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Clouds play a key role in Earth’s radiation balance with complex effects that introduce large

uncertainties into climate models. Real-time 3D cloud data is essential for improving climate

predictions. This study leverages geostationary imagery from MSG/SEVIRI and radar reflectivity

measurements of cloud profiles from CloudSat/CPR to reconstruct 3D cloud structures. We first

apply self-supervised learning (SSL) methods—Masked Autoencoders (MAE) and geospatially-

aware SatMAE-on unlabelled MSG images, and then fine-tune our models on matched image-

profile pairs. Our approach outperforms state-of-the-art methods like U-Nets, and our geospatial

encoding further improves prediction results, demonstrating the potential of SSL for cloud

reconstruction.

1. Introduction

Clouds play a crucial role in Earth’s radiation balance by reflecting sunlight (cooling) and absorbing

heat (warming)[1]. As climate change progresses their complex interactions increase uncertainties in

climate models. Enhanced global, real-time 3D cloud data can help reduce these uncertainties,

improving climate predictions and decision-making. Satellite remote sensing has transformed

climate research by providing global data. The European Space Agency’s recently launched EarthCARE

mission aims to improve our understanding of cloud dynamics through imaging, radar, and lidar
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instruments[2]. Over the last decades NASA’s CloudSat mission has provided valuable measurements

of cloud vertical profiles using radar, but is limited by infrequent revisits (every 16 days) and a narrow

swath (1.4 km). Additionally, with its sun-synchronous orbit, CloudSat passes over the equator at the

same local time, limiting observations to "snapshots" of the atmosphere at specific times of day. In

contrast, imaging instruments take measurements across wider fields-of-view and with higher

temporal resolution, but they only offer a ’top-down’ perspective and do not directly measure

atmospheric profiles. However, combining images in different spectral channels with overlapping

measurements of atmospheric profiles allows extrapolation of vertical profiles beyond the radar track.

Barker et al.[3][4] developed an algorithm to extend EarthCARE profiles to 3D through intensity pixel-

matching. Recent work[5][6][7] has used ML-based methods (e.g. U-Nets, CGANs, Linear Regression,

Random Forests, XGBoost) to estimate vertical cloud information from ’top-down’ measurements.

Notably Brüning et al.[5]  trained a Res-UNet to fuse satellite images from the Meteosat Second

Generation (MSG) Spinning Enhanced Visible and InfraRed Imager (SEVIRI) with CloudSat cloud

profiling radar (CPR) reflectivity profiles, reconstructing 3D cloud structures. For all approaches,

model training required precise spatial and temporal alignment between the data sources. Due to the

limited overpasses of the radar satellites (Figure 1b), profile measurements are much sparser than

available imagery (for comparison, MSG/SEVIRI generates 40 TB of image data per year, while CPR

produces 150 GB annually). Recent advances in self-supervised learning (SSL) have shown promise in

pre-training models on large, unlabeled datasets, yet their application to cloud studies remains

under-explored. In this work, we apply SSL methods—Masked Autoencoders (MAE,[8]) and

geospatially-aware Masked Autoencoders (based on SatMAE,[9])—to multispectral MSG/SEVIRI data

from 2010. We then fine-tune the pre-trained models for the task of 3D cloud reconstruction using

matched image-profile pairs. Our results show that pre-training consistently improves performance

for this task, especially in complex regions like the tropical convection belt. Pre-trained models with

geospatial awareness (i.e., time and coordinate encoding) especially outperform randomly initialized

networks and simpler U-Net architectures, leading to improved reconstruction results. The code will

be made available upon acceptance.
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Figure 1. (a) Proposed pipeline: We use MAE to pre-train encoders on unlabelled MSG/SEVIRI images by

reconstructing missing information, then fine-tune these encoders with a smaller dataset of image-

profile pairs to derive 3D cloud structures. (b) The ground track of 1 day of CloudSat orbits.

2. Data & Method

Input Imagery. We use radiance data from MSG/SEVIRI in 11 spectral channels as model input. MSG

takes measurements from a geostationary orbit, centered at 0° longitude and latitude, and covers a

±80° field-of-view, which we limit to ±45° to avoid data quality issues. New images are captured every

15 mins, offering continuous monitoring at a spatial resolution of 3 km at the sub-satellite point. From

the 40 TB of annually available data, our pre-training dataset comprises hourly cadence data split

monthly into days 1-10 (training), days 21-22 (validation), and days 25-27 (testing). We split each

full-disk image into non-overlapping patches of 256 x 256 pixels, resulting in 1.2 million (8.6 TB)

patches. To increase training speed and reduce computational load, we randomly sample a different

10% of our patches each epoch during pre-training. With this sub-sampling, convergence during pre-

training remains smooth and stable.

