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1. Independent researcher

In standard quantum mechanics, the Born rule is introduced as a postulate: outcome probabilities

equal the squared amplitude of the wavefunction. This paper proposes a deterministic alternative

based on the geometry of a constrained state space. We consider a smooth, finite-dimensional,

Hausdorff manifold  , equipped with a volume-preserving flow   and a conserved measure  . A

physical experiment corresponds to evolving an initial region   into a disjoint union of

macroscopically distinguishable outcome regions  , each defined by both dynamical separation

and observational distinguishability. We show that for almost every microstate in  , repeated

experiments yield long-run frequencies matching the ratios  . This result requires no

probability postulate, wavefunction, or stochastic process, only deterministic dynamics and geometric

structure. This result lays the foundation for Paper B, which shows why this becomes   in quantum

mechanics.

Corresponding author: Zayn Blore, zblore@gmail.com

1. Introduction

Quantum mechanics assigns probabilities to physical outcomes through the Born rule. In its standard

form, this rule is introduced as a postulate: the probability of a measurement outcome is given by the

squared amplitude of the corresponding component of the wavefunction. Despite its empirical success,

the rule remains mathematically opaque and conceptually unsatisfying. Why should probabilities relate

to squared amplitudes? Why should randomness enter at all, if the underlying dynamics (e.g., via

Schrödinger evolution) are deterministic?
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This paper aims to reformulate that problem in purely geometric terms. We investigate whether a

deterministic, volume-based structure can yield outcome statistics consistent with the Born rule, not by

inserting probabilities, but by deriving them from the evolution of state space regions under well-

defined, volume-preserving dynamics.

The framework begins with a smooth, finite-dimensional, Hausdorff manifold  , interpreted as the set of

all microstates. Each microstate represents a full specification of the system’s underlying degrees of

freedom. We assume that   is equipped with:

A volume-preserving flow  , capturing deterministic evolution.

A conserved volume measure  , analogous to Liouville measure in classical mechanics.

A method for defining macroscopically distinguishable outcome regions  , constructed from

physical observables.

An experiment is represented as preparing a region  , then evolving it under    such that it

branches into disjoint outcome regions. If these outcome regions are well-defined (in the sense of

dynamical separation and observational distinguishability), we show that the observed relative

frequencies converge to the volume ratios  , without assuming any probabilistic mechanism.

Importantly, this approach does not assume Hilbert space, amplitudes, or the wavefunction. These

structures may emerge later, but they are not required here. Instead, the focus is on whether a minimal

geometric foundation can explain the statistical behaviour of quantum experiments.

The result does not replace quantum mechanics but it reframes the Born rule as a deterministic emergent

pattern from volume-based dynamics. This opens the door to reconciling determinism and quantum

statistics without invoking collapse, branching universes, or hidden variables.

Historical Context

The idea that statistical regularities can arise from deterministic dynamics has deep roots in physics. In

classical contexts, Boltzmann pioneered the use of coarse-grained volumes to explain thermodynamic

behaviour, and Birkhoff’s ergodic theorem[1]  formalized the convergence of time and space averages.

Jaynes later reframed these ideas in terms of information theory[2], viewing entropy as a principle of

logical inference. In quantum theory, Born’s postulate[3]  introduced the amplitude-squared rule for

probabilities, assigning statistical weights   to measurement outcomes. This was an axiom rather

than a derived consequence and it remains a focal point for foundational inquiry. More recent work on
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typicality[4][5][6]  shows that frequency patterns can emerge from geometry alone. The present work

follows this line by demonstrating that deterministic, volume-preserving flow yields outcome

frequencies proportional to region volumes, and that this suffices to match amplitude-squared

predictions if the geometry aligns. Unlike probabilistic interpretations, this approach locates empirical

regularities in the structure of the state space itself.

2. Deterministic-Volume Framework

2.1. State Space and Outcome Decomposition

We begin by formalising the state space introduced in Section 1. Let    denote the set of all physical

microstates, a smooth, finite-dimensional, Hausdorff manifold. Each point   represents a complete

specification of the system’s microscopic degrees of freedom.

We define    to be a smooth one-parameter family of diffeomorphisms, representing the

deterministic evolution of microstates on a finite-dimensional constraint surface  . We assume that 

 preserves a smooth volume form   on  , such that for all measurable regions  , we have 

This ensures Liouville-like conservation of phase-space volume under evolution and provides the

foundation for assigning stable frequency weights to branching outcomes.

