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In the instantaneous global industrialisation, there has been an increase in the generalised waste,

one of the major pollutants of wastewater. There should be advancements in the existing wastewater

treatment technologies to cater for the current water demands. Wastewater treatment requires the

oxidation and reduction of organic and drug molecules. Conventional wastewater technologies are

expensive for such degradation, and the treatment efficiency is inadequate per the current demands.

Hence microbial fuel cells, which are affordable, multi-applicability systems, should be considered

for wastewater treatment technologies. This study analyses various country- and industry-wise

wastewater production to demonstrate microbial fuel cell treatment technology requirements.

According to the Sustainable Development Goals (SDG), this review also thoroughly discusses the

Life Cycle Assessment of various types of Microbial Fuel Cells in order to observe which microbial

fuel cells could be applied for different levels of wastewater accumulated geologically as well as

industrially. For a thorough treatment of wastewater through MFCs, the review also economically

analysed the microbial fuel cells both component-wise and unit-wise, especially towards scale-up. A

comprehensive socioeconomic and technological perspective has also been portrayed in order to

showcase the need to transition from conventional wastewater treatment technologies towards

microbial fuel cells.

1. Introduction

Microbial Fuel Cells are the biological instruments that help generate bioelectricity (in the form of

current) with the help of bacterial catalysation. The main working principle of MFCs is the degradation

of organic matter through micro-organisms, which produces electrons travelling in a series of

respiratory enzymes and makes energy for the cell in the form of adenosine triphosphate (ATP). The
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principal framework of the microbial fuel cell is shown in Figure 1[1][2][3]. The MFCs comprise several

compositions, which include anode, cathode, and membrane (even membranes) as internal

components. In contrast, several external analytical compositions exist, including resistors,

multimeters, wires and characterisation instruments for assessing wastewater[4]. The various

fundamental reactions used in the MFCs, which depend on the wastewater inside the MFCs, are shown

in Figure 1[5][6].

Figure 1. Principal Framework of Microbial Fuel Cells[5][4]. 

Even though several analytical measures are taken to calculate the efficiency, efficacy and

performance of microbial fuel cells, at the same time, several factors cause microbial fuel cell losses,

including ohmic, activation, bacterial metabolic, and concentration losses[7][8]. Ohmic losses consist

of both the resistance to the flow of electrons through electrodes and interconnection and the

resistance to the flow of ions through the cationic exchange membranes and the anodic and cathodic

electrolytes[9][10]. These losses could be reduced by minimising the electrode spacing, using a
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membrane with low resistivity, checking all contacts, and increasing the solution's conductivity to the

maximum tolerated by bacteria.

Activation losses occur during the transfer of electrons from or to a compound reacting at the

electrode surface[11][12].   Low activation losses can be achieved by increasing electrode surface area,

improving electrode catalysis, increasing the operating temperature, and establishing an enriched

biofilm. Concentration losses entail around the rate of mass transfer of a species to and from the

electrode, which limits the current production. The summarization of the factors affecting microbial

fuel cells' performance is showcased in Figure 2[9][13][12]. 

Figure 2. Factor Affecting Microbial Fuel Cells Performances[9][13][12].

1.1. Architecture of Microbial Fuel Cells

During the development of microbial fuel cells, several practical implications are vital, which involve

high power, coulombic efficiencies, and economics. Based on the specific needs of industrialists and

academics, microbial fuel cells could be divided into air cathode MFCs, two-chamber air cathode

systems, new bottle reactor MFCs, single-chamber MFCs, flat plate MFCs, U-shaped MFCs, double-

chambered Microbial Fuel Cells, Biohydrogen MFC and Stacked MFCs[14][15]. Single Microbial Fuel
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Cells produce low voltage; hence, the stacking of MFCs causes an increase in voltage; there can also be

losses when individual cells are joined in series so that the final voltage may not be equal to the sum of

individual cell voltages. Such reactors are connected in either series or parallel with wires made of

copper or silver[16][17][18]. 

Some of the primary reasons microbial fuel cells over activated sludge or trickling filters is the

production of a valuable product in the form of electricity (the current generation is dependent on the

wastewater strength and coulumbic efficiency), lack of a need for aeration (aeration in anaerobic

sludge can consume 50% of the electricity used at a treatment plant), reduction of the solid output and

potential for odour control (omitting high surface area need in trickling filters exposed to air and the

flow of large amounts of air through the aeration basin in the anaerobic sludge process could

significantly reduce the potential for odour generation)[19][10][20]. 