Target Profiles. We use radar reflectivity profiles measured via the CPR onboard the CloudSat satellite

as our target. We spatially and temporally align CloudSat/CPR radar reflectivity from 2010 with

MSG/SEVIRI images, and restrict our dataset to Cloudsat tracks with at least 20 % cloud cover. This

results in approximately 47 thousand image-profile pairs consisting of a 11 x 256 x 256 pixels image

and a geo-referenced CloudSat profile with 125 vertical bins, spanning roughly 30 km into the

atmosphere. We crop 25 (10) height levels at the bottom (top) of each profile to remove measurement

artifacts and reduce clear sky data[7][5]. The length of each profile varies due to the intersection
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between CloudSat’s trajectory and the SEVIRI image. Similar to pre-training, we use days 1-19, 23-24,

and 28-31 for training, days 20-22 for validation, and days 25-27 for testing. Since clouds evolve over

minutes to hours, a temporal split based on multi-day groupings ensures minimal data leakage. We

randomly sample 50% of all image-profile pairs per epoch.

Models & Training. For pre-training, we use MAEs with Vision Transformer (ViT) backbones to

tokenize MSG/SEVIRI images and learn local features and their spatial relationships through

positional encodings. We chose MAEs for their potential to handle missing data, and ViTs for their

self-attention mechanisms and ability to relate local and global image features - all important for

Earth Observation satellite data. We tested two ViT variants: a base ViT-B (90M parameters) and a

small ViT-S (26M), encoding   images with   and   hidden channels, respectively.

Image tokenization was performed at 8x8 and 16x16 pixel resolutions, with 75% of tokens masked for

reconstruction using multi-layer decoders[8]. Given our geospatial data, we also adapted the SatMAE

framework[9], adding temporal encodings (date and time) and spatial coordinates (latitude,

longitude) to enhance geospatial awareness. Although we tested single-timestamp inputs, our model

can also handle time series of images. After self-supervised pre-training, we replaced the decoder

with a regression head using transposed convolutional layers, and fine-tuned the models for our 3D

cloud reconstruction task. Importantly, the final output of the decoder reconstructs 90 x 256 x 256 (H

x W x L) volumes. Although the model generates full 3D cloud maps from MSG/SEVIRI images, the loss

is only computed on the one vertical profile slice of the target CloudSat overpass, following the

approaches in[6][5]. Since this is a poorly constrained problem, we ensure that (1) the model does not

have access to the overpass mask, i.e. it does not know where it will be tested, and (2) the target

CloudSat overpass can be of variable length and through any part of the input image. This forces the

model to reasonably reconstruct 3D volumes anywhere in the output cube. An overview of our pipeline

is shown in Figure 1. We compare our SSL approach to the U-Net presented by Brüning et al.[5], which

also reconstructs a 3D volume.

3. Results

Pre-training. We experimented with different sizes of ViT backbones, ViT-base (90M) and ViT-small

(26M), and tokenization schemes. As shown in Figure 2, smaller ViT tokens yield lower losses and

finer-grained detail in the image reconstruction. Since the small and base MAE models exhibit

comparable performance, we chose the smaller ViT for its reduced computational demands.

11 × 256 × 256 768 384

qeios.com doi.org/10.32388/57QYAW 4

https://www.qeios.com/
https://doi.org/10.32388/57QYAW


Figure 2. (a) Validation Loss for the different size MAEs. (b) Visualization of the masked, reconstructed

and original images for MAEs based on 8- or 16-pixel tokenization.

Fine-tuning. To evaluate the benefit of self-supervised pre-training, we compare models that were

trained from scratch, or fine-tuned with frozen or unfrozen backbones. As shown in Figure 5 in the

Appendix, pre-training brings substantial benefit, especially when the backbone is unfrozen. The

unfrozen MAE outperformed all models in validation loss, achieved better PSNR and demonstrated

faster, smoother convergence than the U-Net.