Measurement settings may influence the dynamical flow itself, by altering the system-apparatus

interaction, or may instead define a coarse-grained observable    applied after evolution. The present

framework accommodates both: we allow for different    depending on the physical setup, as well as

multiple outcome maps   applied to a fixed flow.

In physical terms, distinct measurement contexts may alter the overall evolution    by modifying the

interaction Hamiltonian or boundary conditions that govern the joint system-apparatus dynamics. For

instance, rotating a Stern-Gerlach device or changing a detector’s basis setting corresponds to a different

coupling, which in turn alters how microstates evolve toward macroscopically distinct regions. The

framework accommodates both cases: where   changes due to different dynamics, and where   is fixed

but the outcome map    defines alternative coarse-grainings of the same flow. This dual flexibility

reflects the structure of real experiments, where both dynamical and observational elements contribute

to outcome generation.
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In classical systems, a natural choice is the Liouville measure, which is uniquely preserved by

Hamiltonian flow. In quantum contexts, however, there is no canonical phase space, and the appropriate

measure is less obvious. We hypothesize that    must obey structural constraints, such as symmetry

invariance or preservation under relevant dynamical flows, to yield physically meaningful outcome

frequencies. These constraints are explored further in follow-up work. For the purposes of this paper, we

assume only that   is  -invariant, Borel-regular, and coarse-grainable into observable partitions.

In this framework, a physical experiment corresponds to preparing an ensemble of initial conditions

within a measurable subset    and evolving them via  . Over time, the deterministic flow may

separate these initial conditions into disjoint outcome regions  , where each    represents a

macroscopically distinguishable result (e.g., a detector click, spin-up, or particle position).

While the Hausdorff property ensures that for any two distinct points in    there exist disjoint open

neighbourhoods, this topological separability alone is not physically meaningful.

Outcome regions must arise from the deterministic evolution of    under the flow  , and must

correspond to macroscopically distinguishable outcomes, such as pointer positions, detector clicks, or

classical field configurations. Arbitrary disjoint sets, even if well-defined topologically, do not qualify as

outcome regions without such dynamical and observational grounding.

In practice, outcome regions are defined relative to a coarse-grained observable, a function on   whose

level sets correspond to macroscopically distinct, classically recordable values. These values define the

meaningful experimental outcomes. Outcome partitions are further constrained by empirical

repeatability: only regions that yield stable, reproducible observational results qualify as valid branches.

Instead, we define   as a valid outcome decomposition only if:

1. The flow   maps   into the disjoint   deterministically.

2. Each    corresponds to a macroscopically distinguishable result in the physical sense (i.e., an

observable pointer reading or detector outcome).

3. The partition is experimentally reproducible, such that repeated preparations of   yield outcome

assignments aligned with the  .

These physical criteria rule out trivial counterexamples, such as disjoint neighbourhoods constructed via

topology alone. In our framework, geometry and observability jointly determine the valid outcome

structure.
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The manifold    can be viewed as encoding hidden variables in the sense of encoding microstates not

specified by macroscopic observables. These variables are not assumed to be position or momentum per

se (as in Bohmian mechanics), but rather generalized degrees of freedom in a smooth state space to

account for all experimental contexts.1

Definition (Core Functions and Structures):

Let   denote the full classical state space of the system. We define:

 as a Borel measure on  , representing geometric volume. We assume   is invariant

under the flow  .

 is a deterministic, volume-preserving flow that evolves the state continuously in time.

 is the measurable region representing the initial macrostate prior to branching. Under   it is

mapped into disjoint measurable outcome regions  .

  is the observable outcome function, defined by:  . It maps

each microstate to the corresponding macroscopic outcome region.

 is a coarse-grained observable used to define outcome regions via preimages: 

where the   are disjoint regions of observable values.
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Symbol Definition / Role

Full classical state space of the system

Volume measure on  ; assumed to be Borel and  -invariant

Deterministic flow:   volume-preserving

Initial measurable region (pre-branching macrostate)

Disjoint outcome regions from deterministic evolution

Outcome function: maps microstate   to outcome index 

Optional observable map:  , used for coarse-graining

Region in observable space corresponding to outcome 

Outcome weight: 

Empirical frequency of outcome   after   trials

Table 1. Core Symbols and Definitions

2.2. Volume-preserving flow 

Time evolution is governed by a one-parameter family of smooth, invertible maps  :  ,  ,

where   is a smooth, finite-dimensional, second-countable, Hausdorff manifold equipped with a Borel 

-algebra and a non-negative,  -additive measure  . Each map   is assumed to be a   diffeomorphism,

that is, continuously differentiable with a continuously differentiable inverse. This flow satisfies:

Determinism: Every microstate   evolves along a unique trajectory  .

