased when there is much noise in the
target pseudo-label. Therefore, it is necessary to reduce the model from being misled by the semantic
information generated by incorrect pseudo-labels. However, existing SSDA methods ignore this
impact, which will cause the model to generate noise due to domain shift and mislead the learning of
clustering structures(?3). To reduce the misguidance brought by erroneous semantic information to
the model, we minimize the impact of erroneous pseudo-labels from the perspective of prediction

regularization and further help the model learn correct target domain distribution knowledge.

Inspired byl431(831(84][44] we exploit the early training phenomenon to address the potential spurious
label noise problem. Specifically, the early training phenomenon shows that classifiers can predict
mislabeled samples with relatively high accuracy in the early adaptation stage before memorizing
mislabeled target data. To leverage predictions made during early training, we employ early learning
regularization (ELR), encouraging model predictions to adhere to early sample predictions. The

regularization term is given by:

1 T
Lpre = F Zlog(l - yit p?t)7 ((15))
U =1

~u(t—1)

where p? is the target probability output at epoch ¢, gt = By; + (1 — B)p¥* is the moving average

prediction and 8 = 0.7 is the hyper-parameter.

Note that minimizing Eq. 15 forces p¥* to be close to 7. Therefore, Eq. 15 prevents the model from
remembering target label noise by forcing the model predictions to stay close to the moving average
predictions 3 of these most likely accurate target labels, further reducing the impact of noisy
semantic information on the model brought about misguidance. Combined with all the components

mentioned above, the whole algorithm of our SERL can be described using Algorithm 1.
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Algorithm 1 SERL Framework for SSDA.

Input: Labeled source data {z?,ys})", labeled target data

{z},4}1 , unlabeled target set {m”}\]}f\i‘l and strongly
augmented unlabeled target set {#}'}.’*,. The number of
training epochs 7'. The trade-off hyper-parameters Ap.ob,

Amix, and Apre.

Initialization: Freeze the final classifier layer f, and copy the

1:
2:

3
4
5:
6
7

10:
11:

12:
13:
14:

parameters from the source feature extractor to the target
feature extractor as initialization.
# Adaptive on Target Domain

for each ¢t € [1,T] do
Compute self-supervised pseudo-labels for z7'.
for each target data z € [1,N,| do
# Calculate Losses
Compute the base loss Ly,se With Eq. 6;
Compute the probability contrastive loss Ly, with
Eq. 8;
Compute the mixup loss Lny,ix with Eq. 14;
Compute the prediction regularization loss L. with
Eq. 15;
# Parameter Optimization.
Update the parameters in target feature extractor g
via Ly in Eq. 1.
end for
end for
return The updated parameters of the target feature

extractor g.
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SF Method R—C R—P P—C C—S S—P R—S P—R Mean
X S+T 55.6 60.6 56.8 50.8 56.0 46.3 71.8 56.9
x DANNL32 58.2 61.4 56.3 52.8 57.4 52.2 70.3 58.4
X ENTLS5] 65.2 65.9 65.4 54.6 59.7 52.1 75.0 62.6
X MMEL26] 70.0 67.7 69.0 56.3 64.8 61.0 76.1 66.4
X uopAlés) 72.7 70.3 69.8 60.5 66.4 62.7 77.3 68.5
X BiaTLO 73.0 68.0 71.6 57.9 63.9 58.5 77.0 67.1
% APE[37] 70.4 70.8 72.9 56.7 64.5 63.0 76.6 67.6
X STarl63l 741 713 71.0 63.5 66.1 641 80.0 70.0
x DECOTAl4] 79.1 74.9 76.9 65.1 72.0 69.7 79.6 73.9
X cpaclzzl 77.4 74.2 75.5 67.6 71.0 69.2 80.4 73.6
X CLDAL86] 76.1 75.1 71.0 63.7 70.2 67.1 80.1 71.9
x EcAcL28] 75.3 74.1 75.3 65.0 72.1 68.1 79.7 72.8
X AsDA[22] 77.0 75.4, 75.5 66.5 721 70.9 79.7 73.9
x mcrLB 77.4 74.6 75.5 66.4 74.0 70.7 82.0 Thds
X PromL33] 78.5 75.4, 77.8 70.2 741 72.4, 84.0 76.1
X SLAl32] 79.8 75.6 77.4 68.1 71.7 71.7 80.4 75.0
X IDMNED5] 79.6 76.0 79.4 717 75.4 73.5 82.1 76.8
X G-ABC[34] 80.7 76.8 79.3 72.0 75.0 73.2 83.4 77.5
v DEEMLOZ 79.7 781 77.0 71.9 77.7 76.7 85.4 781
v SERL (Ours) 90.5 88.8 90.2 89.1 90.1 87.1 93.3 89.9

Table I. Accuracy (%) on DomainNet under the settings of 1-shot and ResNet-34 as backbone networks.
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SF Method R—C R—P P—C C—S S—P R—S P—R Mean
X S+T 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0
x DANNL32] 59.8 62.8 59.6 55.4 59.9 54.9 72.2 60.7
X ENTIS5] 71.0 69.2 711 60.0 62.1 61.1 78.6 67.6
x MMEL28] 72.2 69.7 71.7 61.8 66.8 61.9 78.5 68.9
X uopAlés] 75.4 71.5 73.2 64.1 69.4 64.2 80.8 71.2
x BiaTL06] 74.9 68.8 74.6 615 67.5 62.1 78.6 69.7
% APE[37] 76.6 72.1 76.7 63.1 66.1 67.8 79.4 717
x STarl63l 77.1 73.2 75.8 67.8 69.2 67.9 81.2 73.2
X DECOTAL64] 80.4 75.2 78.7 68.6 72.7 71.9 81.5 75.6
X cpaclzzl 79.6 75.1 79.3 69.9 73.4 72.5 81.9 76.0
X cLDAl88] 777 75.7 76.4 69.7 73.7 711 82.9 753
x ECACL[28] 79.0 77.3 79.4 70.6 74.6 71.6 82.4 76.4
x ASDA[22] 79.4 76.7 78.3 70.2 742 72.1 82.3 76.2
X mMcLBU 79.4, 76.3 78.8 70.9 747 72.3 83.3 76.5
X PromL33] 80.2 76.5 78.9 72.0 75.4 73.5 84.8 77.4
X SLAl32] 81.6 76.0 80.3 71.3 73.5 73.5 82.5 76.9
X IDMNED5] 80.8 76.9 80.3 73.2 75.4 73.9 82.8 77.5
% G-ABCI34) 82.1 76.7 81.6 73.7 76.3 743 83.9 78.2
v DEEMLOZL 80.5 79.0 775 74.9 80.0 75.9 88.5 79.5
v SERL (Ours) 91.8 89.1 91.9 89.9 92.1 87.5 94.3 90.9

