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Text-to-image generation of Stable Diffusion models has achieved notable success due to its

remarkable generation ability. However, the repetitive denoising process is computationally intensive

during inference, which renders Diffusion models less suitable for real-world applications that require

low latency and scalability. Recent studies have employed post-training quantization (PTQ) and

quantization-aware training (QAT) methods to compress Diffusion models. Nevertheless, prior

research has often neglected to examine the consistency between results generated by quantized

models and those from �oating-point models. This consistency is crucial in �elds such as content

creation, design, and edge deployment, as it can signi�cantly enhance both ef�ciency and system

stability for practitioners. To ensure that quantized models generate high-quality and consistent

images, we propose an ef�cient quantization framework for Stable Diffusion models. Our approach

features a Serial-to-Parallel calibration pipeline that addresses the consistency of both the calibration

and inference processes, as well as ensuring training stability. Based on this pipeline, we further

introduce a mix-precision quantization strategy, multi-timestep activation quantization, and time

information precalculation techniques to ensure high-�delity generation in comparison to �oating-

point models.

Through extensive experiments with Stable Diffusion v1-4, v2-1, and XL 1.0, we have demonstrated

that our method outperforms the current state-of-the-art techniques when tested on prompts from

the COCO validation dataset and the Stable-Diffusion-Prompts dataset. Under W4A8 quantization

settings, our approach enhances both distribution similarity and visual similarity by 45% 60%.
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1. Introduction

Diffusion models have yielded remarkable achievements and demonstrated exceptional performance

across various generative tasks,[1][2][3][4][5][6] particularly in the realm of text-to-image generation[1][3][4].

Nonetheless, these models often entail signi�cant computational expenses, primarily due to two factors.

Firstly, within a Diffusion model, a UNet[7][8] carries out a time-consuming iterative sampling process to

progressively denoise a random latent variable. Secondly, the pursuit of superior image quality and

higher resolutions has resulted in larger model sizes, necessitating extensive time and memory

resources. These challenges render Diffusion models (e.g., Stable Diffusion[3] and Stable Diffusion XL[9])

computationally demanding and dif�cult to deploy in real-world applications requiring low latency and

scalability.

Recently, many researchers have investigated quantization strategies for compressing Diffusion

models[10][11][12][13][14][15], predominantly utilizing Post-Training Quantization (PTQ)[16][17]. PTQ does not

require retraining or �ne-tuning the network and therefore is more attractive than Quantization-Aware

Training (QAT)[18]  for large models. However, PTQ methods experience substantial performance

degradation at 4 bits and below. Furthermore, the quantization of large text-to-image models, such as

Stable Diffusion XL 1.0, can still require 1 day.

Meanwhile, another issue is that most existing research primarily concentrates on optimizing quantized

models for high-quality image generation, paying little attention to the consistency of results produced

by quantized and �oating-point models. In the context of content creation and design, ensuring

consistency in expected results is of paramount importance. It is imperative that quantized models

exhibit a high degree of similarity to the style and content of images generated by �oating-point models.

Otherwise, users will encounter signi�cant challenges in predicting and controlling the �nal results,

necessitating extensive debugging and modi�cation of cues, which will inevitably impact their

productivity and creative expression. Moreover, alterations in the style of images generated by a

quantized model will affect the performance of the downstream tasks[19][20] and the overall reliability of

the system.

To address the aforementioned issues, we propose a novel Stable Diffusion quantization framework that

is speci�cally designed to achieve high �delity and ef�ciency. We analyze the strengths and weaknesses
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of the existing pipeline for the joint optimization of the UNet. By leveraging their advantages, we propose

our Serial-to-Parallel pipeline, which ensures consistency in the generated outputs while improving

training stability. To further enhance �delity, several techniques are introduced, including the

preservation of temporal information, the utilization of multiple time-step activation quantizers, and a

Hessian-based mixed-precision strategy.

The quality of the generated results is evaluated in terms of both distributional and visual similarity. In

comparison to previous PTQ methods, our framework demonstrates superior generation consistency in

shorter training times across multiple Stable Diffusion models.