1.2. Commercialisation and Applications of Microbial Fuel Cells

Commercialising lab-scale technology on an industrial scale is necessary due to its impact,

sustainability, funding, and evaluation of research excellence[21][22]. For MFCs, the significant

commercialisation aspects revolve around working with chemical catholyte such as ferricyanide

should be abandoned, focusing on the placement of atmospheric oxygen at the cathodes, and

materials and different methods to treat materials must be examined that is efficient both in terms of

power generation and cost[23]. One of the most critical challenges is the use of cost-effective cathodes,

anodes and membranes, which majorly control the overall cost of the systems. The primary material

compositions are showcased in Figure 3[24][25][26][27][28][29].
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Figure 3. Primary Composition of Materials in Microbial Fuel Cells[24][25][26][27][28][29].

The various applications of MFCs include wastewater treatment, hydrogen production, biosensors,

microbial electrosynthesis, and seawater desalination. The elucidation of these applications is

showcased in Table 1.
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Applications Elucidation Ref.

Wastewater

Treatment

The generation of electricity and the purification of wastewater by removing

pollutants can occur in microbial fuel cells. The micro-organism breaks down

organic compounds, cleaning the water while producing usable energy.

[17]

Hydrogen

Production

Biohydrogen production occurs inside MFCs through microbial activity. This is one

of the alternatives for green, low-carbon hydrogen production. 
[30]

Biosensors
The detection of specific pollutants or pathogens based on changes in electrical

output. Hence, MFCs also help in environmental monitoring. 

[31]

Microbial

Electrosynthesis

The MFCs help convert carbon dioxide into valuable chemicals. The micro-

organisms inside the MFCs use electrons from the anode to reduce carbon dioxide

into biofuels, biogases, biomethanol, bioethanol, and other compounds.

[32]

[33]

Seawater

Desalination

The desalination of seawater through energy generation during microbial

metabolism and also help in the testing of freshwater in coastal areas could be

done through MFCs.

[34]

[35]

Table 1. Elucidation of MFCs Applications.

1.3. Need for Life Cycle Assessment and Industrial Scale-Up Variability in MFCs

There is an existential necessity for Life Cycle Assessment (LCA) and Industrial Scale-Up Variability in

Microbial Fuel Cells[36][37][38]. Some primary reasons behind the need for LCA in MFCs include

environmental impact evaluation, avoidance of burden shifting, materials and energy use

optimisation, and critical comparative analysis. LCA assesses the environmental performances of

MFCs throughout the overall working cycle, from raw materials to disposal, based on several impact

categories. This helps in the identification of ecological hotspots and potential areas for improvement.

LCA analyses and ensures that any improvements in one of the stages of MFCs do not lead to negative

impacts elsewhere, either in the MFC cycles or outside. The most significant role of LCA for MFCs is

that it benchmarks MFCs and other energy systems based on applications through which MFCs

work[39][40].  
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The primary need to thoroughly analyse and assess industrial scale-up variability is due to the scale-

up challenges and potential of industrial applications. The significant scale-up challenges include

energy consumption, cost and efficiency. Due to the growth in the size of microbial fuel cells, energy

consumption increases due to the large volume, membrane resistances, and electron transfer

losses[41]. Materials, maintenance, and construction expenditures increase on an industrial scale. One

of the significant challenges also arises in the mutuality of efficient energy and maintaining

performance. The potential industrial applications include the research and development of large-

scale MFCs for water treatment, biosensors and bioenergy production[42]. 

The significant need for this review is due to the exigency of such LCA and industrial scale-up

variability in microbial fuel cells. When the research & development activities are analysed of Life

Cycle Assessment and Industrial Scale-Up Variability concerning the current MFCs activities, it was

found that not much focus is dived into these crucial aspects[43][44]. The significant statistics of such

research and development activities are showcased in Figure 4[7][42][14][45][46].
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Figure 4. Research and Development Activities of MFCs, LCA and Industrial Scale-up

Variability[7][42][14][45][46].

