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In recent years, Full-Waveform Inversion (FWI) has been extensively used to derive high-resolution

subsurface velocity models from seismic data. However, due to the nonlinearity and ill-posed nature of

the problem, FWI requires a good starting model to avoid producing non-physical solutions (i.e., being

trapped in local minima). Moreover, conventional optimization methods fail to quantify the

uncertainty associated with the recovered solution, which is critical for decision-making processes.

Bayesian inference offers an alternative approach as it directly or indirectly evaluates the posterior

probability density function using Bayes’ theorem. For example, Markov Chain Monte Carlo (MCMC)

methods generate multiple sample chains to characterize the solution’s uncertainty. Despite their

ability to theoretically handle any form of distribution, MCMC methods require many sampling steps;

this limits their usage in high-dimensional problems with computationally intensive forward

modeling, as is the FWI case. Variational Inference (VI), on the other hand, provides an approximate

solution to the posterior distribution in the form of a parametric or non-parametric proposal

distribution. Among the various algorithms used in VI, Stein Variational Gradient Descent (SVGD) is

recognized for its ability to iteratively refine a set of samples (commonly defined as particles) to

approximate the target distribution through an optimization process. However, mode and variance-

collapse issues affect SVGD in high-dimensional inverse problems. This study aims to improve the

performance of SVGD within the context of FWI by utilizing, for the first time, an annealed variant of

the SVGD algorithm and combining it with a multi-scale strategy, a common practice in deterministic

FWI settings. Additionally, we demonstrate that Principal Component Analysis (PCA) can be used to

evaluate the performance of the optimization process and gain insights into the behavior of the

produced particles and their overall distribution. Clustering techniques are also employed to provide
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more rigorous and meaningful statistical analysis of the particles in the presence of multi-modal

distributions (as is usually the case in FWI). Numerical tests, performed on a portion of the acoustic

Marmousi model using both single and multi-scale frequency ranges, reveal the benefits of annealed

SVGD compared to vanilla SVGD to enhance uncertainty estimation using a limited number of particles

and thus address the challenges of dimensionality and computational constraints.

Miguel Corrales and Sean Berti equally contributed to this work.

Corresponding authors: Miguel Corrales, miguel.corrales@kaust.edu.sa; Sean Berti, sean.berti@unifi.it

1. Introduction

Full-Waveform Inversion (FWI) is a high-resolution imaging technique for estimating subsurface

parameters from recorded seismic waveform data. Unlike methods that rely solely on the kinematic

component of the recorded seismic waveforms (i.e., traveltimes), FWI exploits the entire wavefield

information to invert for detailed subsurface models[1]. However, the complex and nonlinear

relationships between model parameters and seismic data — coupled with the oscillatory nature of the

seismic waveforms, incomplete data coverage, and noise in the data — renders FWI an ill-posed inverse

problem with a non-unique solution. In other words, many sets of model parameters can fit the data

equally well within their inherent uncertainties; therefore, it is crucial to quantify the uncertainties to

assess the confidence in the inverted models[2].

FWI is typically addressed through optimization by minimizing a misfit function (e.g. L2 norm) between

the observed and predicted seismograms[3][4]. Due to the highly nonlinear nature of the problem and the

multimodal landscape of the objective function, local optimization algorithms often get trapped in local

minima. This challenge can be mitigated by enforcing specific requirements on the observed data, such

as the presence of low frequencies or long offset, and/or a good starting model. Bozdağ et al.[5] and Guo et

al.[6]  have shown that a poor starting model can easily lead the inversion into a local minimum of the

objective function, compromising the inversion outcome. Various misfit functions have been proposed to

mitigate this dependency[7][8][9][10][11]. Yet, when deterministic optimization algorithms are used

alongside these misfit functions, no information about the uncertainty of the solution is provided.

Bayesian inference represents an alternative to deterministic optimization methods as it provides a

probabilistic approach to quantify the uncertainty of the inverted models[12][11]. Bayesian methods
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embody Bayes’ theorem to update our prior knowledge about the model parameters with new

information obtained from the observed data. In this case, the posterior probability distribution (PPD), or

the number of samples taken from such a distribution, represents the solution of the inversion process,

thus Bayesian methods offer a more comprehensive solution describing all parameter values consistent

with the observed data and quantifying their relative probabilities. Markov Chain Monte Carlo (MCMC)

methods are commonly employed to characterize the PPD by constructing multiple chains of successive

samples from the target posterior distribution through structured random walks in the parameter space.