2. Related Work

2.1. Diffusion Model Acceleration

While Stable Diffusion models can generate high-quality samples, their slow generation speeds pose a

signi�cant challenge for large-scale applications. To tackle this problem, signi�cant efforts have focused

on improving the ef�ciency of the sampling process, which can be categorized into two methods.

The �rst method involves designing advanced samplers for pre-trained models, such as analytical

trajectory estimation[21][22], implicit sampler[5][23][24][25], stochastic differential equations[6][26][27]  and

ordinary differential equations[28][29][30]. Although these methods can reduce the number of sampling

iterations required, the signi�cant parameter count and computational demands of Stable Diffusion

models limit their application on edge devices.

The second method involves retraining the model, such as diffusion scheme optimization[31][32][33][34],

knowledge distillation[35][36], sample trajectory optimization[25][37], and noise scale adjustment[38][39].

Though these techniques effectively speed up the sampling process, re-training a Diffusion model is

computationally intensive, especially for resource-constrained devices.

2.2. Diffusion Model quantization

Quantization is a widely used technique that aids in reducing memory usage and speeding up

computation. It is generally categorized into two types: QAT[40][41][42][43][44]  and PTQ[16][17][45][46][47].

Ef�cientDM[15] is representative of QAT work, it proposes a data-free distillation framework and applies a

quantization-aware variant of the low-rank adapter. While QAT is time-consuming and computationally
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heavy, recent studies focus on PTQ for Diffusion models, which does not require �ne-tuning and only

necessitates a small amount of unlabeled data for calibration. PTQ4DM[12]  and Q-diffusion[11]  focus on

sampling the noise of the �oating-point model across different timesteps, Q-diffusion further propose to

split the activation of shortcut layers. PTQD[10] disentangle the quantization noise into its correlated and

residual uncorrelated parts and correct them individually. PCR[14] progressively calibrates the activation

quantizer considering the accumulated quantization error across timesteps and selectively relaxing the

bit-width for several of those timesteps. However, these PTQ methods seldom consider the consistency of

the generated output, and many of them are not designed for new, large pre-trained text-to-image

models, such as Stable Diffusion.

3. Preliminaries

3.1. Diffusion models

Diffusion models[2][5] gradually add Gaussian noise with a variance schedule    to real

image   for   times as sampling process, resulting in a sequence of noisy samples  . In

DDPMs[2], the sampling process is a Markov chain, which can be formulated as:

where  . Conversely, the denoising process removes noise from a sample from Gaussian noise 

  to gradually generate high-�delity images. However, due to the unavailability of the true

reverse conditional distribution  , Diffusion models approximate it via variational inference by

learning a Gaussian distribution  , the    can be derived by

reparameterization trick as follows:

where   and   is a trainable model to predict noise. The variance   can be either

learned[39] or �xed to a constant schedule[2] . When it uses a constant schedule,   can be expressed

as:
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where  .

The formulas outlined in our research are based on the DDPM framework but can be easily adjusted for

other accelerated sampling techniques such as DDIM[5], PNDM[29], and Euler[48].

3.2. Model Quantization

Quantization[49] is a key technique in model compression. This method compresses neural networks by

reducing the number of bits used for model weights and activations. The quantization process can be

formulated as:

where    is the scaling factor,    is the zero-point, and    and    are the minimum and maximum

quantization values, respectively. Reversely, the dequantization process is formulated as:

We utilize uniform quantization in all our study experiments.

4. Method

As illustrated in Fig. 1, we present a novel quantization framework for large pre-trained text-to-image

diffusion models, including Stable Diffusion v1-4 and Stable Diffusion XL. We begin by introducing a

Serial-to-Parallel training pipeline that not only addresses the consistency between the training and

inference processes but also guarantees stability during training. Subsequently, several techniques are

integrated into the pipeline. Multi-timestep activation quantizer is set to separately optimize the

parameters associated with each timestep. Additionally, the time feature is precalculated and the accurate

projection information is saved for training and inference. Furthermore, we implement a mixed-

precision quantization strategy that assigns higher bit-width to sensitive layers and lower bit-width to

insensitive layers.

z ∼ N (0, I)

= clip(round( )+ z, , )wq
w

s
qmin qmax (4)

s z qmin qmax

= ( − z) × sŵ wq (5)
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Figure 1. Overview of our proposed quantization framework. (a) Dataset Generation: During the inference of

the �oating-point model, latent generated from various timesteps for each prompt are randomly sampled. (b)

Time information precalculation: The feature map of time projection layers is precalculated for training and

inference. Subsequently, the time embedding and projection layers are removed from UNet. (c) Serial-to-

Parallel training pipeline: A Hessian-based sensitive ranking is assigned to each layer as well as different bit-

widths. At each iteration, latent from various timesteps along with the corresponding prompts are selected

from the dataset. The Loss function is calculated between the output and the sensitive layers.