Invertibility: No two distinct microstates merge; the flow is bijective at all times.

Volume Preservation: The measure    is invariant under the flow, so for every measurable region 

 and all  ,  .

This identity defines    as a measure-preserving diffeomorphism on  , a standard structure in

ergodic theory and classical dynamics[7][8]. It arises naturally in systems with conserved phase-space

structure, whether classical (Hamiltonian) or geometric and ensures that the “size” of state space regions

is invariant under evolution.
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At the infinitesimal level, this corresponds to Liouville’s condition that the Jacobian determinant of the

flow is unity throughout the state space[8]: 

meaning the Jacobian determinant of the flow equals one at every point. This condition underlies all

subsequent results, as it guarantees that outcome weights based on region volumes remain fixed once

branching has occurred.

In the physical context of any deterministic microscopic theory, the volume-preserving flow may emerge

from an action principle, a divergence-free vector field, or a structure-preserving constraint on

admissible dynamics. This flow acts not only on the microscopic degrees of freedom of the system but

also on any subsystems, such as measurement apparatus or observers, that record macroscopic

outcomes. Once a branching event occurs, the observer’s internal configuration becomes entangled with

a specific outcome region  , and hence evolves deterministically within that region. This ensures that

empirical frequencies, as recorded within any single branch, reflect the geometric structure of state space

and remain stable under time evolution.

2.3. Branching as a geometric partition

A branching event is defined as a deterministic evolution in which the initial region   is mapped

into a disjoint union of outcome regions: 

where each    is a measurable subset corresponding to a macroscopically distinguishable

experimental result. In physical systems, the observable    is constrained by empirical resolution,

instrumentation, and repeatability. Only decompositions aligned with such observables are operationally

meaningful. Although multiple valid coarse-grainings may exist, each determines a unique set of

outcome weights. This flexibility mirrors the diversity of experimental contexts, without undermining

the internal consistency of outcome assignment within any single setup.

To ensure that these outcome regions are both mathematically meaningful and operationally relevant,

we impose the following constraints:

1. Measurability: Each outcome region    must be a Borel-measurable subset of the state space  ,

ensuring that the volume   is well-defined.
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2. Dynamical Coherence: The outcome regions must arise from the deterministic evolution of disjoint

measurable subsets of  . That is, for each  , there exists a subset   such that  .

3. Operational Coarse-Graining: Each region    should be definable in terms of a macroscopic

observable  . Specifically,   is constructed as a coarse-grained preimage:

where the sets   are disjoint and correspond to distinct observable outcomes.

These constraints ensure that outcome weights are derived from the deterministic geometry of the

system and are not dependent on arbitrary or subjective partitions. They also make clear how branching

relates to physically observable distinctions.

This partition structure under a measure-preserving map is standard in deterministic dynamical

systems and underpins frequency analysis in ergodic theory.

To qualify as a valid outcome decomposition, the following three conditions must be satisfied:

1. Deterministic Assignment: The flow    maps every point in    into exactly one  . That is, for

each  , there exists a unique    such that  , and the outcome regions are pairwise

disjoint.

2. Macroscopic Distinguishability: Each region    corresponds to a stable, observable microstate,

such as a distinct detector click, pointer position, or classical field configuration. This implies the

existence of a coarse-grained observable

where   is a finite outcome set, and   defines the region of state space associated with

outcome  .

Since   is coarse-grained and   is finite, each   is measurable by construction[9].

The existence of such a map guarantees that the decomposition is measurable and tied to

operationally meaningful data. Observables of this type are standard in classical and quantum

measurement theory[5][10].

3. Empirical Repeatability: The partition must yield reproducible outcome statistics under repeated

trials, starting from  . This condition rules out trivial or arbitrary decompositions constructed via

topological separation alone and ensures that branching reflects stable physical processes.

Together, these criteria ensure that branching events are not merely mathematical artifacts but

correspond to physically meaningful processes capable of generating distinct, classically recordable
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outcomes. Because the regions    are pairwise disjoint and collectively exhaustive, and the flow 

  preserves volume, the subsequent assignment of outcome weights will be unambiguous and

conserved over time.