Table II. Accuracy (%) on DomainNet under the settings of 3-shot and ResNet-34 as backbone networks.
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SF Method R—C|R—»P|R—-A|P—»R|P—>C|P—-A|A—-P|A—>C|A—-R|C—-R|C—A|C—P | Mean
x S+T 39.5 | 753 | 612 | 71.6 | 37.0 | 52.0 | 63.6 | 37.5 | 69.5 | 64.5 | 514 | 65.9 | 57.4
x | DANNIZ | 5200 | 75.7 | 62.7 | 727 | 45.9 | 513 | 643 | 44.4 | 68.9 | 642 | 523 | 65.3 | 60.0
x | ENTI8 | 237 | 77.5 | 64.0 | 74.6 | 21.3 | 44.6 | 66.0 | 22.4 | 70.6 | 62.1 | 251 | 67.7 | 516
x | MMERS | 491 | 787 | 651 | 74.4 | 46.2| 56.0 | 68.6 | 45.8 | 72.2 | 68.0 | 57.5 | 71.3 | 62.7
X UODA(85] 49.6 | 79.8 | 66.1 | 75.4 | 45.5 | 58.8 | 72.5 | 43.3 | 73.3 | 70.5 | 59.3 | 72.1 | 63.9
x | DEcoTAlAl | 472 | 80.3 | 64.6 | 75.5 | 47.2 | 56.6 | 711 | 42,5 | 731 | 710 | 57.8 | 72.9 | 633
X ASDA[29] 51.6 | 80.9 | 66.9 | 75.9 | 49.7 | 60.5 | 71.0 | 44.9 | 73.2 | 70.6 | 58.7 | 72.8 | 64.7
x | IDMNEB3] | 526 | 81.8 | 67.5 | 77.3 | 50.7 | 59.7 | 73.7 | 49.6 | 72.6 | 714 | 62.5 | 76.2 | 66.3
v | DEEMIEZ | 625 | 821 | 68.5 | 79.0 | 621 | 65.4 | 76.5 | 60.3 | 761 | 74.6 | 63.3 | 75.4 | 70,5
v | SERL (Ours) | 74.4 | 92.8 | 78.0 | 89.4 | 70.6 | 72.2 | 86.7 | 74.7 | 86.1 | 84.3 | 72.7 | 86.8 | 80.6

Table III. Accuracy (%) on Office-Home under the settings of 1-shot using VGGNet-16 as the backbone

network.
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SF Method R—C|R—+P|R—+A|P—-R|(P—-C|P—-A|[A—-P|A—-C|[A—-R|C—R|C—A|C—P | Mean
X S+T 49.6 | 78.6 | 63.6 | 72.7 | 47.2 | 55.9 | 69.4 | 47.5 | 73.4 | 69.7 | 56.2 | 70.4 | 62.9
x | DANNIZ | 561 | 77.9 | 637 | 73.6 | 52.4 | 56.3 | 69.5 | 50.0 | 72.3 | 68.7 | 56.4 | 69.8 | 63.9
x | ENTI8 | 483 | 816 | 655 | 76.6 | 46.8 | 56.9 | 73.0 | 44.8 | 75.3 | 72.9 | 59.1 | 77.0 | 64.8
x | MMERS |56.9 | 829 | 657|767 536|592 757|549 ]| 753|729 | 611|763 | 67.6
x | uvopal€) | 57.6 | 83.6 | 67.5 | 77.7 | 54.9 | 610 | 77.7 | 55.4 | 76.7 | 73.8 | 61.9 | 78.4 | 68.9
x APEBZ 56.0 | 81.0 | 65.2 | 73.7 | 514 | 59.3 | 75.0 | 54.4 | 73.7 | 714 | 617 | 751 | 66.5
x | DECOTA!®4) | 59.9 | 83.9 | 67.7 | 77.3 | 57.7 | 60.7 | 78.0 | 54.9 | 76.0 | 74.3 | 63.2 | 78.4 | 69.3
x | AsSDA29 | 593|836 |680 | 783|568 618|786 557|753 |74.0] 633|789 | 69.5
x | IDMNEB3) | 60.2 | 84.4 | 69.3 | 77.9 | 592 | 62.6 | 77.7 | 58.2 | 76.7 | 74.9 | 64.6 | 79.3 | 70.4
v | DEEMIZ | 69.3 | 86.6 | 69.8 | 79.3 | 66.3 | 64.0 | 80.1 | 64.0 | 77.8 | 75.6 | 63.7 | 78.3 | 72.9
v | SERL (Ours) | 79.6 | 92.8 | 78.4 | 90.0 | 78.3 | 72.8 | 90.1 | 78.4 | 86.8 | 89.6 | 74.2 | 91.5 | 83.5
Table IV. Accuracy (%) on Office-Home under the settings of 3-shot using VGGNet-16 as the backbone
network.
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1-shot 3-shot

SF Method

D—A W—A Mean D—A W—A Mean
X S+T 50.0 50.4 50.2 62.4 61.2 61.8
x DANNL32 54.5 57.0 55.8 65.2 644 64.8
X ENTL85] 50.0 50.7 50.4 66.2 64.0 65.1
X MME[26] 55.8 57.2 56.5 67.8 67.3 67.6
x BiaTLeS] 54.6 57.9 56.3 68.5 68.2 68.3
x APE37] - - - 67.6 69.0 68.3
X CLDA86] 62.7 64.6 63.6 72.5 70.5 71.5
X CDAc27 62.8 63.4 63.1 70.0 70.1 70.0
x STarlé3] 56.8 59.8 58.3 69.0 69.1 69.1
x IDMNEL5] - - - 713 71.0 712
% G-ABcl34] 65.7 67.9 66.8 73.1 71.0 72.0
v DEEMmLeZL 75.7 76.6 76.2 76.8 78.5 77.7
v SERL (Ours) 79.0 81.1 80.1 82.1 82.5 82.3

Table V. Accuracy (%) on Office-31 under the settings of 1-shot and 3-shot using AlexNet as the backbone

network.