2. Structurisation of LCA in MFC

Life cycle assessment could be fundamentally divided into goals and scope, life cycle inventory, life

cycle impact assessment and life cycle interpretation[47]. The goals and scope could be step-wise

interpreted as primary objectives, the potential environmental impact of MFCs, the entire working

cycle of MFCs and maintenance assessment[48][49]. The life cycle inventory includes material and

energy consumption during construction and the developmental and operational stages. The tabular

formation of the stepwise analysis of Life Cycle Assessment in MFCs is elucidated in Table 2[50]. The

steps involve goal definition and scope, inventory analysis, impact assessment, interpretation,

sensitivity analysis, scenario analysis, recommendations and improvement strategies.
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Steps Elucidation

Goal Definition and Scope
Defining the purpose of the assessment and specification of the system

boundaries

Inventory Analysis
Data collection of all MFCs inputs and outputs. This includes raw materials,

energy consumption, water usage, and emissions during the working cycle.

Impact Assessment

Quantification of the environmental impacts using various impact categories as

well as application of the characterisation factors for the conversion of

inventory data into impact scores.

Interpretation
Identifying hotspots is done by analysing the results and comparing MFCs with

other energy systems.

Sensitivity Analysis

Assessment of the variations caused in impact categories due to the change in

parameters and identification of critical factors affecting environmental

performances.

Scenario Analysis
Exploration of the alternative material, wastewater and disposal methods in

MFCs.

Recommendations and

Improvement Strategies
Proposing of the strategies for the reduction of environmental impacts. 

Table 2. Stepwise Analysis of Life Cycle Assessment for Microbial Fuel Cells[50].

The life cycle impact assessment contains an analysis of impact categories involving the selection of

impact categories, global warming, fine particulate matter formation, human carcinogenic toxicity,

terrestrial acidification, freshwater eutrophication, marine ecotoxicity, fossil resource scarcity, and

mineral resource scarcity[51]. The following impact categories are based on various types of

wastewater used in microbial fuel cells. Besides wastewater impact categories, several material-based

MFC impact categories are also required, including anode, cathode, and membrane impact categories.

The flowchart for Microbial Fuel Cells for Life Cycle Assessment is shown in Figure 5[52][53].
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Figure 5. Flowchart for Microbial Fuel Cells for Life Cycle Assessment[52][53].

3. System Boundaries for LCA in MFCs

The most crucial components of system boundaries include functional units, boundary inclusions,

boundary exclusions, allocation methods, cradle-to-grave approach, and functional equivalence[54]

[55]. The system boundaries could be divided based on different treatment systems, including MFCs,

MEC, MDC, constructed wetlands, agricultural sludge treatment and activated sludge. The primary

reason behind the system boundaries is to include construction, operation, maintenance and end-of-

life assessments[56][57][58]. Bound exclusions entail upstream and downstream processes. The

upstream processes exclude the processes related to the raw material extraction done before the

construction of MFCs. Downstream processes exclude the impacts that are beyond MFC disposal.

Figure 6 discusses the system boundaries for Life Cycle Assessment and comparative results for MFC

through LCA[59][60][61].
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Figure 6. System Boundaries and Comparative Results for MFC through

LCA[59][60][61].

Upon observing several reports, several treatment systems were considered as a dataset to give a

comparative analysis of greenhouse gas emissions for MFCs. It was found that the greenhouse gas

emissions were reported to be the minimum in Microbial Desalination Cells (MDC) as per the

microbial setups[62]. In contrast, agricultural sludge treatment and activated sludge produced the

minimum greenhouse gas emissions. The impact categories upon which the total system boundaries

are calculated gave aspects on three categories: climate change, ecosystem quality and human health. 

4. Challenges and Solutions in Industrial Scale-Up of Microbial

Fuel Cells

Energy consumption, Cost, Operational fouling, and voltage and current reversals are essential

challenges in the industrial scale-up of MFCs. Significant challenges involving these parameters

include higher energy consumption, overall system costs, lower power density during scale-up,

electrode, membrane fouling, and stacked or series MFCs, which face such problems[63]. Several

solutions have been proposed to tackle these challenges. Improving electrode materials, reactor

configurations, microbial community management, advanced control strategies, optimising stack

arrangement, managing internal resistances, regular maintenance, proper cleaning protocols, use of

innovative materials, optimisation of reactor designs and modifying operational parameters are some

of the core solutions which could be applied to tackle the challenges of industrial scale-up of microbial

fuel cells[64][65]. The detailed flowchart of the challenges and solutions of industrial scale-up of MFCs

is discussed in Figure 7[66][67][68].
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Figure 7. Challenges and Solutions in Industrial Scale-Up of Microbial Fuel Cells[66][67][68].