4.1. Serial-to-Parallel Training Pipeline

Previous works on jointly optimizing quantized models and distillation-based compression can be

roughly divided into two categories: (a) ’Serial’(e.g.[15]) and (b) ’Parallel’(e.g.[50][51]), as illustrated in Fig. 2.

The serial pipeline operates in a data-free manner,, requiring only a few prompts to generate the latent of

the �oating-point model. This latent is then used as input for the quantized model, which is updated in a

chronological sequence. In contrast, the parallel pipeline is more closely aligned with the original Stable

Diffusion training process. This approach relies on an image-text pair dataset, where the image is

processed through a Variational Autoencoder (VAE) to derive the initial latent. In each iteration, multiple

timesteps are randomly sampled, and the latent is then augmented with varying levels of Gaussian noise,

as determined by the scheduler.
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Figure 2. Comparision of ’Serial’ and ’Parallel’ training pipeline.

Both frameworks have their own advantages and disadvantages. As illustrated in Fig. 3, the theoretical

latent generated by adding Gaussian noise differs markedly from the actual latent range when reasoning

with the �oating-point model.

Consequently, it is more bene�cial to use the latent from the �oating-point model as input during the

distillation process. This approach enhances the consistency of the quantized model’s outputs in

comparison to those of the �oating-point model.

Figure 3. Difference in input latent range at each timestep with the same initial latent. (a) Gradually adding

Gaussian noise based on Eq. (1). (b) Step-by-step denoising during inference of �oating- point Stable

Diffusion v1-4.

( , t) ≠ ← N ( ; , I)μfp xt xt−1 xt αt
−−√ xt−1 βt (6)
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Also, in Stable Diffusion models, where all timesteps share the same weight, it is more appropriate to

average the gradients across multiple timesteps rather than relying solely on their sequential order. As

demonstrated in Fig. 4, we have documented the changes in gradients for both serial and parallel

pipelines. It can be observed that the gradients remain relatively stable during parallel training, whereas

they exhibit periodic oscillations during serial training. Previous research[52][53]  have indicated that

Adam optimizer may sometimes sometimes underperform in the presence of periodic oscillating

gradients.

Figure 4. Box plot illustrating the gradient variations of the

’down_blocks.0.attentions.0.proj_in’ layer in the quantized Stable Diffusion v1-4 model during

training.(a) represents the serial pipeline, and (b) represents the parallel pipeline.

It can thus be concluded that the latent of the serial pipeline is more appropriate while the training

procedure of the parallel pipeline is more reasonable. Building on this analysis, we introduce our method,

termed ’Serial-to-Parallel’, which harnesses the strengths of both serial and parallel pipelines. The

advantages of different pipelines are summarized in Table 1. Initially, the inference is conducted with the

�oating-point model, whereby the latent is randomly sampled from various timesteps for each prompt.

During the training process, at each iteration, the latent is sampled from different timesteps along with

their corresponding prompts from the latent dataset. This strategy renders our framework data-free,
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relying solely on prompts, while simultaneously enhancing generation consistency and ensuring training

stability.

Pipeline Data-free Consistency Stability

Serial ✓ ✓ X

Parallel X X ✓

Ours ✓ ✓ ✓

Table 1. Comparison of our pipeline and previous pipeline.

4.2. Components For Higher Fidelity

Moreover, a variety of techniques are employed to guarantee the �delity of the generated results.