The observer, regarded as a subsystem embedded in  , becomes dynamically correlated with a particular 

  during the branching event. From that point forward, the observer’s records, expectations, and

perceived statistics are entirely determined by the trajectory of   within that region.

Uniqueness and Partition Ambiguity

While the construction of outcome regions    is constrained by measurability, dynamical coherence,

and coarse-graining via observables, it is not necessarily unique. Multiple valid decompositions of 

  into macroscopic outcomes may exist, especially when different levels of resolution are chosen or

different observables are deemed relevant. However, this non-uniqueness does not undermine the use of

outcome weights: once a branching structure is fixed, through a specific observable   or coarse-graining

scheme, the associated weights    are objectively defined. The volume-typicality

theorem applies to any such valid decomposition, provided it satisfies the geometric and operational

criteria outlined above. This flexibility reflects the fact that different experimental configurations may

give rise to different, but equally legitimate, branching structures.

Thus, branching is understood as a geometrically clean, empirically grounded decomposition of state

space that underlies the emergence of outcome frequencies from purely deterministic evolution.

3. Outcome Weights and the Typicality Theorem

Section 2 shows an invariant volume   on state space and a clean partition  . Section 3 details

how geometry alone turns into empirical probability.

3.1. Outcome Weights

Consider a branching event at time  , where an initial region    evolves under the volume-

preserving flow   into disjoint outcome regions  , such that 

Each    corresponds to a macroscopically distinguishable and observable outcome, as defined in

Section [sec:2.3]. Because    is assumed to be a measure-preserving diffeomorphism[7][8], the total
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measure of the evolved region must be conserved. Since the outcome regions   are pairwise disjoint and

jointly exhaustive, we have 

This conservation law ensures that volume is merely redistributed, not created or destroyed, under

deterministic evolution.

We now define the outcome weight   of region   relative to the initial region   as: 

This ratio satisfies   and   by construction. It represents the normalized geometric size

of each outcome region, analogous in structure to a probability measure but derived without stochastic

assumptions.

This formula presupposes that the evolution under   maps the initial region   into a finite collection of

disjoint outcome regions  , each of which is macroscopically distinguishable. These regions

correspond to observable outcomes, such as detector clicks or pointer positions. The weight assigned to

each outcome is then given by the preserved volume fraction that enters  . Since    is invariant under

the flow, this assignment remains stable over time. The outcome probabilities are interpreted as

empirical frequencies assuming that the experiment samples    uniformly over repeated trials. This

approach aligns with standard reasoning in statistical mechanics, where typicality arguments justify

identifying relative volumes with long-run frequencies (see e.g.,[11][12]. The key assumption is that the

coarse-grained branching structure corresponds to physical observables, and that the sampling of   is

unbiased at the scale of  .

We assume that the flow   induces a disjoint partition of the initial region   into a finite collection of

subsets  , corresponding to distinct macroscopic outcomes. These subsets must not merely be

topologically or mathematically disjoint (as ensured, for instance, by the Hausdorff property), but must

arise from the dynamical evolution of the system in a way that is physically meaningful. Specifically,

each    must map to a distinguishable measurement outcome, such as a specific pointer position,

detector result, or classical field configuration, under coarse-graining by a real-world observer. The

boundary between outcome regions reflects a branching structure determined by the system-

environment interaction, not an arbitrary slicing of  .
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These weights quantify the typicality of each outcome: the proportion of microstates in    that evolve

into   under  .

This is a standard move in deterministic statistical mechanics, where ensemble frequencies are grounded

in phase-space volume[10][13].

If one samples an initial microstate    according to the uniform measure  , then the image 

 will land in region   with typicality  . In this view, outcome weights express how common each

outcome is, not how likely it is in any stochastic sense.

For embedded observers correlated with outcome regions (as defined in Section [sec:2.3]), these weights

match the expected long-run frequencies recorded across an ensemble of identically prepared trials.

This link between geometry and observer experience is central to later arguments concerning empirical

convergence (Section [sec:5]) and quantum compatibility[14]. Thus, the emergence of statistical

regularities in measurement does not require any probabilistic postulates: it arises directly from the

volume-preserving dynamics of deterministic flows acting on observable partitions of state space.

Proposition (Typicality of Volume-Based Frequencies)

Let   be a deterministic, volume-preserving flow on a smooth state space   with invariant measure  .