When we look at the scale-up of MFCs, the materials used in the membranes, anodes and cathodes

play a crucial part in calculating its treatment efficiency, overall costs of MFCs, COD levels and power

density. Hence, it is essential to analyse the majority of materials used in the components of MFCs to

commercialise industrial applications[69][70]. 

5. Majority of Materials Used in the Components of MFCs for

Commercialisation

To check the majority of materials used in the components of microbial fuel cells, the volume taken

from the previous project was set as more than 20 litres. 24 reports were gathered through various

setups of microbial fuel cells, including double-chambered microbial fuel cells, single-chambered

microbial fuel cells, and 3-phase single-chambered microbial fuel cells. The material dataset used in

most industrial scale-up MFCs includes carbon brushes, activated carbon, carbon cloth, activated

semicoke, carbon felt, granular graphite and stainless steel. The most used materials involve carbon

brushes and activated carbon, used in 25.1% and 33.2% of the industrial scale-up MFCs[71].

The criticality of the analysis is that even though most materials are carbon brushes and activated

carbons for industrially scaled MFCs, they are not the materials with the most efficient
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performances[69][72]. Carbon Cloth and Granular Graphite showcased maximum COD, which is 98.3%

and 96%, respectively, and the power densities of the materials were 1680 and 3500 mW/m3. The

overall material analysis pie chart has been assessed in Figure 8. The tabular format of each MFC

reported has been showcased in a tabular format in Table 3.

Figure 8. Material Analysis of Industrial MFCs[42][24][10][11][27][60][8][44].

The primary electron transfer occurring in the electrodes mainly happens to the biofilm material,

which formulates on the materials[73][74]. The formation of biofilms is highly significant for both the

wastewater treatment and bioelectricity production in Microbial Fuel Cells . Hence, the materials used

in the MFCs help formulate consistent biofilms. The overall mechanism through which electron

transfer happens through biofilm is demonstrated in Figure 9[75][76][77].
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Figure 9. Biofilm mechanism for electron transfer in Microbial Fuel Cell[75][76][77].

To comprehend the performance of the electrode, it is necessary to evaluate the surface area (cm2),

Imax (A/m2) and Pmax (mW/m2). Various carbon-based electrodes are evaluated from previous

literature, involving carbon nanotubes, carbon nanofiber, carbon mesh, tubular bamboo charcoal,

granular activated carbon particles, multi-brush carbon, carbon paper, and carbon paper. The tabular

representation of the electrodes, MFC configuration, substrate and anode surface area, Imax and

Pmax is shown in Table 3[78][34][79].
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Electrode
MFC

configuration
Substrate Used

Electrode

Surface Area

(cm2)

Imax

(A/m2)

Pmax

(mW/m2)
Ref.

Corrugated Carbon
Three-electrode

cell
Synthetic Wastewater 26.52 390 NA [76]

Graphite Rod
Three-electrode

half cell
Synthetic Wastewater 11.5 5.17 NA [80]

Carbon Yarn
Single chamber

dual cathode
Domestic Wastewater 1018 18.15 364 [81]

Carbon Nanofiber
Micro-litre sized

MFC

Acetate mineral

media
0.28 0.083 22000 [82]

Carbon Nanotube
Micro-litre sized

MFC

Acetate mineral

media
0.28 0.0234 49000 [83]

Carbon Paper
Micro-litre sized

MFC

Acetate mineral

media
0.28 0.096 10000 [84]

Carbon mesh Single chamber Domestic wastewater 7 NA 1330 [85]

Multi-brush carbon Single chamber Acetate media 8 4.2 1200 [86]

Porous carbon with

a defined pore size
Single chamber

Glucose phosphate-

buffered basal

medium

9 13.4 1606 [87]

Granular activated

carbon particles
Dual chamber Acetate Media 10 2.6 951 [88]

Tubular bamboo

charcoal

Tubular two-

chamber MFC
Synthetic Media NA NA 1652 [76]

Table 3: Carbon-based electrode material based on their performance.
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6. Industrial Scale Up Variability in MFCs

Based on different types of industrial MFCs with separate volumes and factors that contribute to the

overall performance of such MFCs, several models of such MFCs were taken into account, which

involved stacked MFC with 96 tubular modules, stacked MFC with 50 modules, stacked MFC with 18

modules, 10 dual chambers in series, 2 dual-chamber in series and 1 dual chamber. The primary

reason for industrial scale-up “variability” is due to various combinations of volume and cost

differences in the industrial microbial fuel cells[89][90]. 