Accurate activation quantization

Previous studies on Diffusion models[12][11][54][55][56]  have shown that the activation distribution at

different timesteps varies greatly, posing a challenge for activation quantization. We adopt different

activation quantization parameter sets for different timesteps, which can be expressed as:

where    and    are the scaling factor and zero-point of activation quantization parameter for the  -th

layer at timestep  . The memory consumption of these parameters is negligible and does not in�uence

the inference speed. With regard to the inputs of different time steps within the same batch, our pipeline

is capable of ef�ciently optimizing the activation quantization parameters for these time steps

simultaneously.

Low memory time information precalculation

In a Stable Diffusion model, the time-step    is �rstly encoded by time-embedding layers, then passed

through time-projection layers in each Bottleneck block. The Time information   inserted into the UNet

is calculated as follows:

= { , , . . . , }, = { , , . . . , }sl s0
l

s1
l

sT−1
l

zl z0
l

z1
l

zT−1
l

(7)

st
l

zt
l

l

t

t

ep

= emb(t), e = pro ( )et pt,i ji et (8)

qeios.com doi.org/10.32388/5B8TBL 9

https://www.qeios.com/
https://doi.org/10.32388/5B8TBL


We observe that the quantization of both the time embedding and time embedding projection layers of

the model has a signi�cant impact on the quality of the generated images. When the inference

con�guration is determined, the output of the time embedding module    is only related to timesteps,

and    is dependent only on  . Consequently,    is �nite and invariant. Therefore, we remove time-

embedding and time-projection from the model and save the  , which is directly input into the Resnet

blocks of the model. The memory usage and computational cost of    are much smaller than the

parameters of the time embedding module and the time embedding projection layers.

Mixed-Precision Quantization Strategy

Recent studies[55][50] observe that compressing different blocks in Diffusion models can lead to different

image generation quality. However, quantizing a certain block, �ne-tuning, and then evaluating the

model, are computationally intensive and time-consuming. Moreover, the sensitivity of each block is

coarse-grained, which may lead to suboptimal compression. To address these issues, we propose a

mixed-precision quantization strategy to identify sensitive layers and assign different bit-width to

different layers based on their sensitivity.

Our objective is to evaluate the sensitivity   of each layer. We consider i-th layer (e.g. linear layer) of the

model with weight  , given dataset   comprising   samples.Speci�cally,

to estimate  , the deviation in the loss function caused by    from original value to zero can be

formulated as :

where   is the Hessian matrix and   denotes the loss function. However, the formula cannot be directly

computed, since the computation of   on the model is impractical. By employing the Fisher information

matrix approximation[57], the computation of loss deviation can be rewritten as:

where the redundant term can be neglected. Finally, the mix-precision quantization is then conducted

based on the sensitivity ranking. We selected the top 5% of layers with the highest sensitivity as sensitive

layers, while the bottom 5% of layers are designated as insensitive layers. For A8 quantization, sensitive

layers are set to A16, while insensitive layers are set to A4. For W4 quantization, sensitive layers are set to

W8. The detailed average bit-width will be displayed in the experiment section.
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4.3. Objective Function

We optimize quantized UNet    to mimic the output of the �oating-point UNet  . Given the latent 

 at timestep  , text embedding   from frozen text encoder, and precalculated

projection  , the output loss is de�ned as the mean squared error between the quantized and �oating-

point UNet outputs:

where   and   indicate the �oating-point UNet and the quantized UNet, respectively.

The loss function of the feature maps by the sensitive layers is added to ensure they receive more

attention:

where    and    indicate the �oating-point and quantized feature maps of the sensitive layer,

respectively.

The �nal loss function is: 

5. Experiments

5.1. Experimental Setup

Datasets. In this paper, we conduct experiments using two distinct datasets: COCO[58]  and Stable-

Diffusion-Prompts. We utilize prompts from the COCO training dataset to construct the latent dataset. In

terms of evaluation, the process is twofold. Following[14], �rstly 5,000 prompts are selected from the

COCO validation dataset, which has been extensively employed in previous studies. Secondly, an

additional 5,000 prompts from the Stable-Diffusion-Prompts dataset are used to assess the

generalization capabilities of our quantized model in different prompt scenarios.