Let    be a measurable initial region, and let    be a disjoint partition of    corresponding to

macroscopically distinguishable outcomes.

Then, for almost all sequences of trials drawn from   with uniform measure, the relative frequencies 

 of outcomes in   after   repetitions satisfy: 

Justification sketch

This result reflects deterministic typicality: sampling   independently and uniformly implies, by

measure-theoretic concentration, that long-run frequencies converge to volume ratios. No stochasticity,

ergodicity, or ensemble averaging is required. The key assumptions are volume conservation under  , a

fixed branching structure  , and unbiased sampling across  . This aligns with classical arguments

in Boltzmannian statistical mechanics[12][13].
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3.2. Basic properties

The outcome weights  , defined in Section [sec:3.1], possess several key properties that

follow directly from the structure of the flow and measure:

1. Normalization: Because the outcome regions   are disjoint and exhaustive, and the measure   is

additive, the weights satisfy

This ensures that outcome weights form a complete partition of unit volume relative to the initial

region.

2. Time Invariance: Because the flow    is volume-preserving, the outcome weights    are

independent of the particular branching time  .

This means the relative sizes of outcome regions are conserved by evolution, even as their locations

in   may change.

3. Observer Independence: The values of    depend only on the geometry of state space and the

volume measure, not on any assumptions about probability, subjective belief, or measurement

collapse. Because they are defined purely from the structure of   and  , they apply equally to any

embedded observer whose internal state becomes correlated with  .

4. No Frequency Assumption: The weights are not assumed to match empirical frequencies by

postulate. Rather, they are used as geometric inputs to derive such frequencies in the next section

via a typicality argument. This distinction is crucial: we do not assume that    are probabilities;

instead, we demonstrate why they behave like probabilities under deterministic evolution.

5. Deterministic Origin: The outcome weights arise from the deterministic evolution of microstates

under   because each initial condition in   is mapped into exactly one  , and the sizes of those

sets determine the frequency structure of outcomes. No randomness or wavefunction structure is

required.

These properties show that outcome weights provide a natural and robust foundation for understanding

relative frequencies without invoking probabilistic axioms. They inherit their meaning entirely from the

geometry and dynamics of the system.
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3.3. Volume-Typicality Theorem

We now show why the outcome weights 

correspond to the long-run frequencies of outcomes observed by embedded agents, under deterministic

evolution. Let    be an initial region, and suppose the flow    deterministically evolves    into

disjoint, measurable outcome regions: 

where each   corresponds to a macroscopically distinct and coarse-grained observable state, as defined

in Section [sec:2.3].

Let   be a sequence of independent initial microstates, sampled according to the

measure  . Each evolves via    into some outcome region. Define the empirical frequency of outcome 

 across this sequence as: 

where    is the indicator function for region  . Then, for every  , the law of large numbers for

measure spaces implies: 

This result shows that, for almost all sequences of microstates drawn from  , the observed frequencies

converge to the volume weights.

Because the flow is deterministic and volume-preserving, and because outcome regions are disjoint and

coarse-grained, each outcome accumulates frequency proportional to its invariant volume.

No stochasticity or quantum assumptions are needed. The emergence of relative frequencies is a purely

geometric phenomenon, arising from the deterministic redistribution of volume in state space.

The convergence result assumes that the flow    distributes microstates across outcome regions in a

representative way. While this does not require full ergodicity, systems with pathological structure or

conserved subspaces may violate the conditions needed for typicality. In practice, weak mixing or

effective chaoticity suffice to ensure convergence in most coarse-grained systems.
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This theorem forms the basis of volume-based probability: observed frequencies match geometric

weights because of how deterministic flows allocate trajectories across macroscopic outcomes. In this

framework, probability is not a primitive concept but a consequence of measure structure and repeated

evolution.

Theorem (Volume-Based Typicality of Outcomes)

Let   be a state space equipped with a Borel measure  , and let   be a deterministic, volume-

preserving flow. Let    be a measurable initial region that branches into disjoint measurable

outcome regions   such that: 

Define the outcome weights by: 

Let   be independently sampled microstates according to the measure  , and define the

empirical frequency of outcome   as: 

Then, for every  , 

That is, for almost all sequences of initial microstates drawn from  , the observed relative frequencies of

outcomes converge to their geometric weights.