Geospatial Awareness. Having demonstrated the benefit of self-supervised pre-training with ViT

backbones that encode small-scale cloud features, we now compare the standard MAE to our space-

and time-aware SatMAE model. Looking at the perceptual quality of the predicted cloud profiles

(Figure 3), the MAE and SatMAE models lead to visually sharper reconstructions than the U-Net. For

information, an example rendering of a predicted 3D cloud volume is shown in Figure 7 in the

Appendix, which shows good qualitative agreement with where clouds appear to be in the input

MSG/SEVIRI image. Table 1 shows that SatMAE achieves lower root-mean-square errors (RMSE)

across the test set compared to both the U-Net and the MAE. SSIM and PSNR are similar across

models, with a small improvement for SatMAE. The values presented in Table 1 show the mean and

standard deviation of the metrics across the test set, and do not represent actual model uncertainties.

To gain more in-depth understanding on the performance of the models, we separated the

contributions to the RMSE by cloud type (Table 4 and Figure 8 in the Appendix). The largest errors are

observed for Nimbostratus clouds and deep convection, i.e. rain and storm clouds with high radar

reflectivities. For all cloud types except Nimbostratus, SatMAE achieves lower errors compared to both

the baseline and the standard MAE. Figure 4 clearly demonstrates that the time and coordinate
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encodings positively impact performance, especially in the tropical convection belt, where cloud

formations are larger and denser. Furthermore, Figure 6 in the Appendix shows that the coordinate

encoding provides the most significant contribution to the model performance. The improvement of

the MAE model over the U-net, and that of the SatMAE over the MAE model are both calculated to have

p-value of <0.001 showing the statistical significance of the improvement, when we take region into

account, is very strong (see appendix Afor details on hypothesis test).

  U-Net MAE ViT-small 8 SatMAE ViT-small 8

reflectivity

RMSE (dBZ)  3.73  1.97 3.22  1.68 3.18   1.67

% Error  1.28  2.51 0.72  1.00 0.72   1.01

Peak signal-noise ratio (PSNR)  24.39  4.15 25.78  4.47 25.92  4.48

Structural similarity index measure (SSIM)  0.82  0.09 0.84  0.09 0.84   0.09

segmentation

f1-score  0.845  0.083 0.874  0.092 0.880  0.087

f1-score weighted  0.290  0.098 0.382  0.135 0.381  0.142

Table 1. Comparison of metrics. The values show the mean and standard deviation across the test set.

↓ ± ± ±

↓ ± ± ±

↑ ± ± ±

↑ ± ± ±

↑ ± ± ±

↑ ± ± ±
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Figure 3. Comparison of example MSG/SEVIRI input channels ( ) with CloudSat overpasses (red

lines), and corresponding (normalized) radar reflectivity profiles. All models were trained for 50 epochs,

which resulted in the highest perceptual quality.

7.35μm
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Figure 4. Monthly and yearly root-mean-square errors (RMSE) across MSG’s field-of-view (one value per

image-profile pair), comparing our U-Net, MAE, and SatMAE models. SatMAE with time and coords

consistently improves overall prediction performance, especially in the tropical convection belt. Note that

we show the prediction errors across our entire dataset (i.e. including training, validation, and test

examples).

While U-Nets are effective in capturing local spatial relationships through their convolutional

structure, they struggle with capturing global context. This limitation becomes apparent in the case of

large-scale cloud formations, where long-range dependencies play a critical role. Transformers

address this challenge by leveraging self-attention mechanisms, which enable them to model

relationships across the entire input space. Moreover the use of custom encoding from coordinates

and datetime, enables the model to distinguish between different geographic regions and temporal

patterns, providing richer contextual information. The combination of this custom encoding with the

smaller token sizes (8x8) allows SatMAE to achieve a more comprehensive understanding of global

cloud structures and also to capture finer-grained details and local variations.

4. Conclusions

In this work, we used SSL via MAEs to pre-train models using unlabelled MSG/SEVIRI images, and

then fine-tuned the models for 3D cloud reconstruction, using aligned pairs of MSG/SEVIRI and
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CloudSat/CPR radar reflectivity profiles. In addition to the standard MAE implementation, we adapted

a SatMAE model to encode the date, time, and location of the input data. Compared to the U-Net, the

current state-of-the-art on the task, our models showed improved performance across RMSE, PSNR,

and perceptual quality. While the improvements are moderate on average, visualization of prediction

highlights that the SatMAE model achieves the lowest errors in the tropical convection belt,

demonstrating its superior generalization. This suggests that this learning set up has potential for

larger gains for harder learning tasks such as 3D-cloud-type segmentation, helping further our goal

of characterizing 3D cloud properties and contributing to the narrowing of climate model

uncertainties. While our current work only explores reconstruction of CloudSat tracks for one year,

future work will apply this method to longer time periods and ESA’s EarthCARE data once available.