Metrics. We evaluate the generative results of the quantized model from the perspectives of

distributional similarity and visual similarity. For distributional similarity, we refer to the FID-to-FP[14],

which is the Fréchet Inception Distance between images generated by the quantized model and �oating-

point model. For visual similarity, we consider the commonly used metrics of SSIM[59], LPIPS[60], and

PSNR[61]. Additionally, we use CLIP score[62]  to evaluate the matching degree between images and

prompts. The evaluation code is adopted from[63] and[64].

ϵq ϵfp

{ . . . }xt1 xtn { . . . }t1 tn { . . . }p1 pn

ep
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Baselines and implementation. We compare our proposed approach against advanced techniques: Q-

diffusion[11], PTQ4DM[12], and PCR[14]. Results are obtained from[14] or reproduced. We employ the Stable

Diffusion v1-4 (resolution of 512x512), Stable Diffusion v2-1 (resolution of 512x512), and the Stable

Diffusion XL 1.0 (resolution of 768x768), both sourced from Hugging Face. We compare exclusively with

PCR[14]  and align the quantization and generation settings with it. Except for special declaration, the

standard setup involves a 50-step PNDM sampling process for the Stable Diffusion model and a 50-step

Euler sampling process for the Stable Diffusion XL model, with both con�gurations using a Classi�er-

Free Guidance (CFG) scale of 7.5. All experiments are conducted using a single NVIDIA A100.

5.2. Dataset Generation Analysis

First of all, we discussed the trade-off of some crucial hyperparameters in the latent dataset generation.

More prompts or more timesteps?

In the dataset generation process, we can randomly sample varying amounts of latent for each prompt.

For comparison, two datasets have been constructed. The �rst dataset comprises 4000 prompts, with 50

latent per prompt. The second consists of 20000 prompts, each prompt with just 1 latent. As

demonstrated in Table 2, despite the �rst dataset having 10  more latent, it exhibits a similar FID-to-FP.

We can infer that a dataset with more prompts is more resistant to over�tting and has a smaller size but

with a longer generation time. Given the comparable outcomes of the two strategies, users can select

their sampling strategies based on their time requirements or storage requirements.

Methods Prompts Size Time FID-to-FP

50steps/prompt 4000 6G 1.8h 10.12

1steps/prompt 20000 0.6G 4h 10.14

Table 2. Comparison of different sampling strategies for dataset generation.

Training hyperparameters

Since we only perform limited training iterations, the amount of prompts is crucial. A smaller dataset

requires less storage but can result in over�tting. In our experiments, the training iteration is �xed to

×
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10000 and the batch size is �xed to 12 (resp. 4) for Stable Diffusion v1-4 and v2-1 (resp. Stable Diffusion

XL). Experiments are conducted on datasets of varying lengths for both sampling strategies. As

illustrated in Fig. 5, the challenge of over�tting is evident with smaller datasets. To avoid severe

over�tting, the default settings for Stable Diffusion v1-4 (resp. Stable Diffusion XL) are set at 6000

prompts (resp. 2000 prompts) with 50-step sampling and 40000 prompts (resp. 10000 prompts) with 1-

step sampling. A summary of the training ef�ciency comparison is provided in Table 3. It is evident that

our approach signi�cantly reduces training time compared to PTQ methods, especially for larger models

like Stable Diffusion XL.

Methods

Time Cost

SD1.4 SDXL

PCR 13h 25h

Ours

Gen Data (Once for all)

(a) (b) (a) (b)

3h 7.5h 2.5h 5.5h

Train 4.5h 7.5h

Table 3. Ef�ciency comparison on Stable Diffusion v1-4 and Sta- ble Diffusion XL. (a) denotes sampling 50

steps per prompt, and (b) denotes sampling 1 step per prompt

5.3. Main Results

For the following experiments, 1-step per prompt sampling strategy is selected. The quantization results

of Stable Diffusion v1-4 on the COCO and Stable-Diffusion-Prompts validation datasets are presented in

Table 4. For better comparison, we have additionally listed the results without mixed precision. On the

COCO dataset, our approach demonstrates a 40% reduction in FID-to-FP on W4A8 compared to PCR,

highlighting the effectiveness of our proposed method. Furthermore, our approach exhibits signi�cant

improvements on the Stable-Diffusion-Prompts dataset, which illustrates the generalizability of our

approach across diverse prompt styles. Notably, our method still achieves smaller FID-to-FP compared to

PCR with smaller latent dataset, as shown in Fig. 5.