There is an urgent need to scale up MFCs, and stacking modular multiple units with improved power

management systems appears to be an efficient solution. A potential approach is to use the modular

concept of multi-MFC units in a wastewater treatment system[91][92]. The increased surface area of

electrodes does not always translate into a greater proportionate power harvesting rate because

microbial electrochemical methods are associated with increased Ohmic internal resistances. The

tabular representation of the technical aspects of the performances of pilot-scaled microbial fuel cells

is demonstrated in Table 4 based on volume, anode material, power density, COD removal % and

Hydraulic Retention Time[93][94][95]. 

Recently, there has been a lot of interest in applying bioelectrochemical systems, such as MFCs, for

treating industrial wastewater and recovering resources from the circular economy initiative. MFCs

are utilised to produce power and treat wastewater. The investigation's focus may vary, as is typical

for studies that combine the environment and energy. Specific research focused primarily on the

characteristics of wastewater treatment and how it affects efforts to prevent environmental pollution.

Other research focuses on the characteristics of energy generation and the financial implications

compared to other traditional systems. 
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MFC

Architecture

Volume (in

Litres)

Electrode

Material

Power Density

(W/m3)

COD

Removal

(%)

Hydraulic Retention

Time (HRT) (days)
Ref.

Stack 10 (5 units)
Activated

Semicoke
175.7 77-84 NA [96]

Two Chambers 50 Semicoke 43.1 95 0.5 [97]

Stack 72
Activated

Carbon
50.9 78-95 2 [98]

Stack 90 Carbon brush 0.12 82.7 3 [99]

Stack 94 SS mesh 2 40 NA [99]

Stack 200 Carbon brush 0.009 75 0.75 [100]

Single Chamber 250 Carbon Brush 0.47 86 5 [101]

Stack 1000
Activated

Carbon 
7-60 70-80 0.08 [102]

Stack 1000
Activated

Carbon
125 80-90 0.08 [18]

Bioelectric

Toilet MFC
1500 Carbon brush 75 95 NA [15]

Table 4. Industrial Performances of the Microbial Fuel Cells.

The scalability of MFC, which can be achieved via size expansion or stacking configurations and is

subject to certain operational and design constraints, is what separates the feasibility of MFC

technology transition from its reality[103][104]. Research is needed to understand microbial activity in

scale-up reactors, as our understanding of the microbial processes occurring within a live reactor is

still in its early stages. The reactor's architecture can be updated to handle operational disruptions and

allow for self-sustaining use. Due to the MFC's scalability, research has focused on modularity and
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stacking small units to store charges using electrical circuitry[105]. MFC can be successfully

implemented as a capable wastewater treatment option on bigger scales, but it is too far away to be

used as a stand-alone external power source. The application of MFC by businesses, robots, and

biosensors, in addition to recovering precious resources, is one of the central stepping stones towards

commercialising such intricate bioelectrochemical systems in the future[106]. 

The financial impact of MFC systems on the comparatively low power densities achieved is another

crucial factor that must be considered. The cost of using MFCs for wastewater treatment is

substantially more significant than that of conventional wastewater treatment. Additionally, the cost

of generating energy from MFCs is higher per unit than other renewable energy sources, such as

biomass, solar, and wind. Chemical engineers and biotechnologists are the ones who can solve

this[107]. More complex reactor layouts must be devised to obtain higher power densities at reduced

operating and maintenance costs[108][109]. A more profound comprehension of microbial biofilms and

the related metabolic processes can also enhance energy production. MFC reactors can also be

combined with traditional wastewater treatment techniques to improve reactor performance in terms

of COD removal and resource recovery. The underlying technology for MFC reactor configuration and

development can also be optimised with recent research on MFC applications in robotics and artificial

symbiosis . The infographics of the industrial scale-up variability in MFCs, which portray the types of

industrial MFCs based on volume and cost in USD, are shown in Figure 10[107][89][108][105][109].
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Figure 10. Infographics of Industrial Scale-Up Variability in Microbial Fuel Cells[107][89][108][105][109].