This could enable the creation of long-term 3D cloud products, crucial for advancing our

understanding of complex climate feedback mechanisms.

Appendix A.

Further Training Details. We conducted our experiments on 1-2 NVIDIA V100 GPUs (16GB) via Google

Cloud, with batch size 8 during pre-training and batch size 4 during fine-tuning. We used the Adam

optimizer[10]  with an initial learning rate of 0.00015, using backpropagation[11]. Training was

optimized via the Mean Squared Error (MSE) loss, while additional metrics like the Peak Signal-to-

Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM)[12]  were monitored.

Checkpointing was used to save models with the lowest validation loss. Both pre-training and fine-

tuning ran for up to 50 epochs. Regarding training times, the pretraining duration ranged from 2 to 6

days and was largely dependent on the patch size and the scale of the ViT backbone (ViT-small and

ViT-base, see Table 2). Smaller patch sizes led to longer training times due to the increased number of

tokens, while larger ViT architectures extended the duration due to the higher number of trainable

parameters. For fine-tuning, training times ranged from 8 to 24 hours for the U-Net and

MAE/SatMAE models with patch sizes of 16 and 8. With even smaller ViT patch size of 4, the training

duration increased significantly, reaching up to 5 days.
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Model Time encoding Spatial encoding Token Size ViT size # Tokens # Params Training time

MAE False False 8 small 1024 26.6 M 22h 36 mins

MAE False False 8 big 1024 91.6 M 1d 8h 38 mins

MAE False False 16 small 256 27.8 M 17h 57 mins

MAE False False 16 big 256 93.3 M 9h 22mins

SatMAE False False 8 small 1024 27.4 M 22h 55 mins

SatMAE False True 8 small 1024 27.1 M 22h 38 mins

SatMAE True False 8 small 1024 27.1 M 22h 30 mins

SatMAE True True 8 small 1024 26.9 M 23h 52 mins

SatMAE False False 16 small 256 28.2 M 16h 57 mins

SatMAE False True 16 small 256 28.1 M 17h 47 mins

SatMAE True False 16 small 256 28.1 M 16h 38 mins

SatMAE True True 16 small 256 28.1 M 15h 25 mins

SatMAE True True 16 big 256 93.8 M 11h 30 mins

SatMAE True False 16 big 256 93.6 M 11h 40 mins

SatMAE False True 16 big 256 93.6 M 11h 19 mins

SatMAE False False 16 big 256 93.7 M 11h 2 mins

Table 2. Training details for pre-training of our Masked Autoencoder (MAE) and SatMAE models.
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Model
Time

encoding

Spatial

encoding

Token

Size

ViT

size

#

Tokens

Trainable

params
Backbone

Training

time

U-Net False False N/A N/A N/A 1.9 M N/A 8h 50mins

MAE False False 8 small 1024 22.7M
from

scratch
22h 44mins

MAE False False 8 small 1024 345k frozen 16h 54mins

MAE False False 8 small 1024 22.7M fine-tuned 19h 45mins

SATMAE False False 8 small 1024 22.3M fine-tuned 19h 43mins

SATMAE True False 8 small 1024 22.3M fine-tuned 19h 29mins

SATMAE False True 8 small 1024 22.3M fine-tuned 19h 8mins

SATMAE True True 8 small 1024 22.3M fine-tuned 19h 35mins

Table 3. Training details for fine-tuning of our U-Net, MAE and SatMAE models.

Hypothesis test. To show that the MAE-ViT-small 8 has superior performance to the U-net and the

SatMAE-ViT- small 8 has superior performance to the MAE-ViT-small 8, for a random location we

performed hypotheses tests with p-values which we report in section 3. The null hypothesis for this

test is that while a given model may have a higher probability to obtain a higher RMSE for a given

location, over the entire region under study, the expected probability for any given location is 0.5,

meaning on average, the models have equal performance. Under this null hypothesis the number of

times model 1 is superior out of the 5,112 trials (the number observations in our test set) would be

distributed as binomial random variable with parameters    and    assuming the

outcome for each location was random, in which case we could construct a simple hypothesis test with

a theoretical p-value. However, it is reasonable to assume that  , that describes which

model is superior at location   is correlated with   that describes which model is superior at

location   especially if   and   are close together. In order to avoid making specific assumption about

the form of the spatial correlation we construct an empirical null distribution by taking the following

steps:

n = 46, 752 p = 0.5

∈ {1, 2}Xi

i ∈ {1, 2}Xj

j i j
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1. construct  ,    that determines which model is superior at location    in

the following way   where:

 is the indicator function

 is the test rmse observed at location   for model   and,

 is the test observed sample median of   accross locations.