≈ ≈

≈ ≈

≈ ≈
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Figure 5. Comparison of Loss and FID-to-FP Curves under Different Prompt Quantities.

qeios.com doi.org/10.32388/5B8TBL 14

https://www.qeios.com/
https://doi.org/10.32388/5B8TBL


Table 4. 512   512 generation results on COCO and Stable-Diffusion-

Prompts for Stable Diffusion v1-4 and Stable Diffusion v2-1.   means

lower is better.   means higher is better.   denotes reproduced results

on our machine. * denotes mix-precision.

A visual comparison is provided in Fig. 6. Previous methods, when quantized to 4-bit, result in noticeable

style changes in the generated images compared to those produced by the �oating-point model. Such

changes include but are not limited to, alterations in scene layout and facial features, loss of color and

object, and the blending of multiple objects. In contrast, the images generated by our method are

consistently of high �delity.

×

↓

↑ †
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Figure 6. Comparison of Loss and FID-to-FP Curves under Different Prompt Quantities.

In the case of Stable Diffusion v2-1, due to the absence of results from PCR, we utilized its settings from

Stable Diffusion v1-4 to replicate outcomes. As illustrated in Table 4, our approach exhibits a substantial

superiority over PCR.

To further validate our method, we conduct experiments using Stable Diffusion XL to generate images at

a resolution of 768x768. The results, presented in Table 5, demonstrate superior performance on both

COCO and SD prompts. Moreover, as illustrated in Fig. 7, our method consistently produces high-quality

images that closely resemble those generated by �oating-point models. In comparison with PCR[14], Our

method achieves a signi�cant reduction in FID by up to 45%.

Figure 7. Stable Diffusion XL 768x768 image generation using COCO prompts and Stable-Diffusion-Prompts.
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Table 5. 768 768 generation results on COCO and Stable-Diffusion-

Prompts validation datasets for Stable Diffusion XL.   means higher is

better. * Denotes mix-precision.   means higher is better.

In addition to the distribution similarity, the visual similarity results are summarized in Table 6. Our

method achieves signi�cantly better results in LPIPS, SSIM, and PSNR metrics, further demonstrating

that our approach can generate images that are highly consistent with those produced by the �oating-

point model.

×

↑

↑
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Table 6. Visual comparison with PCR[14] under W4A8 quantiza- tion

setting. ↓ means lower is better, ↑ means higher is better. † denotes

reproduced results on our machine.

5.4. Ablation Study

An ablation study is conducted to analyze the impact of different components. For clarity, we refer to

time-feature precalculation, multiple time-step activation, and mix-precision as ’Components’. The

serial-to-parallel pipeline modi�cation is denoted as ’pipeline’. The term ’Base’ refers to the original

serial pipeline as illustrated in Table 1.

The quantization results for Stable Diffusion v1-4, tested on COCO prompts using the W4A8 quantization

setting, are detailed in Table 7. Each of the proposed components signi�cantly enhances the �delity of

the generated images. Notably, the Serial-to-Parallel pipeline exhibits the most pronounced effect,

underscoring the essential role of multiple timesteps in achieving stable training. Our method

incorporates all these components effectively.
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Method FID sFID LPIPS SSIM

FP32 0.00 0.00 0.00 1.00

Base 12.64 69.74 0.48 0.50

+ Components 11.48 68.81 0.45 0.52

+ Pipeline(Ours) 9.99 65.47 0.32 0.58

Table 7. Ablation results on the COCO validation prompts for Stable Diffusion v1-4 under W4A8 settings.

6. Conclusion

This research explores the application of quantization to Stable Diffusion models. In this paper, we

propose an ef�cient quantization framework for Stable Diffusion models aiming for high generation

consistency. We introduce a Serial-to-Parallel pipeline which not only considers the consistency of the

training process and the inference process but also ensures the training stability. With the aid of multi-

timestep activation quantization, time information precalculation, and mix-precision quantization

strategy, high-�delity generation is guaranteed. Extensive experiments demonstrate that our method

generates high-�delity �gures within a shorter time and outperforms state-of-the-art techniques.