7. Integration of Life Cycle Assessment with Industrial Scale-Ups

for MFCs

The Life Cycle Assessment (LCA) technique is utilised to assess the environmental performances of

various bioelectrochemical systems (BES), such as integrated MFC systems, microbial fuel cell (MFC),

microbial electrolysis cell (MEC), and microbial desalination cell (MDC). While MD + MFC (membrane

distillation integrated MFC) has the least negative effects on human health and ecosystems among all

integrated MFC treatment options, MEC1 (double chamber air-cathode MEC) is the most

environmentally friendly option among all endpoint damage categories[110][111]. The most notable

environmental hotspot is electricity consumption for operation, which accounts for 90% of the

damage to the global warming effect category.
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Given worldwide worries about climate change and water cleanliness, BESs may be used in various

places to address these issues[112]. To verify the MFC system's viability, further research can be done

in particular BES configurations, such as economic analysis of BES, uncertainty and sensitivity

analyses on the electricity mix variation, and wastewater BOD or COD removal rate. The study's

findings should give stakeholders in wastewater treatment plants data-driven insights to help them

select the best BES configurations to reduce their influence on the environment and improve water

sanitation[113]. 

To integrate the life cycle assessment with the industrial scale-up, it is essential to identify the

environmental hotspot, optimise design constructions, energy efficiency, waste valorisation and

industrial integration. Such integration helps identify areas where MFC requirements will be there.

Such analysis of energy consumption, emissions and resource use. Identifying suitable materials for

varied conditions helps minimise carbon footprint and maximise industrial scalability. The proposed

integrated life cycle assessment and industrial scale-up variability aspects for the large-scale efficient

Microbial Fuel Cells are shown in Figure 11[114][34][115][92].
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Figure 11. Step-wise Integration of Life Cycle Assessment with Industrial Scale-Ups for MFCs[114][34][115]

[92].

8. Future Direction of Microbial Fuel Cells

Some new perspectives from which microbial fuel cells can be incorporated into novel and innovative

directions involve a thorough and complete analysis of several variations in Life Cycle Assessment,

Environmental Impact Assessment, Modelling, Simulations, Machine Learning Models, Artificial

Intelligence Networks, and Computational Characterisation tools[116][117]. From such computational

software, several current ‘idealities’ in MFC could be transformed into experiments to examine the

industrial scale-up[118]. To assess the building of the Microbial Fuel Cell through the modelling and

simulations are demonstrated in Figure 12[119][120].
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Figure 12. Future Computational Modelling Directions in Microbial Fuel Cells[119][120].

9. Conclusions

The fact that MFCs were initially created as scientific experiments remains largely accurate. MFCs,

however, are a very flexible platform technology with many potential uses, according to the current

study. The unique capacity of MFCs to produce energy from waste without needing an external energy

source is one of its defining characteristics. Due to this feature, MFCs are suitable for remote region

access via robotic systems or for generating electricity in isolated areas. Being very selective and

sensitive "sensors" of their surroundings, microbes provide a clear benefit in MFCs by immediately

capturing microbial reactions and metabolism and converting them into analogue electrical signals.

MFCs can adapt to different conditions and work well with specific microorganisms thanks to their

inherent sensing capability. Even though funding and development for MFCs are still in their infancy,

further study into these systems gives hope for resolving environmental issues worldwide. By offering

environmentally acceptable and sustainable solutions for energy generation and environmental

remediation, MFCs can significantly impact both our planet's future and that of future generations.
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Several challenges are there for MFCs, which include operational fouling, voltage & current reversals,

energy consumption, cost, and low power densities. Still, with adequate solutions, such challenges can

be easily tackled. Upon review, Carbon Cloth and Granular Graphite showcased maximum power

density and COD removal at an industrial level and should be used for future industrial scale-up.

Several influences and cost analyses were done for different industrial-scaled MFCs through

infographic analysis. As mentioned, the main objectives required for LCA in Industrially Scaled Up

MFCs were showcased, and specific impact categories were concluded. Several LCA reports of

treatment options were also reported, and based on a standard algorithm for GHG emissions through

LCA, MFCs showcased 2.28-6.58 kg/m3 of emissions for a single chamber MFC to process 1L

wastewater. Identifying environmental hotspots, optimising design construction, energy efficiency,

waste valorisation and industrial integration are showcased and analysed as the results of LCA, which

are used for industrial scale-up of MFCs.
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