IV. Experiment

A. Datasets

We evaluate our proposed method on three widely used datasets, including DomainNet[87]) Office-

Homel471 and Office-31L48]. For fairness of comparison, we have one or three samples on the target

domain during training for each category in different datasets.
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DomainNet is a significant benchmark dataset designed to evaluate multi-source domain adaptation
methods composed of 345 classes, six domains: Clipart, Infographics, Painting, Real, Sketch, and
Quickdraw, and each domain contains 126 image categories. Similar to MMEL26] we use a subset of the
DomainNet as one of our evaluation benchmarks. We only select four domains: Real (R), Clipart (C),
Painting (P), and Sketch (S), because other domains and categories may contain excessive sample
noise. Following MME[28] we conduct adaptation experiments on seven scenarios on these four

domains.

Office-Home is a medium-sized SSDA benchmark dataset with many challenging object recognition
domain adaptation scenarios. It consists of four domains: Art (A), Clipart (C), Products (P), and Real
(R). The dataset contains images of 65 object classes typically constructed in office and home
environments for each domain. We consider 12 domain adaptation scenarios compared with previous

SSDA methods to achieve a fair comparison.

Office-31 is a small dataset containing three domains: Amazon (A), DSLR (D), and Webcam (W), with
31 categories on each domain. Following MME[26l, we choose Amazon (A) as the target domain
because compared to Webcam (W) and DSLR (D), each category in Amazon has sufficiently rich
samples. Therefore, we only consider two adaptation scenarios on this small SSDA dataset: "W—A”

and “D—A.”’

B. Implementation Details

We select three feature extraction backbones, including AlexNet[l]v, VGGNet—16‘[&]‘, and ResNet-
34121 with pre-trained weights on ImageNet(2. Similar to!38187], for AlexNet and VGGNet-16, we add
a bottleneck layer after the last layer of the feature extractor. We then use a classifier with a
normalized, fully connected layer. For ResNet-34, we remove the last layer of the feature extractor,
add a bottleneck layer like the previous backbone network, and use a classifier with fully connected
layers. We randomly select three mini-batches from N, N;, and N, during each iteration. For batch
sizes, they are 64, 32, and 64 for AlexNet, 32, 16, and 32 for VGGNet-16, and 48, 24, and 48 for
ResNet-34. The learning rates of the feature extractor, bottleneck layer, and classifier are set to 0.001,
0.01, and 0.01, respectively, and the weight decay is 0.0005. The loss weights A\,.op , Amiz, and Ay, are
specified as 0.3, 60, and 3, respectively. The number of easy samples N,**¥ and hard samples

N}ard are 15. We adopt the widely used Randaugmnt(82] as the strong data augmentation strategy. Our
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experiments were implemented using Pytorchl22l and run on an RTX 3090 GPU. We use three different

randomized seeds to obtain fairer experimental results.

C. Comparison With State-of-the-Arts

In this section, we compare the classification performance of our proposed SERL method with
previous state-of-the-art SSDA algorithms, including S+T, DANN{32] ENTI85) MME(26), UODA[65],
BiATI8] APE[37] sTarl63] DECOTAS4) EcAcL28) aAspAl22] mcLiBll spal32) cLpAl86) cpacl27],
ProML[33), DEEM@7), IDMNE[33], G-ABC[34), Note that S+T refers to the method of training an
adaptive model by supervising only labeled samples from two domains, DANN(52] applies standard
cross-entropy loss to SSDA by using it to some labeled samples on the target domain. SLA[32] js a

plug-and-play SSDA method, and we consider combining it with CDAC[27] the best result reported in

their paper.

1. Results on DomainNet

Tables I and II present the quantitative comparison results of our proposed method with numerous
existing alternatives on the DomainNet benchmark. For the large dataset DomainNet, we use 1-shot
and 3-shot settings and ResNet-34 with a relatively deep network structure as the corresponding
backbone network. It can be seen from the results that our method outperforms all previous methods
in all scenarios on 1-shot and 3-shot settings and achieves enormous advantages. Specifically, SERL
improves the previous best-performing SSDA algorithm DEEM in the 1-shot and 3-shot settings of all
adaptive scenarios, respectively, with the average accuracy increased by 11.8% and 11.4%. It is worth
noting that DEEM is also based on the source-free SSDA method, but our performance is better, which
is all attributed to our semantic regularization learning method. Most of the existing methods use the
source-with training paradigm. Compared with them, we have improved the average accuracy of G-
ABC by 12.4% and 12.7% in the 1-shot and 3-shot settings, respectively. By comparing the two tables,
we can find that the performance in the 1-shot setting is slightly inferior to the improvement in the 3-
shot setting. This means that our method requires more supervision to realize its potential better

since more labeled target examples help better to learn the semantic information of the target domain.
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2. Results on Office-Home

To further validate the feasibility of the proposed SERL framework in SSDA scenarios, Tables III and IV
present the quantitative results and comparison of our method in benchmark Office-Home compared
to previous methods. We conducted experiments on the dataset using VGGNet-16 as the backbone
network in 1-shot and 3-shot settings and all 12 Office-Home adaptation scenarios. It is worth noting
that our method outperforms all existing methods in all scenarios and significantly outperforms the
source-free SSDA method DEEM by 10.1% for 1-shot and 10.6% for 3-shot and the source-with
method IDMNE by 14.3% for 1-shot and 13.1% for 3-shot in terms of average accuracy, further

demonstrating the superiority of our method.

3. Results on Office-31

Table V shows the results of our comparison with existing methods on Office-31. Office-31 is a small
dataset, and in order to maintain consistency with existing methods, we use AlexNet with a relatively
small number of layers to conduct experiments under 1-shot and 3-shot. It can be seen from the
results that the average accuracy of our method under the 1-shot setting is 80.1%, and the average
accuracy under the 3-shot setting is 82.3%, respectively surpassing the existing state-of-the-art
SSDA method DEEM 3.9% and 4.6%. Compared with DomainNet and Office-Home, its performance
improvement is relatively limited. This is because Office-31 contains a few images and is a relatively
simple SSDA dataset. In contrast, DomainNet and Office-Home have richer image data, providing
more challenging environments and room for improvement. This shows that our method is more
capable of handling more complex domain adaptation scenarios than existing methods, proving the

superiority of the proposed method on SSDA tasks.