3.4. Toy Model: Two-Outcome Branching System

To illustrate how outcome frequencies emerge from region volume, consider a toy model with a two-

dimensional state space: 

equipped with the standard Lebesgue measure  . Let the initial macrostate be the entire unit square: 

.
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Define a deterministic branching map   as follows:

If  , map the point to region  .

If  , map it to region  .

Explicitly, let: 

Since the system is volume-preserving and the flow partitions   into these two regions, we compute the

weights: 

Now let an observer record the outcomes of   independent trials, each starting from a uniformly

sampled point in  . By the typicality theorem, almost every such sequence of microstates will yield: 

as  , with deviations decreasing exponentially in  .

While measurement contexts can vary, the underlying state space    and measure    need not change.

Rather, outcome regions are defined differently per observable. The degrees of freedom of   are sufficient

to encode all such variations, avoiding any implication of infinite new parameters per measurement

context.

This toy model demonstrates how deterministic flow and coarse partitioning of the state space produce

outcome frequencies that match the relative volumes, without invoking probability, randomness, or

quantum postulates.

Section 3 has now furnished everything an observer needs to turn conserved geometry into rock-solid

predictions. Sections [sec:4] and [sec:5] will illustrate the theorem in explicit toy models and discuss why

branches stay independent after the split.

4. Embedded Observers and Frequency Records

To complete the link between volume weights and empirical statistics, we now consider observers

embedded within the deterministic system. The goal is to explain why observers record frequencies that

match the geometric weights   without invoking any stochastic assumptions.
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Let the system be prepared in an initial macrostate represented by a measurable region  . The

observer is treated as a physical subsystem whose internal configuration evolves deterministically along

with the rest of the state.

Suppose that the full system undergoes a sequence of repeated, isolated evolutions from identically

prepared regions  , and that in each trial the global flow   maps the system to one of several coarse-

grained outcome regions  . These regions correspond to macroscopically distinct results, such as a

pointer position, detector click, or memory encoding.

We define a recorded outcome as a stable, internal physical configuration of the observer subsystem that

is correlated with entry into a specific region  . Because the observer evolves as part of the total system,

and because    is deterministic and volume-preserving, the observer’s records across repeated trials

form a sequence: 

where each   satisfies   for some microstate  .

Although each microstate represents a complete specification of the system’s degrees of freedom, such

distinctions are typically unresolvable in practice. Observers access only coarse-grained outcomes via

macroscopic observables. Microstates that map to the same observable result under   are operationally

indistinguishable, because no physical process available to the observer can reliably distinguish them.

This indistinguishability arises from decoherence, finite detector resolution, and the empirical

indistinctness of nearby configurations in  .

Let    be the frequency with which outcome    appears in the record  . By the typicality theorem

(Section [sec:3.3]), we know that for almost all sequences  , these frequencies

converge: 

Because the observer subsystem evolves according to the same deterministic flow, and because each

outcome region has volume  , the internal memory of the observer will reflect the same weight

structure, even without invoking probability.

This framework eliminates the need for stochastic postulates. The observer does not assign likelihoods

or experience uncertainty; they simply evolve into regions of state space that differ in volume. The record

of their experience, when aggregated over repeated trials, aligns with the invariant geometric weights.
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Thus, the experience of frequency regularities by embedded observers arises because deterministic flow

maps microstates into outcome regions in proportion to volume, and because the observer’s internal

records are physical encodings of those transitions.

5. Empirical Convergence

We now connect the geometric outcome weights to empirical experience. Specifically, we explain why

observers embedded in a deterministic system will observe frequencies that converge to the weights 

, even though no probabilistic assumption has been made.

Let   be a finite sequence of initial states drawn independently from the uniform

measure  . Each evolves under the volume-preserving flow    into one of the outcome regions  . An

observer embedded within each trajectory records the macroscopic outcome it enters.

Let    denote the observed frequency of outcome    across the sequence. Then by the typicality

theorem, we have: 

for almost all sequences of initial conditions drawn from  . Because each outcome region contains a

proportion   of the initial volume, and because the flow preserves that volume, the set of microstates

that lead to outcome   has the same measure as the region itself. This implies that relative frequencies,

when measured over many runs, reflect these volume ratios.

Importantly, convergence does not require an external probability law. It results from the distribution of

microstates within  , and the structure of the flow that deterministically transports those states into

disjoint regions.

The observer does not need to interpret or assign likelihoods. Their internal record of frequencies, once

enough trials have been recorded, will match the outcome weights defined geometrically.

