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Abstract 
 
It is shown that the superposi/on and entanglement of polarized photons can be explained 
by a local realis/c model without introducing a hidden parameter. The basis of the modeling 
is that only rela/ons between states of photon beams are predefined and not the states 
themselves. The actual state before a measurement has to be selected by a polarizer. 
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Introduc9on 
 
This paper is a further step towards clarifying the ques/on of whether quantum correla/ons 
in entangled photons can be explained locally or not. Quantum mechanics does not provide 
any informa/on on this.  
 
Various approaches, including Bell’s, assume that for a realis/c explana/on a hidden 
parameter must be introduced, which is given to both partner par/cles at the source of an 
entangled photon pair [1]. This was also done in [2]. This allowed a model to be developed 
that correctly explains the quantum correla/ons. This is sufficient to disprove Bell’s theorem, 
which states that a realis/c local model for the predic/on of quantum correla/ons is not 
possible. 
 
However, a closer look reveals that phenomena such as entanglement swapping and 
teleporta/on cannot be explained with a common parameter. This was taken into account in 
[3]. A model was presented in which the hidden parameter does not necessarily have to have 
the same value for both sides of an entangled pair, i.e., both sides are independent of each 
other. The model also correctly explains the quantum correla/ons. In [3] it is also explained 
that the deriva/on of Bell’s inequality [1], [4] does not take into account that the entangled 
states are not separable. Therefore, Bell’s inequality cannot reproduce the predic/ons of 
quantum correla/ons. 
 
In both models, [2] and [3], it is assumed that the entangled state on each side consists of a 
mixture of indis/nguishable beams of horizontally and ver/cally polarized photons. If a 
par/al beam is now selected with a polarizer, its polariza/on results from the mixing ra/o of 
its horizontally and ver/cally polarized components. The reason for this is the 
indis/nguishability of the two beams. This resul/ng polariza/on corresponds to the posi/on 
of the applied polarizer even before the measurement. That is the actual reason for the 
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correla/ons of entangled photons and this assump/on was also used in this paper. Due to 
the coupling of the ini/al states on both sides, their polariza/ons are either equal or 
orthogonal depending on the Bell state. This also applies to the resul/ng polariza/ons from 
the selec/on. 
 
What is the mo/va/on for this paper? With the introduc/on of a common polariza/on of 
indis/nguishable photons in [2] and [3], the ques/on arose as to whether the inverse was 
also true. Namely, that a certain polariza/on of a photon beam can be understood as a 
mixture of indis/nguishable photon beams. Then, a further mechanism with hidden 
parameters for the descrip/on of Malu’s law is no longer necessary. This was realized in the 
present paper. The basis of the modeling is that only rela/ons between states of photon 
beams are predefined and not the states themselves. The actual state before a measurement 
has to be selected by a polarizer. This also reflects the fact that entangled states are not 
separable. 
 
Model descrip9on 
 
For a descrip/on of the measurement setup with entangled photons, see [3]. 
 
Model assump,on MA1 (describing superposiQon) 
 

A photon beam with polarizaQon a is a mixture of two indisQnguishable photon beams, 
one with polarizaQon b and the share cos2(a-b), and the other with polarizaQon b+p/2 
and the share sin2(a-b) for any a and b. A polarizer set to b/ b+p/2 selects those photon 
beams from the original beam. 

 
All pairs of beams are equivalent. MA1 reproduces Malu’s law. 
 
Complementary to MA1 we define 
 
Model assumption MA2: (describing the amount of the common polarization) 
 

Indistinguishable photon beams with fractions cos2(a-b) of polarization b and 
sin2(a-b) of polarization b+p/2 assume the common polarization a-b or b-a. 

 
The sign of the common polarization is given for Bell states by model assumption MA3. 
 
Model assumption MA3: (controlling the sign of the common polarization) 

 
Each Bell state is a mixture of indisQnguishable consQtuent photon pairs in equal shares 
whose components have the same polarizaQon 0° or 90° for F+ and F- and an offset of 
p/2 for Y+ and Y-. The consQtuent photon pairs make up the iniQal state. From the 
conservaQon of the spin angular momentum, we obtain for Y- and F+ the same sign 
of the polarizaQon of the beams, and for Y+ and F- the opposite sign in the original 
coordinate system. 
 