Supplementary Material

7. Moule Sensitivity Details

We demonstrate the module sensitivity for Stable-diffusion-v1.4 and Stable-diffusion-XL-v1.0. The

results are shown in Fig. 8 and Fig. 9.

↓ ↓ ↓ ↑
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Figure 8. Layer sensitivity for Stable diffusion v1.4

Figure 9. Layer sensitivity for Stable diffusion XL

Moreover, we also list the 5% most sensitive layers and 5% insensitive layers in both models. As

mentioned in the paper, For A8 quantization, sensitive layers are set to A16, while insensitive layers are

set to A4. For W4 quantization, sensitive layers are set to W8.

7.1. Stable Diffusion v1-4

Sensitive layers

up_blocks.3.attentions.2.proj_in
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up_blocks.3.attentions.1.proj_in

up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_out.0

up_blocks.3.resnets.2.conv_shortcut

up_blocks.3.attentions.2.proj_out

up_blocks.3.attentions.0.proj_in

up_blocks.3.attentions.1.proj_out

up_blocks.3.resnets.1.conv_shortcut

up_blocks.3.attentions.1.transformer_blocks.0.attn1.to_v

up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_out.0

down_blocks.0.attentions.0.proj_in

up_blocks.3.attentions.0.transformer_blocks.0.attn1.to_out.0

up_blocks.3.attentions.2.transformer_blocks.0.attn1.to_v

Insensitive layers

down_blocks.3.resnets.0.conv2

mid_block.resnets.1.conv2

mid_block.resnets.0.conv2

mid_block.resnets.1.conv1

down_blocks.3.resnets.1.conv2

down_blocks.3.resnets.0.conv1

mid_block.attentions.0.transformer_blocks.0.attn2.to_k

mid_block.resnets.0.conv1

down_blocks.3.resnets.1.conv1

up_blocks.0.resnets.0.conv1

mid_block.attentions.0.transformer_blocks.0.attn2.to_q

mid_block.attentions.0.transformer_blocks.0.attn1.to_q

mid_block.attentions.0.transformer_blocks.0.attn1.to_k
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7.2. Stable Diffusion XL

Sensitive layers

up_blocks.2.resnets.1.conv_shortcut

up_blocks.1.attentions.1.proj_in

up_blocks.1.attentions.0.proj_in

up_blocks.2.resnets.2.conv_shortcut

up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_out.0

up_blocks.1.attentions.2.proj_in

up_blocks.1.attentions.0.transformer_blocks.1.attn1.to_out.0

up_blocks.1.attentions.0.transformer_blocks.1.attn1.to_v

up_blocks.1.attentions.0.transformer_blocks.0.attn1.to_v

up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_out.0

up_blocks.2.resnets.0.conv_shortcut

up_blocks.1.resnets.1.conv_shortcut

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_v

up_blocks.1.attentions.1.transformer_blocks.0.attn1.to_v

down_blocks.1.resnets.0.conv_shortcut

up_blocks.1.resnets.2.conv_shortcut

up_blocks.1.attentions.0.proj_out

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_out.0

up_blocks.1.attentions.2.transformer_blocks.1.attn1.to_v

up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_out.0

up_blocks.1.attentions.1.proj_out

up_blocks.1.attentions.1.transformer_blocks.0.ff.net.2

up_blocks.1.attentions.2.transformer_blocks.1.attn1.to_out.0

up_blocks.2.resnets.1.conv2

up_blocks.1.attentions.2.proj_out

up_blocks.2.resnets.0.conv2

up_blocks.1.attentions.2.transformer_blocks.0.attn1.to_v

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_q
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down_blocks.0.resnets.0.conv2

up_blocks.1.attentions.0.transformer_blocks.0.ff.net.2

up_blocks.1.attentions.1.transformer_blocks.1.attn1.to_k

up_blocks.1.resnets.0.conv_shortcut

up_blocks.2.resnets.1.conv1

down_blocks.1.attentions.0.proj_in

up_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj

up_blocks.1.attentions.1.transformer_blocks.1.ff.net.0.proj

up_blocks.1.attentions.1.transformer_blocks.1.ff.net.2

up_blocks.2.resnets.2.conv2

down_blocks.0.resnets.1.conv2

Insensitive layers

up_blocks.0.attentions.0.transformer_blocks.7.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_q