D. Ablation Study

1. Each Main Component

We conducted ablation studies on the main components in 1-shot and 3-shot settings for DomainNet
R—C and R—P, as shown in Table VI. Rows 2-4 show that each component can produce significant
improvements. Rows 5-7 show that each combination still improves performance, indicating the
versatility of the proposed module. At the same time, the SPCR module and the TPR module can bring

more significant improvements to the model than the HMR module. This is because, in the SPCR and
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TPR modules, the model has learned good feature representations for most samples on the target
domain, resulting in a limited number of potentially hard samples, so the improvement is relatively

limited. The best performance is achieved when all components of the model are activated.

Num. Liygse Lyrop Lo Ly R—C R—P Mean
1 4 79.0 77.8 78.4
2 v v 86.4 83.9 85.2
3 v v 81.1 79.8 80.5
4 v v 83.7 81.9 82.8
5 v v v 87.4 85.8 86.6
6 v v v 88.9 87.6 88.3
7 v v v 84.3 83.1 83.7
8 v v v v 90.5 88.8 89.7

Table VI. Accuracy (%) of ablation study on DomainNet under the settings of 1-shot with the ResNet-34

backbone.

2. Source-Free Learning Framework

To prove the importance of the source-free training framework, we show the ablation experimental
results in different cross-domain scenarios of Office-Home in Figure 4. When source-free training
strategies and label propagation methods are not considered, the performance of the model will drop
to the lowest point. This shows that the source-free training framework can allow the model to focus
on learning a more accurate target domain distribution, thereby significantly improving the
performance of the model. \addedSince the target domain has only a small amount of labeled data,
while the source domain has a large amount of labeled data for supervision. The number of this part of
supervision signals creates a strong contrast between the source domain and the target domain. When
there are only a few labeled data, the model can easily rely on the characteristics of the source domain
to make decisions. When considering either alone, the performance of the model drops significantly

compared to the performance of the complete model. In particular, the source-free training method
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can bring more significant performance improvement to the model. This is because source-free only
considers fine-tuning the source model on the target domain, which can reduce the impact of source
domain samples on the adaptation of the target domain during training, allowing the model to focus

more on learning semantic information on the target domain.

BSERL w/o SF & w/o LP
90 FOSERL w/o SF -
OSERL w/o LP N
80 [DOSERL — ]

70 — -
60 ] — -

Accuracy(%)
|

R-C A-R A-C
Office-Home

Figure 4. The impact of source-free learning frameworks on performance. The experiments were
conducted in three scenarios of Office-Home under the 1-shot setting. SF stands for source-free

training paradigm, and LP stands for label propagation.

3. Probability Contrast and Adaptive Weight in SPCR

We investigated specific techniques mentioned in SPCR to prove the effectiveness of our SPCR further,
as shown in Table VII. It is worth noting that when nothing is considered, the model degrades to the
InfoNCE loss, as shown in Eq. 7. When considering learning discriminative features from the
probability space, the model performance improves significantly because the model is forced to output
more confident representation information and can be combined with the knowledge learned by the
classifier to allow the feature extractor to learn more compact target representation clusters. When
considering adding adaptive weights, the model can adaptively learn relevant target representations
for objects of the same category with different confidence levels, thereby achieving the best

performance.
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Probability Contrast Adaptive Weight Office-Home R—P DomainNet C—S Mean
84.0 83.1 83.6
v 88.6 87.6 88.1
v v 92.8 89.1 91.0

Table VII. Accuracy (%) of ablation study for Probability Contrast and Adaptive Weight in SPCR with 1-

shot setting.

E. Further Analysis

1. Sensitivity of Aprop, Amiz and Ay

We show the impact of the loss balance parameters Apop, Amiz and Ay on the classification accuracy

under the Office-Home C— A scenario in Figure 5. It can be observed that when A0 = 0.1, Apiz = 60,

and A, = 3, the trained model achieves the highest performance in image classification.

91.0 740

90.1 89.8
2905
730 &
3 718 87.2 90.1
- 72.7 89.9
3 710 69.7
5 719
£ 69.0 68.0 o1 723
£ 2.
g A
< 67.0
64.8
65.0 Office-Home Office-Home
& DomainNet DomainNet
63.0 760 700
0.01 0.05 0.10 0.50 1.00 20 40

A

prob

Figure 5. The effect of different loss balance parameters Aprop, Amix, and Apre 0N the model classification

90.5 90.3

902 -+
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-+ DomainNet

88.0 710

1 3 5 7

accuracy in the Office-Home C—A and DomainNet R—C scenario under the 1-shot setting.

2. Sensitivity of N;**¥ and N}**¢ in HMR

88.0

Regarding the number of easy and hard samples we mentioned in HMR, i.e., N;* and N}*?, we

further analyze its impact on model performance, as shown in Figure 6. It can be seen from the results

that the blue part is mainly concentrated in areas with a small number of samples, which shows that

the model performs poorly when the number of mixed samples is small. The model performance
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improves when the number of mixed samples is gradually increased. This proves that the model can

learn new target domain semantic representations by gradually adding the number of target samples.

722

718

713
<

% 70.9
g

3 70.4
2

70.0

69.5

69.1

& 68.6

68.2

67.7

Figure 6. Variation in model performance for different numbers of easy and
hard samples N, NJerd € {5,10, 15, 20, 25, 30} for the 1-shot setting in

the P— A scenario of the Office-Home dataset.

3. Sensitivity of Labeled Samples

In Figure 7, we show histograms comparing our method with existing methods under different labeled
samples. Our method still maintains optimal performance even with more labeled data. At the same
time, as the number of labels increases, the improvement of methods gradually decreases. This
phenomenon suggests diminishing returns to more labels, eventually leading to a fully supervised

learning situation.
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Figure 7. Histogram of quantitative comparison under different number of labeled samples settings on

DomainNet R—S.

4. Spectral Analysis

To further analyze the discriminability of the learned features, followingL‘?—lHQi], we perform singular
value decomposition (SVD) analysis on the feature matrices extracted under the 1-shot setting for the
Office-31 W—A and D— A scenario. The results are shown in Figure 8. Relative to SERL, the largest
singular values of the feature matrices of S+T and DEEM are significantly larger than the other
singular values, greatly weakening the information signal of the feature vectors corresponding to
smaller singular values. Such a sharp distribution of singular values implies a deterioration of
distinguishability. However, the singular values of the feature matrices learned by our proposed SERL
successfully reduce the large difference between the largest value and the remaining values while
maintaining higher values, which implies that more dimensions corresponding to smaller singular

values positively affect the classification and intuitively improve the discriminability of the features.
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Figure 8. The SVD analysis of feature matrices obtained by different methods in different 1-shot scenarios.