This is shown below. See also [3]. 
 



  

The four Bell states can be written in terms of linear polarizations and in terms of 
circular polarizations as well: 
 
F+= 1/√2 *(|HA>|HB> + |VA>|VB>) = 1/√2 *(|RA>|LB> + |LA>|RB>), (1) 

Y- = 1/√2 *(|HA>|VB> - |VA>|HB>) = i/√2 *(|RA>|LB> - |LA>|RB>), (2) 

F- = 1/√2 *(|HA>|HB> - |VA>|VB>) = 1/√2 *(|RA>|RB> + |LA>|LB>), (3) 

Y+ = 1/√2 *(|HA>|VB> + |VA>|HB>)= -i/√2 *(|RA>|RB> - |LA>|LB>). (4) 

|R> = 1/√2 *(|H> + i|V>) and |L> = 1/√2 *(|H> - i|V>) (5) 
(|R>, |L> denote right and left polarization)  
|H> = 1/√2 *(|R> + |L>) and |V> = -i/√2 *(|R> - |L>) (6) 

The lef sides of the first two equa/ons above concerning the linear polariza/on are 
rota/onal invariant as they apply to any orienta/on of the coordinate system. The right sides 
show the conserva/on of the spin angular momentum as right and lef-oriented circular 
polariza/ons cancel. Thus, rota/onal invariance and conserva/on of the spin angular 
momentum are equivalent and denote the same physical situa/on. 
 
The above wrigen is also true for equa/ons (3) and (4) if the coordinate system is changed 
so that the photons move in opposite direc/ons (|HB> -> -|HB>). 
 
Rota/onal invariance means that the signs of the polariza/ons of the photon beams at both 
sides are the same. This leads to the rela/ons for the common polariza/ons on each side for 
different Bell states. 

 
Bell state A B 

Y- a a + p/2  

F+ a a  

Y+ a -a -p/2  

F- a -a  
 

Table 1: polarization of partner photons 2 at wing B for different Bell states for a selection of photons 1 
with a polarizer set to a at wing A. 
 

From these results, entanglement swapping and teleporta/on can be derived, see [3]. 
 
The model also explains the Mach-Zehnder interferometer (MZI) with polarizing beam 
spligers (PBS) without interference, see Figure 1. In a Mach Zehnder interferometer, a 
photon beam of polariza/on a is split into a beam of horizontally polarized photons with a 
frac/on of cos2(a) and a beam of ver/cally polarized photons with a frac/on of sin2(a) [5]. 
 
Model assump,on MA4: (controlling the sign of the output of a MZI without interference) 
 



  

The vertically polarized photon carries the sign of a. When generating the common 
polarization a, the sign of a is retained. This is achieved by maintaining the sign of 
the phase difference between left and right polarized components of a linearly 
polarized photon beam. 

 
The relation between the state of linearly polarized photons and the state of circular polarized 
photons is: 

 
cos(a)*|H> + sin(a)*|V> =( exp(-i*a)*|R> + exp(i*a)*|L> )/√2 where (7) 

|H> = 1/√2 *(|R> + |L>) and (8) 

+|V> = -i/√2 *(|R> - |L>) =( exp(-i* 𝜋/2)*|R> + exp(i* 𝜋/2)*|L> )/√2 (9) 

-|V> = -i/√2 *(|L> - |R>) =( exp(-i* 𝜋/2)*|L> + exp(i* 𝜋/2)*|R> )/√2 (10) 

From equation (7) we obtain the phase difference between the left and right polarized 
components to be 2a. Thus, a and the phase difference have the same sign. This sign 
is retained by the vertically polarized photon eqs. (9) and (10). For a > 0 eq. (9) applies, 
for a < 0 eq. (10) applies. 