mid_block.attentions.0.transformer_blocks.4.attn2.to_k

mid_block.attentions.0.transformer_blocks.4.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_q

mid_block.attentions.0.transformer_blocks.5.attn2.to_k

down_blocks.2.attentions.1.transformer_blocks.9.attn2.to_k

mid_block.attentions.0.transformer_blocks.5.attn2.to_q

down_blocks.2.attentions.1.transformer_blocks.9.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_k

up_blocks.0.attentions.0.transformer_blocks.7.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.9.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.9.attn2.to_k

up_blocks.0.attentions.0.transformer_blocks.8.attn2.to_q

up_blocks.0.attentions.1.transformer_blocks.9.attn2.to_q

up_blocks.0.attentions.0.transformer_blocks.8.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.7.attn2.to_q
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down_blocks.2.attentions.0.transformer_blocks.7.attn2.to_k

up_blocks.0.attentions.1.transformer_blocks.9.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.8.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_q

mid_block.attentions.0.transformer_blocks.6.attn2.to_q

mid_block.attentions.0.transformer_blocks.6.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_k

up_blocks.0.attentions.1.transformer_blocks.8.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.8.attn2.to_q

down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_k

up_blocks.0.attentions.1.transformer_blocks.8.attn2.to_k

mid_block.attentions.0.transformer_blocks.7.attn2.to_q

mid_block.attentions.0.transformer_blocks.7.attn2.to_k

down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_q

up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_k

up_blocks.0.attentions.0.transformer_blocks.9.attn2.to_q

up_blocks.0.attentions.0.transformer_blocks.9.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_k

up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_q

8. Pipeline Details

The latent dataset creation process is described by Algorithm 1.
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9. Comparison On Other FID Metrics

We supplement the spatial Fréchet Inception Distance (sFID) results which better capture the spatial

relationships. Moreover, we provide the FID-to-FP scores based on the CLIP feature extractor (using

clip_vit_b_32 model). Results are shown in Table 8.

Methods FID-to-FP sFID-to-FP FID-to-FP(clip)

PCR 16.3 /14.2 72.7 2.57

Ours 10.0 65.4 0.85

Table 8. Comparison on 50 steps PNDM, W4A8, SD v1-4, coco prompt.   denotes reproduced results on our

machine.

↓ ↓ ↓

† † †

†
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10. Experiments With Fewer Sampling Steps

We validate our approach with fewer sampling steps. For Stable Diffusion v1-4, we consider PNDM

scheduler with 25 steps and UNIPCM schduler with 10 steps. While for Stable Diffusion XL v1.0, we

employ Euler scheduler with 30 steps. Results summarized in Table 9, Table 10, and Table 11 demonstrate

that our method still generates high-consistency images under fewer steps.

Method FID-to-FP LPIPS SSIM PSNR

PCR 20.45 0.53 0.45 13.7

Ours 14.45 0.39 0.54 15.3

Table 9. Comparison on 25 steps PNDM, W4A8, SD v1-4, coco prompt.   denotes reproduced results on our

machine.

Method FID-to-FP FID-to-FP(clip) CLIP scpre

PCR 8.98 3.30 26.41

Ours 8.22 0.62 26.44

Table 10. Comparison on 10 steps UNIPCM, W4A8, SD v1-4, coco prompt.

Method FID-to-FP LPIPS SSIM  CLIPscore

Ours 7.33 0.27 0.73 +0.01

Table 11. Results on 30 steps Euler, W4A8, SD XL, coco prompt.

↓ ↓ ↑ ↑

† † † †

†

↓ ↓ ↑

↓ ↓ ↑ Δ ↑
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11. More Visualized Results

We provide more visualized results in Fig. 10 and Fig. 11.

Figure 10. Stable Diffusion v1-4 512x512 generation using DDIM scheduler, 50 steps.

Figure 11. Comparison between the �oating-point model and quantized models, using PNDM schduler, 25

steps.

Notes

Shuaiting Li and Juncan Deng: Work done during an internship at vivo Mobile Communication.
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