This ensures that the null distribution respects the null hypothesis assumption that for a random

location the probability that any model is superior is 0.5, while also preserving the spatial

correlation structure.

2. We ideally would like to have many independent samples of    and then calculate,  , the

proportion of times each model is superior at a location  . Since we only have one observation of

each   we obtain a boostrap sample by using   and   for   where   is the

set of 1000 nearest neighbor locations to location  . Higher spatial correlation makes it more

likely that, even though the probability that any given model is superior is 0.5, in an observed

sample we observe a proportion far from the expected 0.5 (it increases the variance). The

assumption is that the magnitude of the correlation at the smaller scales (1000 locations) is

larger than the at larger scales (the scale of figure 4). If this holds our null distribution will be

conservative meaning it has more variance than the actual null distribution, yielding valid p-

values.

We then calculate the probability of obtaining the observed values for the proportion of times the

MAE-ViT-small 8 has superior performance to the U-net ( ) or a greater one, under the null

distribution. Similarly, we calculate the probability of obtaining the observed values for the proportion

of times the SatMAE-ViT- small 8 has superior performance to the MAE-ViT-small 8 ( ) or

greater, under the null. The probability of such extreme proportions of cases under the null

distribution is less than 0.001 meaning both hypothesis tests are assigned a p-value of <0.001, and the

null hypothesis can be rejected in both cases.

∈ {0, 1}Yi i = 1, . . . , 5, 112 i

=Yi 1{ <m}Wi

1x

= −Wi Z 1
i Z 2

i

Z k
i i k

m W

Yi Pi

i

Yi Yi Yj j ∈ N (i)N1000 N (i)N1000

i

0.85

0.73
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Figure 5. Mean squared error (MSE) loss, peak signal-to-noise ratio (PSNR), and structural similarity

index measure (SSIM) as a function of training steps for our U-Net baseline and MAE models. The MAE

was either trained from scratch, or fine-tuned using the pre-trained encoder. For the latter, we either

froze or further fine-tuned the encoder weights.

Figure 6. Root-mean-square errors (RMSE) across MSG’s field-of-view (one value per image-profile

pair), comparing different implementations of our SatMAE model. Adding coordinate encoding provides a

strong improvement in prediction performance. SatMAE with time and coords achieves the best

performance overall, particularly in challenging areas such as the tropical convection belt. Note that we

show the prediction errors across our entire dataset (i.e. including training, validation, and test examples).
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Figure 7. Example 3D cloud reconstPetersonruction. The left figure shows an MSG/SEVIRI input image

with the aligned CloudSat/CPR track, while the three right figures show the predicted 3D volume rendered

from different perspectives.

  U-Net MAE ViT-small 8 SatMAE ViT-small 8 (time + coords)

No Cloud 2.59   1.45 2.15   1.43 2.13   1.38

Cirrus 5.22   2.64 4.92   2.44 4.77   2.36

Altostratus 10.69   3.15 9.90   2.73 9.77   2.82

Altocumulus 8.83   4.63 8.44   4.32 8.40   4.28

Stratus 5.32   3.95 4.93   3.77 4.83   3.26

Stratocumulus 8.76   5.01 7.85   4.49 7.52   4.23

Cumulus 7.35   6.04 7.05   5.88 6.99   5.73

Nimbostratus 14.19   5.80 12.31   4.86 12.53   5.17

Deep Convection 11.23   4.50 10.65   3.82 10.34   3.77

Table 4. Root-mean-square error (RMSE; in dBZ) as a function of cloud type for the different models. The

values show the mean and standard deviation of all metrics across the test set.

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±

± ± ±
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Figure 8. Root-mean-square error (RMSE; in dBZ) as a function of cloud type for the different models. The

box and whisker plots summarize all samples in the test set. Little icons highlight what the different cloud

types look like, and the percentages show the representation of each cloud type in our dataset. Even when

limiting our dataset to CloudSat tracks that contain at least 20% clouds, clear sky measurements are still

vastly over-represented. Stronger radar reflectivities (i.e. from cumulus, nimbostratus, or deep convective

clouds) lead to higher absolute errors. Furthermore, the sparse representation of nimbostratus clouds

contributes to larger errors for this cloud type.
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