 
 

 
 
Figure 1: Beam paths at a Mach-Zehnder Interferometer with polarizing beam spli@ers without interference 
 
The input beam on the first PBS (PBS1) has the polariza/on direc/on a. According to MA1, 
this beam of photons with polariza/on a is a mixture of indis/nguishable beams of photons 
of horizontal polariza/on with a frac/on cos2(a) and ver/cal polariza/on with a frac/on 
sin2(a). Due to MA4, the sign of a is retained by the ver/cally polarized photons. Photons 
with horizontal polariza/on are transmiged at PBS1 while photons with ver/cal polariza/on 
are reflected by PBS1. The mirrors don’t change the polariza/on. Input of the second PBS 
(PBS2) are horizontally polarized photons with the frac/on cos2(a) and ver/cally polarized 
photons with the frac/on sin2(a). The horizontally polarized photons are transmiged, while 
the ver/cally polarized photons are reflected by PBS2. Therefore, these photons go both to 
the same output of PBS2 and are indis/nguishable. Thus, they have a uniform polariza/on 
direc/on a according to MA2 and MA4. 
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Calcula9ng probabili9es of matching events with entangled photons 
 
We set PA to a. From MA1, we obtain that the contribu/on of horizontally polarized photons 
to a photon beam with polariza/on a is cos2(a-0). The contribu/on of ver/cally polarized 
photons to a photon beam with polariza/on a is cos2(a- p/2) = sin2(a). From MA2, we obtain 
that the common polariza/on is a. All photons with the common polariza/on hit the 
polarizer set to a. 
 
For the singlet state Y-, we obtain the corresponding beam of the partner photons on side B 
from the ini/al condi/ons. The frac/on of horizontally polarized photons on side B matches 
the frac/on of ver/cally polarized photons on side A, which is sin2(a); the frac/on of ver/cally 
polarized photons on side B is cos2(a), matching the frac/on of horizontally polarized 
photons on side A. From MA2 and MA3, we obtain that the common polariza/on of the 
partner photons on side B is a+ p/2. See also Table 1. 
 
Now we set PB to b. From MA1 we obtain that the frac/on of photons with polariza/on b 
contribu/ng to the photon flux with polariza/on a+p/2 is cos2 (a+p/2-b) = sin2(a-b). This is 
the probability for matching events at polarizer PA and polarizer PB. The expecta/on value 
for a joint measurement with photon 1 detected behind detector PA at 𝛼 and partner photon 
2 detected behind detector PB at 𝛽 is as obtained from ([2], equa/on (13)) 
 
E(𝛼,𝛽) = -cos(2(a-b)) (11) 

 
This matches the predic/ons of quantum mechanics. 
 
 
Conclusion 
 
In the current paper, a model was presented that manages en/rely without the assump/on 
of hidden parameters and s/ll correctly describes the quantum correla/ons with entangled 
photons. This can also explain how the polariza/on of the input state reappears at the output 
in a Mach-Zehnder interferometer. Malus’ law also follows from this in a straighrorward 
manner. The ques/on arises as to why such a model can make exact predic/ons without 
defined parameters. 
 
The answer is that the model does not define states but only rela/ons between states. 
Measured states are then determined by the posi/on of the measuring polarizer. The model 
does not require any addi/onal hidden parameters. The selec/on on one side precisely 
determines the selec/on on the other side. The non-separability of entangled photons is 
taken into account in the model by the fact that the polariza/on of the photons is not 
independent but depends on the posi/on of a polarizer. 
 
The ques/on of whether quantum mechanics is complete cannot be answered in the 
nega/ve from the perspec/ve of the model. However, this does not mean that the arguments 
from the EPR paper are invalid [6]. The EPR paper was not based on entangled photons, for 
which a sta/s/cal interpreta/on of the states is possible. 
 



  

There are opinions that say that the wave func/on is on/c and not epistemic [7]. This means 
that the wave func/on or quantum state represents a physical fact and not just a probability 
amplitude. If there is no interference, the polariza/on derived from the presented model and 
the quantum state denote the same physical state of affairs, one in R3 local space and the 
other in Hilbert space. As the model does not cover any interference it cannot replace the 
quantum mechanical formalism. 
 
Mixtures of indis/nguishable states in local space are equivalent to superposi/on in Hilbert 
space. This is because the propor/ons of different components are the same in both 
representa/ons. In this way, Born’s rule is then also modelled without constraint. 
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