Thus, outcome weights derived from volume ratios are not only mathematically stable but also

empirically verifiable. This completes the explanatory arc: from geometry and dynamics to observed

regularities, without invoking any stochastic or epistemic assumptions.
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Falsifiability

Unlike standard quantum tests, which verify the Born rule’s outcome statistics, the present framework

predicts that outcome frequencies emerge solely from volume structure, even in classically engineered

systems. A falsifying result would arise if volume-conserving systems, such as analog simulators,

reversible cellular automata, or chaotic classical systems, consistently failed to reproduce the predicted

frequency ratios. Similarly, if experimental interventions on outcome partitioning (e.g., dynamic

remapping of coarse-grained observables) showed systematic deviation from volume-based weights, this

would challenge the core assumptions of the model.

Analogue tests like those proposed for entanglement-based derivations of the Born rule could offer a path

forward. For example, engineered setups with controlled branching geometries could directly probe

whether outcome region volume ratios align with long-run frequencies in fully deterministic flows.

6. Compatibility with Amplitude-Squared Weights

The framework developed in this paper makes no reference to quantum mechanics or probabilistic

axioms. However, it is useful to ask whether the outcome weights derived from geometric volume can

match those observed in physical theories, particularly quantum theory.

In standard quantum mechanics, the probability of obtaining outcome    is given by the squared

amplitude: 

where   is the system’s state vector and   are orthonormal outcome states. No such structure appears

in this paper. Still, we can ask the following: if the geometry of an underlying deterministic system is

such that the volume ratios 

hold for all measurement contexts, then the present framework guarantees that frequencies will match

the Born rule, not by probability postulates, but because frequencies track volume, and volume ratios are

preserved under deterministic flow.

This is not a derivation, but a compatibility statement: volume-based typicality will reproduce the Born

rule if the outcome regions happen to align with amplitude-squared weights. Why such a correspondence

i
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should hold is not explained here; that question is addressed in[14].

Thus, the framework presented in this work does not derive the Born rule. It shows only that the

statistical predictions of quantum mechanics are consistent with a deterministic, geometric foundation,

provided a suitable mapping exists between amplitudes and outcome volumes.

7. Summary

This paper has presented a purely geometric foundation for outcome frequencies in deterministic

systems, based on the structure and evolution of volumes in state space.

We began by defining the state space  , its invariant measure  , and a class of volume preserving flows 

 that govern deterministic evolution. A branching event was defined as a partition of an initial region 

 into disjoint outcome regions  , each corresponding to a macroscopically distinguishable and

coarse-grained observable state.

We then introduced the notion of outcome weights  , which quantify the relative

volume of each outcome region. Because the flow preserves volume and maps each microstate in   into

exactly one  , these weights remain constant over time and are independent of any stochastic

interpretation.

The central result, the typicality theorem, showed that these weights determine the long-run frequencies

of outcomes across repeated evolutions of microstates. This occurs not by assumption, but because larger

regions in state space necessarily contain more microstates and are therefore encountered more often in

deterministic sampling. The law of large numbers applies to the measure  , not to any concept of chance.

This leads to a formulation of volume-based probability, in which observed frequencies arise from

deterministic geometry. No randomness, collapse, or interpretation of quantum mechanics is invoked.

The framework explains how stable statistical patterns emerge from structure alone: from volume, flow,

and macroscopic branching.

This framework is currently limited to systems with finite-dimensional state spaces. Extending the

volume-typicality result to infinite-dimensional systems, such as quantum fields or gravitational degrees

of freedom, remains an open challenge. Approaches based on effective coarse-graining or truncation

may offer one route forward, but no such generalisation is attempted here.

This account remains minimal and geometric by design. It does not attempt to explain why specific

outcomes occur, nor does it rely on physical interpretations of measurement. It provides only what is

S μ

φt

⊂ SΩ0 { }Ωi

:= μ( )/μ( )wi Ωi Ω0

Ω0
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required to understand the origin of relative frequencies from deterministic evolution in measurable

state spaces.

This paper is self-contained. While related investigations (e.g., symmetry-based derivations of region volume or

quantum structure) are developed separately, no results from those works are assumed or required here.

Footnotes

1 In quantum systems, branching is typically gradual and mediated by decoherence. The idealisation of

perfectly disjoint regions used here assumes that such decoherence is sufficiently complete to render

outcomes macroscopically distinguishable. This abstraction captures the effective behavior of realistic

systems without explicitly modelling environmental interactions.
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