F. Feature Visualization

1. Feature Aggregation

As shown in Figure 9, we use t-SNEL3] to visualize the changes in deep features during training. For
DomainNet R—S, where the domain difference is relatively small, the model trained only on the
source domain can better aggregate most of the same features. However, it performs poorly in Office-
Home C—P, where the domain difference is relatively significant. However, as training proceeds,
learned features from different domains belonging to the same class are mapped nearby and clustered
together, while those from different classes are clearly separated, and the clusters are more evenly

distributed. The results show that using the proposed SERL can produce domain-invariant and

differentiated target features, helping the model perform well on the target domain.
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. w
‘ |
(a) Before Target Adaptation on DomainNet (b) After Target Adaptation on DomainNet (c) Before Target Adaptation on Office-Home (d) After Target Adaptation on Office-Home

Figure 9. Feature visualization using t-SNEL23L we randomly selected seven categories and assigned them
different colors for the 3-shot scenes of DomainNet R— S and Office-Home C— P. The red box shows

obvious differences.

2. Attention Visualization

In Figure 10, we use the Grad-CAMI94] to visualize the attention maps of the model for different
categories of target samples in the DomainNet dataset after target domain adaptation. Whether the
model faces easy samples with relatively easy backgrounds or hard samples with relatively complex
backgrounds, the model can capture the key information of the target samples, which is due to the

assistance of our SERL for the model to learn the semantic information on the target domain.

Computer Computer Basketball

Basketball

\)

N

Bicycle

Airplane Bicycle Airplane
(a) Easy Samples (b) Hard Samples

Figure 10. The Grad-CAM(94] visualization of the features generated by our SERL for different samples in

the DomainNet dataset.
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V. Conclusion

This paper proposes a novel SSDA learning framework called semantic regularization learning (SERL),
which provides regularization constraints by learning semantic information from the target data,
thereby better learning the representation distribution of the target domain. This paper considers
fine-tuning the feature extractor on the target domain based on the source pre-trained model. Firstly,
semantic probability contrastive regularization helps the model learn more discriminative feature
representations, using semantic information on the target domain to understand the similarities and
differences between samples. At the same time, it encourages the model to make confident judgments,
helping to capture the semantic information on the target domain more fully. Then, hard-sample
mixup regularization is proposed to learn more complex target domains by reducing the fluctuation of
predictive distributions between easy and hard samples through a guidance strategy for easy samples.
Finally, target prediction regularization corrects erroneous target predictions by maximizing the
correlation between the prediction output and the early learned target, reducing the misleading of
false semantic information. Extensive experiments and comprehensive analysis with good
performance on three benchmark datasets demonstrate the superiority of our method, which

significantly surpasses existing methods and achieves impressive results.

References

1.3b £Krizhevsky A, Sutskever I, Hinton GE (2012). "Imagenet classification with deep convolutional neur
al networks." Advances in Neural Information Processing Systems. 25.

2.8 PHe K Zhang X, Ren S, Sun J (2016). "Deep residual learning for image recognition." In: Proceedings o
f the IEEE conference on computer vision and pattern recognition. pp. 770—778.

3. 2Rastegari M, Ordonez V, Redmon J, Farhadi A (2016). "Xnor-net: Imagenet classification using binary
convolutional neural networks." In: European conference on computer vision. pp. 525—542. Springer.

4. “Krizhevsky A, Sutskever I, Hinton GE (2017). "Imagenet classification with deep convolutional neural n
etworks." Communications of the ACM. 60 (6): 84-9o0.

5.2Qiao L, Shi Y, Li J, Wang Y, Huang T, Tian Y (2019). "Transductive episodic-wise adaptive metric for fe
w-shot learning." In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 36

03—3612.

geios.com doi.org/10.32388/4T33D8 30


https://www.qeios.com/
https://doi.org/10.32388/4T33D8

10.

11.

12.

13.

14.

15.

16.

17.

18.

.2Yan Y, Nie F, Li W, Gao C, Yang Y, Xu D (2016). "Image classification by cross-media active learning wi

th privileged information." IEEE Transactions on Multimedia. 18 (12): 2494—-2502.

.2Wang J, Wang W, Wang R, Gao W (2016). "Csps: An adaptive pooling method for image classification."

IEEE Transactions on Multimedia. 18(6): 1000—-1010.

.2Long J, Shelhamer E, Darrell T (2015). "Fully convolutional networks for semantic segmentation." In: P

roceedings of the IEEE conference on computer vision and pattern recognition. pp. 3431-344o0.

.2Gao G, Xu G, LiJ, Yu'Y, Lu H, Yang J (2022). "Fbsnet: A fast bilateral symmetrical network for real-time

semantic segmentation." IEEE Transactions on Multimedia.

AYan B, Niu X, Bare B, Tan W (2019). "Semantic segmentation quided pixel fusion for image retargetin
g." IEEE Transactions on Multimedia. 22 (3): 676—687.

AMinaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D (2021). "Image segmentation us
ing deep learning: A survey." IEEE Transactions on Pattern Analysis and Machine Intelligence. 44 (7): 3
523-3542.

ALi Z, Ye W, Terven J, Bennett Z, Zheng Y, Jiang T, Huang T (2023). "Muva: A new large-scale benchmar
k for multi-view amodal instance segmentation in the shopping scenario." In: Proceedings of the IEEE/
CVF International Conference on Computer Vision. pp. 23504—23513.

AWang X, Zhang X, Cao Y, Wang W, Shen C, Huang T (2023). ""Seggpt: Segmenting everything in contex

t." arXiv preprint arXiv:2304.03284. Available from: https://arxiv.org/abs/2304.03284.

Apan SJ, Tsang IW, Kwok JT, Yang Q (2010). "Domain adaptation via transfer component analysis." IEE
E Transactions on Neural Networks. 22 (2): 199-210.

Apatel VM, Gopalan R, Li R, Chellappa R (2015). "Visual domain adaptation: A survey of recent advance
s." IEEE Signal Processing Magazine. 32 (3): 53—69.

