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doesn’t require a computational method. Furthermore, we introduce a new,

simple method for solving partial integro- differential equations.
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1 Introduction

In response to some of the limitations of the Black-Scholes model, Merton

(1976) introduced a seminal jump-diffusion model for the price of the Euro-

pean call option. However, his well-known and highly cited formula is not

a closed form; it is an infinite sum (approximation) that requires a com-

putational method. Furthermore, some of the parameters and probability

distribution assumptions can be eliminated.

Later models on jump diffusions such as Kou (2002), Zhang and Wang

(2013), Zhu et al (2013) and Gong and Zhuang (2016) have some limitations.

These models require computational or numerical methods. Alghalith (2020)

adopted a different process and a different approach.

In addition, previous models do not clearly capture the intuitive and

desirable features captured by the model we introduce in this paper.

In this paper, we overcome these limitations. In doing so, without a loss of

generality, we provide a far simpler, explicit formula that doesn’t require any

numerical/computational methods. Furthermore, our formula is perfectly

intuitive. Also, our formula is a small modification of the Black-Scholes

formula. Thus, it is also easily and directly comparable to the Black-Scholes
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formula.

Moreover, we introduce a new method for solving partial differential-

difference equations. In doing so, we devise a simple method to transform a

partial integro- differential equation to a partial differential equation.

2 The methods

The following is a brief description of the Merton model. The stock price is

given by

S (t) = Πn
j=1YjSe

(α−σ
2

2
−λk)t+σZ(t), (1)

where S = S (0), Z is a Gaussian variable, n is a Poisson Process, λt is

its intensity,Yj are identically and independently distributed, α is expected

return rate, and σ is the volatility.

The dynamics of the stock price are given by

dS = S [(α− λk) dt+ σdZ + (Y − 1) dn] , (2)

where Y −1 is the relative jump size (independent of dnu), and k is its mean.
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The dynamics of the option price are given by

dC (t, S) = C (t, S) ((αc − λkc) dt+ σcdZ + dqc) , (3)

where

αc =
(
Ct + (α− λk)SCS +

1

2
σ2S2CSS + λEY [C (t, Y S)− C (t, S)]

)
/C (t, S) ,

(4)

σc = σSCS/C (t, S) ,

and the subscripts of C are partial derivatives, and qc is an independent

Poisson process.

Using Merton’s assumptions such as a diversifiable jump risk and risk neu-

trality, we obtain Merton’s well-known partial differential-difference equation

Ct + (r − λk)SCS − rC +
1

2
σ2S2CSS + λEY [C (t, Y S)− C (t, S)] = 0, (5)

where r is the interest rate (a constant), and Y S is the price of the underlying

asset after the jump.

The Merton pricing formula (under the assumption of the log-normality
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of the jump size) is

C (t, S) =
∞∑
i=0

e−λ̄T

(
λ̄T
)i

i!
CBS (σi, ri, S, T ) , (6)

where CBS is the Black-Scholes price, λ̄ = (1 + k)λ, ri = r − λk + i ln(1+k)
T

,

and σ2
i = σ2 + iδ2

T
, where δ2 = V ar (lnY ) and T is the time to expiry.

2.1 The revision

The dynamics of the price of the underlying asset are given by

dS = S [rdt+ σdZ + (Y − 1) dn] , (7)

where Z ∼ N (−λkt/σ, t) . There is no loss of generality in assuming that the

mean is λkt/σ. Therefore, the Merton partial integro- differential equation

(with a slight modification) is

Ct + r (SCS − C) +
1

2
σ2S2CSS + λEY [C (t, Y S)− C (t, S)] = 0. (8)

Now, let EY [C(t,Y S)−C(t,S)]
C(t,S)

= ϕt, so thatEY [C (t, Y S)− C (t, S)] = ϕtC (t, S).
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Thus, (8) can be given by

Ct + r (SCS − C) +
1

2
σ2S2CSS + λϕtC (t, S) = 0. (9)

Therefore,

Ct + rSCS +
1

2
σ2S2CSS + (λϕt − r)C = 0, C (T, S (T )) = g (S) , (10)

where g is the payoff of the option. This is a generalized Black-Scholes partial

differential equation. Conditioning on each value of ϕ (given ϕ = ϕi ), its

solution is1

C̄ (0, S, ϕi) = eλϕiT
[
SN (d1)− e−rTKN (d2)

]
= eλϕiTCBS, (13)

where d1 =
ln( SK )+

(
r+σ2

2

)
T

σ
√
T

, d2 = d1− σ
√
T , K is the strike price, and CBS is

the Black-Scholes price.

1The generalized Black-Scholes partial differential equation is

Ct + θSPS +
1
2
σ2S2CSS − γC = 0, C (T, S (T )) = g (S) . (11)

Its solution is
e(θ−γ)TSN (d1)− e−γTKN (d2) , (12)

where d1 = 1
σ
√
T

[
ln (S/K) +

(
θ + σ2/2

)
T
]

and d2 = d1 − σ
√
T .
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Now, the option price can be expressed as a weighted average of these

prices conditional on ϕ as follows

C (0, S) =
∫
ϕi
eλϕiTCBSdF (ϕi) , (14)

where F is the cumulative density. By the continuity, the expected value is

a specific value of C̄ (ϕi) denoted by Ĉ (ϕi) = C (ϕ̂i) = eλϕ̂iTCBS, where ϕ̂i

is a value (outcome) of ϕ.

Thus, the price of the option is

C (0, S) = eλϕ̂iTCBS = eλϕ̂iT
[
SN (d1)− e−rTKN (d2)

]
, (15)

where d1 =
ln( SK )+

(
r+σ2

2

)
T

σ
√
T

and d2 = d1 − σ
√
T .

Similar to the parameters of the classical model, the parameter ϕ̂i can be

estimated using similar methods or other methods. In addition, the implied

value of ϕ̂i can be calculated and then used in the estimation of ϕ̂i. To

illustrate this, if the market price of the option Cm = 20, S = 100, K = 90,

r = .05, T = 1, σ = .25, λ = 1, then CBS = 18.14. We can calculate the

implied value of ϕ̂i using Cm = eλϕ̂iTCBS, and thus 20 = 18.14eϕ̂i . Therefore,
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ϕ̂i = .097. Furthermore, using (9) , ϕ̂i can be estimated as E


T∫
t

ϕudu

T−t

 (the

expected value of the average of ϕu).

A verification:

A simple way to verify the result is to let C∗ be the true Merton option

price, and C̄(r, s, σ, φ, T ) = eφTCBS be the generalized Black-Scholes price of

the European option. By the continuity of C̄, there is a specific value of the

parameter φ such as φ̂, such that C∗ = C̄(r, s, σ, φ̂, T ) = eφ̂TCBS = eλϕ̂iTCBS.

Practical example:

If S = 100, K = 90, r = .05, T = 1, σ = .25, λ = 1 and ϕ̂i = .01, then

the price of the European call C (0, S) = 18.14e.01 = $18.32.

3 Conclusion

In sum, this result is perfectly intuitive since if there is no jump, λ = 0 and

thus the price will be equal to the Black-Scholes price. Moreover, the option

price increases in λ. Aside from the simplicity, it is intuitively very appealing.

This method can be applied to other models in finance or mathematics in

the future. Furthermore, future research can introduce methods to estimate

the parameter ϕ̂i.
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