AMei K, Zhu C, Zou J, Zhang S. "Instance adaptive self-training for unsupervised domain adaptation." I
n: Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proce
edings, Part XXVI 16. Springer; 2020. p. 415-430.

AZhang C, Li Z, Liu J, Peng P, Ye Q, Lu S, Huang T, Tian Y (2021). "Self-quided adaptation: Progressive r
epresentation alignment for domain adaptive object detection". IEEE Transactions on Multimedia. 24: 2
246-2258.

2 bGanin y, Lempitsky V (2015). "Unsupervised domain adaptation by backpropagation.” In: Internatio

nal conference on machine learning. PMLR. pp. 1180-1189.

geios.com doi.org/10.32388/4T33D8

31


https://arxiv.org/abs/2304.03284
https://www.qeios.com/
https://doi.org/10.32388/4T33D8

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

2Deng W, Zhao L, Liao Q, Guo D, Kuang G, Hu D, Pietikdinen M, Liu L (2021). "Informative feature disen
tanglement for unsupervised domain adaptation." IEEE Transactions on Multimedia. 24: 2407-2421.
AWang R, Wu Z, Weng Z, Chen J, Qi GJ, Jiang YG. "Cross-domain contrastive learning for unsupervised d
omain adaptation." IEEE Transactions on Multimedia. 2022.

2 h]ing M, Meng L, Li ], Zhu L, Shen HT. "Adversarial mixup ratio confusion for unsupervised domain ad
aptation." IEEE Transactions on Multimedia. 2022.

ALu'Y, Li D, Wang W, Lai Z, Zhou J, Li X (2021). "Discriminative invariant alignment for unsupervised do
main adaptation." IEEE Transactions on Multimedia. 24: 1871—-1882.

AZhao S, Yue X, Zhang S, Li B, Zhao H, Wu B, Krishna R, Gonzalez JE, Sangiovanni-Vincentelli AL, Seshi
a SA, et al. (2020). "A review of single-source deep unsupervised visual domain adaptation.”" IEEE Tran
sactions on Neural Networks and Learning Systems. 33 (2): 473-493.

AZuo Y, Yao H, Zhuang L, Xu C (2023). "Dual structural knowledge interaction for domain adaptation."
IEEE Transactions on Multimedia. (99): 1-15.

ADing F, LiJ, Tian W, Zhang S, Yuan W (2023). "Unsupervised domain adaptation via risk-consistent est
imators." IEEE Transactions on Multimedia.

3,b¢d e f 8 h i kL mggit0 K Kim D, Sclaroff S, Darrell T, Saenko K (2019). "Semi-supervised domai
n adaptation via minimax entropy." In: Proceedings of the IEEE/CVF International Conference on Comp
uter Vision. pp. 8050—8058.

————— 8D J,LiG, ShiY, YuY. "Cross-domain adaptive clustering for semi-supervised domain ad
aptation." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 20
21:2505-2514.

3,064 811K Liu C, Zhao H, Zhang Y, Fu Y. "Ecacl: A holistic framework for semi-supervised domain
adaptation." In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. p. 857
8-8587.

a,b ¢ d e 18 hoin ¢, Wang L, Ma Q, Yin Y, Wang H, Fu Y (2022). "Semi-supervised domain adaptive st
ructure learning." IEEE Transactions on Image Processing. 31: 7179—7190.

2, bxy H-M, Liu L, Bian Q, Yang Z (2022). "Semi-supervised semantic segmentation with prototype-ba
sed consistency regularization." Advances in Neural Information Processing Systems.

a,b ¢ d e 8yan Z Wu 'y, Li G, Qin Y, Han X, Cui S (2022). "Multi-level consistency learning for semi-s

upervised domain adaptation." arXiv preprint arXiv:2205.04066. Available from: https://arxiv.org/abs/

2205.04066.

geios.com doi.org/10.32388/4T33D8 32


https://arxiv.org/abs/2205.04066
https://arxiv.org/abs/2205.04066
https://www.qeios.com/
https://doi.org/10.32388/4T33D8

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

geios.com doi.org/10.32388/4T33D8 33

abgdefy, Y-C, Lin H-T. ""Semi-supervised domain adaptation with source label adaptation." In: Pr
oceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. p. 24100-241
09.

—————— 18 hHuang X, Zhu C, Chen W (2023). ""Semi-supervised domain adaptation via prototype-ba
sed multi-level learning." arXiv preprint arXiv:2305.02693. Available from: https://arxiv.org/abs/2305.
02693

abodefghrijLiG YuY. "Adaptive betweenness clustering for semi-supervised domain adaptatio
n." IEEE Transactions on Image Processing. 2023.

abodef g i 1iG YuY. "Inter-domain mixup for semi-supervised domain adaptation.” Patter
n Recognition. 146: 110023, 2024.

AChen T, Guo Y, Hao S, Hong R (2023). "Semi-supervised domain adaptation for major depressive disor
der detection." IEEE Transactions on Multimedia.

a,b ¢ d &£ 8kim T, Kim C (2020). "Attract, perturb, and explore: Learning a feature alignment networ
k for semi-supervised domain adaptation." In: European conference on computer vision. pp. 591-607. S
pringer.

a,byg gLiang J, Hu D, Feng J (2020). "Do we really need to access the source data? source hypothesis tra
nsfer for unsupervised domain adaptation." In: International Conference on Machine Learning. PMLR.
pp. 6028-6039.

AXuan H, Stylianou A, Liu X, Pless R. "Hard negative examples are hard, but useful." In: Computer Vision
--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XIV 16.
Springer; 2020. p. 126-142.

AZuo L, Jing M, Li J, Zhu L, Lu K, Yang Y (2021). "Challenging tough samples in unsupervised domain ad
aptation." Pattern Recognition. 110: 107540.

ALiu'Y, Ge H, Sun L, Hou Y (2022). "Complementary attention-driven contrastive learning with hard-s
ample exploring for unsupervised domain adaptive person re-id." IEEE Transactions on Circuits and Sys
tems for Video Technology. 33 (1): 326—341.

2 hXiong Y, Chen H, Lin Z, Zhao S, Ding G (2023). "Confidence-based visual dispersal for few-shot unsu
pervised domain adaptation." In: Proceedings of the IEEE/CVF International Conference on Computer Vi
sion, pp. 11621-11631.

3 bzhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017). "mixup: Beyond empirical risk minimization."

arXiv preprint arXiv:1710.09412. Available from: https://arxiv.org/abs/1710.09412.



https://arxiv.org/abs/2305.02693
https://arxiv.org/abs/2305.02693
https://arxiv.org/abs/1710.09412
https://www.qeios.com/
https://doi.org/10.32388/4T33D8

Lt

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

a brjy S, Niles-Weed ], Razavian N, Fernandez-Granda C (2020). "Early-learning reqularization preve

nts memorization of noisy labels." Advances in Neural Information Processing Systems. 33: 20331—-2034

N

a,b, cyj L,XuG,XuP, Li], PuR, Ling C, McLeod AI, Wang B (2023). "When source-free domain adaptati
on meets learning with noisy labels." arXiv preprint arXiv:2301.13381. Available from: https://arxiv.org/
abs/2301.13381.

Apei 7, Cao Z, Long M, Wang J (2018). "Multi-adversarial domain adaptation." In: Thirty-second AAAI
conference on artificial intelligence.

2, byenkateswara H, Eusebio J, Chakraborty S, Panchanathan S (2017). ""Deep hashing network for unsu
pervised domain adaptation." In: Proceedings of the IEEE Conference on Computer Vision and Pattern R
ecognition. pp. 5018-5027.

3 bsgenko K, Kulis B, Fritz M, Darrell T (2010). "Adapting visual category models to new domains." In:
Computer Vision--ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Crete, Greece,
September 5-11, 2010, Proceedings, Part IV 11. Springer. pp. 213—226.

AGretton A, Borgwardt KM, Rasch MJ, Schélkopf B, Smola A (2012). "A kernel two-sample test." The Jou
rnal of Machine Learning Research. 13 (1): 723-773.

3,b,¢,d,¢ 1 8 WGanin v, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lem
pitsky V (2016). "Domain-adversarial training of neural networks." The Journal of Machine Learning R
esearch. 17 (1): 2096—2030.

ALong M, Zhu H, Wang J, Jordan MI (2017). "Deep transfer learning with joint adaptation networks." In:
International Conference on Machine Learning. PMLR. pp. 2208—-2217.

ASun B, Feng J, Saenko K (2017). "Correlation alignment for unsupervised domain adaptation." Domain
adaptation in computer vision applications. pp. 153—171.

2Zhuo J, Wang S, Zhang W, Huang Q (2017). "Deep unsupervised convolutional domain adaptation." In:
Proceedings of the 25th ACM international conference on Multimedia, pp. 261-269.

ATzeng E, Hoffman ], Saenko K, Darrell T (2017). "Adversarial discriminative domain adaptation." In: P
roceedings of the IEEE conference on computer vision and pattern recognition. pp. 7167—7176.

AZhang B, Chen T, Wang B, Li R (2021). "Joint distribution alignment via adversarial learning for domai
n adaptive object detection." IEEE Transactions on Multimedia. 24: 4102—4112.

AXie S, Zheng Z, Chen L, Chen C (2018). ""Learning semantic representations for unsupervised domain a

daptation." In: International Conference on Machine Learning. PMLR. pp. 5423—5432.

geios.com doi.org/10.32388/4T33D8 34


https://arxiv.org/abs/2301.13381
https://arxiv.org/abs/2301.13381
https://www.qeios.com/
https://doi.org/10.32388/4T33D8

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

AShen J, Qu'Y, Zhang W, Yu Y (2018). "Wasserstein distance quided representation learning for domain
adaptation." In: Proceedings of the AAAI Conference on Artificial Intelligence. 32.

AGe P, Ren CX, Xu XL, Yan H (2023). "Unsupervised domain adaptation via deep conditional adaptation
network." Pattern Recognition. 134: 109088.

AShermin T, Lu G, Teng SW, Murshed M, Sohel F (2020). "Adversarial network with multiple classifiers f
or open set domain adaptation." IEEE Transactions on Multimedia. 23: 2732—2744.

AChen C, Xie W, Huang W, Rong Y, Ding X, Huang Y, Xu T, Huang J (2019). "Progressive feature alignme
nt for unsupervised domain adaptation." In: Proceedings of the IEEE/CVF Conference on Computer Visio
n and Pattern Recognition, pp. 627—636.

Apan 'Y, Yao T, Li Y, Wang Y, Ngo C-W, Mei T (2019). "Transferrable prototypical networks for unsupervi
sed domain adaptation." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern R
ecognition, pp. 2239-2247.

2Zhong L, Fang Z, Liu F, Lu J, Yuan B, Zhang G (2021). "How does the combined risk affect the performa
nce of unsupervised domain adaptation approaches?" in Proceedings of the AAAI Conference on Artifici
al Intelligence. 35: 11079—11087.

3,b¢4d €Singh A, Doraiswamy N, Takamuku S, Bhalerao M, Dutta T, Biswas S, Chepuri A, Vengatesan
B, Natori N. "Improving semi-supervised domain adaptation using effective target selection and seman
tics." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. p.
2709-2718.

a,b,¢,4, ¢ fyang I, Wang Y, Gao M, Shrivastava A, Weinberger KQ, Chao W-L, Lim S-N (2021). "Deep co
-training with task decomposition for semi-supervised domain adaptation." In: Proceedings of the IEE
E/CVF International Conference on Computer Vision. pp. 8906—8916.

—————— Qin C, Wang L, Ma Q, Yin Y, Wang H, Fu Y (2021). "Contradictory structure learning for semi
-supervised domain adaptation.” In: Proceedings of the 2021 SIAM International Conference on Data M
ining (SDM). SIAM. pp. 576 —584.

2,b,¢,d, ¢jjang p, Wu A, Han Y, Shao Y, Qi M, Li B (2020). "Bidirectional adversarial training for semi-s
upervised domain adaptation." In: [JCAL pp. 934—94o0.

a,b¢d et ghling N Buj, Lu L, WenJ, Zhou S, Zhang Z, Gu J, Li H, Yan X (2022). ""Context-quided e
ntropy minimization for semi-supervised domain adaptation." Neural Networks. 154: 270—-282.

abA v d. Oord, Y. Li, and 0. Vinyals (2018). "Representation learning with contrastive predictive codin

g." arXiv preprint arXiv:1807.03748. Available from: https://arxiv.org/abs/1807.03748.

geios.com doi.org/10.32388/4T33D8 35


https://arxiv.org/abs/1807.03748
https://www.qeios.com/
https://doi.org/10.32388/4T33D8

69.

70.

72.

73.

74

75-

76.

71

78.

79.

8o0.

81.

.a,b

AGrill J-B, Strub F, Altché F, Tallec C, Richemond P, Buchatskaya E, Doersch C, Avila Pires B, Guo Z, Ghes
hlaghi Azar M, et al. (2020). "Bootstrap your own latent-a new approach to self-supervised learning."”
Advances in Neural Information Processing Systems. 33: 21271—21284.

2, bKhosla P, Teterwak P, Wang C, Sarna A, Tian Y, Isola P, Maschinot A, Liu C, Krishnan D (2020). "Sup
ervised contrastive learning." Advances in Neural Information Processing Systems. 33: 18661—18673.
Chen T, Kornblith S, Norouzi M, Hinton G (2020). "A simple framework for contrastive learning of vi
sual representations." In: International Conference on Machine Learning. PMLR. pp. 1597-1607.
a,b¢1iJ Zhang Y, Wang Z, Tu K (2021). "Probabilistic contrastive learning for domain adaptation." arX

iv preprint arXiv:2111.06021. Available from: https://arxiv.org/abs/2111.06021.

2Huo X, Xie L, Wei L, Zhang X, Chen X, Li H, Yang Z, Zhou W, Li H, Tian Q (2021). "Heterogeneous contr
astive learning: Encoding spatial information for compact visual representations." IEEE Transactions on
Multimedia. 24: 4224—4235.

2Zhang Y, Zhang X, Li J, Qiu R, Xu H, Tian Q (2022). ""Semi-supervised contrastive learning with similar
ity co-calibration." IEEE Transactions on Multimedia. 2022.

2 t—’Huang X, Zhu C, Zhang B, Zhang S (2024). ""Learning from different samples: A source-free framewo
rk for semi-supervised domain adaptation."

AYang F, Wu K, Zhang S, Jiang G, Liu Y, Zheng F, Zhang W, Wang C, Zeng L. "Class-aware contrastive se
mi-supervised learning." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern R
ecognition. 2022. p. 14421-14430.

2He K, Fan H, Wu Y, Xie S, Girshick R (2020). "Momentum contrast for unsupervised visual representati
on learning." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Pp- 9729-9738.

2, bperthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel CA (2019). "Mixmatch: A holistic ap
proach to semi-supervised learning." Advances in Neural Information Processing Systems. 32.

2Zhang L, Deng Z, Kawaquchi K, Ghorbani A, Zou J (2020). "How does mixup help with robustness and

generalization?" arXiv preprint arXiv:2010.04819. Available from: https://arxiv.org/abs/2010.04819.
ACarratino L, Cissé M, Jenatton R, Vert J-P (2022). "On mixup reqularization.” The Journal of Machine L
earning Research. 23 (1): 14632-14662.

Apapyan V, Han X, Donoho DL (2020). "Prevalence of neural collapse during the terminal phase of deep

learning training." Proceedings of the National Academy of Sciences. 117 (40): 24652—-24663.

geios.com doi.org/10.32388/4T33D8 36


https://arxiv.org/abs/2111.06021
https://arxiv.org/abs/2010.04819
https://www.qeios.com/
https://doi.org/10.32388/4T33D8

82.

83.

84.

85.

86.

87.

88.

89.

90.

o1

92.

93.

2Ding Y, Sheng L, Liang J, Zheng A, He R (2023). "Proxymix: Proxy-based mixup training with label refi
nery for source-free domain adaptation." Neural Networks. 167: 92—103.

2Bai Y, Yang E, Han B, Yang Y, Li J, Mao Y, Niu G, Liu T (2021). "Understanding and improving early sto
pping for learning with noisy labels." Advances in Neural Information Processing Systems. 34: 243922
4403.

ASong H, Kim M, Park D, Lee JG (2019). "Prestopping: How does early stopping help generalization agai
nst label noise?"

—————— Grandvalet Y, Bengio Y (2004). ""Semi-supervised learning by entropy minimization." Advan
ces in Neural Information Processing Systems. 17.

abyg gSingh A. ""Clda: Contrastive learning for semi-supervised domain adaptation." In: Ranzato M, Be
ygelzimer A, Dauphin Y, Liang P, Vaughan JW, editors. Advances in Neural Information Processing Syste
ms. Vol. 34. Curran Associates, Inc.; 2021. p. 5089-5101.

Apeng X, Bai Q, Xia X, Huang Z, Saenko K, Wang B (2019). "Moment matching for multi-source domain
adaptation." In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1406 —1415.
ASimonyan K, Zisserman A (2014). "Very deep convolutional networks for large-scale image recognitio

n." arXiv preprint arXiv:1409.1556. Available from: https://arxiv.org/abs/1409.1556.

ACubuk ED, Zoph B, Shlens ], Le QV (2020). "Randaugment: Practical automated data augmentation wi
th a reduced search space." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 702-703.

Apaszke A, Gross S, Massa F, Lerer A, Bradbury ], Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et a
L. (2019). "Pytorch: An imperative style, high-performance deep learning library." Advances in Neural I
nformation Processing Systems. 32.

AChen X, Wang S, Long M, Wang J (2019). "Transferability vs. discriminability: Batch spectral penalizati
on for adversarial domain adaptation." In: International Conference on Machine Learning. PMLR. pp. 1
081—-1090.

AXie B, Li S, Lv F, Liu CH, Wang G, Wu D (2022). "A collaborative alignment framework of transferable k
nowledge extraction for unsupervised domain adaptation." IEEE Transactions on Knowledge and Data
Engineering.

2 byan der Maaten L, Hinton G (2008). "Visualizing data using t-sne." Journal of Machine Learning Re

search. 9 (11).

geios.com doi.org/10.32388/4T33D8

37


https://arxiv.org/abs/1409.1556
https://www.qeios.com/
https://doi.org/10.32388/4T33D8

94. 3 hSelvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017). "Grad-cam: Visual explanat
ions from deep networks via gradient-based localization." In: Proceedings of the IEEE International Co

nference on Computer Vision, pp. 618—626.

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

geios.com doi.org/10.32388/4T33D8 38


https://www.qeios.com/
https://doi.org/10.32388/4T33D8