These samples form the basis for inferring valuable statistics of the PPD, and thereby enable the

estimation of uncertainties that affect the recovered solution. One such method, the random walk

Metropolis algorithm, has been applied across various geophysical problems, including electrical

resistivity inversion[13], traveltime tomography[14], and gravity inversion[12]. However, this algorithm

faces significant computational challenges, as the curse of dimensionality[15] restricts its applicability in

high-dimensional problems and computationally expensive forward modeling operators, such as those

encountered in FWI.

Over the past decade, by leveraging rapid advances in computing capabilities, researchers have revisited

sampling-based methods to solve Bayesian FWI problems, developing sophisticated algorithms that aim

to improve the efficiency for large-scale inversions. However, while more computationally feasible than

standard MCMC approaches, these methods may also risk losing information due to implicit

undersampling in high-dimensional spaces. These include Hamiltonian Monte Carlo (HMC)[16][17],

stochastic Newton MCMC[18], parallel tempering[19], and gradient-based MCMC[20][21][22][23]. Finally,

trans-dimensional MCMC represent another class of MCMC techniques in which the number of model

parameters is treated as an additional unknown[14][24][25][6]. Despite their robustness and efficiency,

when applied to problems such as FWI, MCMC methods typically require a large number of sampling

steps ( ) and a long burn-in period to achieve precise uncertainty estimations.

Variational Inference (VI) has emerged as an appealing alternative as it offers greater adaptability for

approximating the posterior distributions with significantly lower computational overhead than

MCMC[26][27][28]. In VI, a set of simple probability distributions is defined (often called the variational

family), and an optimal member of such a family is sought to approximate the true PPD. The Kullback-

Leibler (KL) divergence measures the disparity between the two distributions, which enables potentially

efficient and parallelizable optimization processes with well-understood convergence criteria. This can

be achieved by either directly estimating the free parameters of the chosen distribution that best
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approximate the true PPD[29][30]  or by deterministically modifying a set of samples from the proposal

distribution to match the PPD[31][32]. Variational approaches have been applied to various problems in

geophysics, including traveltime tomography[33][34], seismic denoising[35], seismic interpolation[36],

earthquake hypocenter inversion[37], 2D FWI[38][39], and 3D FWI[40][41].

Recently, particle-based VI methods have emerged to bridge the gap between parametric VI and MCMC

techniques. These methods utilize a specific number of samples, or particles, to represent the

approximate distribution, akin to MCMC, whilst updating these particles through an optimization

process similar to VI. This hybrid approach offers greater flexibility than parametric VI and is more

particle-efficient than MCMC, as it fully leverages particle interactions. A notable example of this

category is the Stein Variational Gradient Descent (SVGD) method[32], which has already been applied to

post-stack seismic inversion[42], petrophysical inversion[43], and FWI[41][44]. This deterministic sampling

algorithm iteratively minimizes the Kullback-Leibler (KL) divergence between the chosen approximate

distribution and the target density to ensure that the final set of particles is distributed according to the

desired posterior distribution. Despite the empirical successes of SVGD, its application to high-

dimensional problems remains challenging, as it becomes computationally demanding to sample more

particles than there are unknowns. SVGD can suffer from mode- and variance-collapse issues as the

dimensionality of the problem increases. More specifically, variance collapse refers to the scenario in

which the variance estimated by SVGD is significantly smaller than the true variance of the target

distribution[45]. This is undesirable because underestimation of the variance leads to a failure in

explaining the uncertainty of the model predictions, which is a key benefit of Bayesian inference.

This study aims to enhance the performance of SVGD within the FWI framework by replacing the

standard SVGD algorithm with an annealed variant. We conduct numerical experiments on a portion of

the Marmousi model using both single- and multi-scale frequency approaches to evaluate the

effectiveness of these methods to improve uncertainty estimation when working with a limited number

of particles. Furthermore, we propose a number of additional strategies to augment our analysis of the

particles after the SVGD process. First, Principal Component Analysis (PCA) is used to evaluate the

performance of SVGD and gain deeper insights into the behavior and distribution of the particles. In

addition to reducing the dimensionality of the solution space, PCA highlights the least confident model

combinations, enabling more precise analysis of model uncertainties compared to simply examining the

parameter variances (the diagonal of the covariance matrix). However, interpreting these results can be

more challenging. Additionally, we employ clustering techniques to identify whether particles converge
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to distinct modes, allowing for more rigorous and meaningful statistical insights by grouping particles

into geological and non-geological clusters. Overall, this research addresses the challenges of high

dimensionality and computational constraints by bridging the gap between theoretical potential and

practical applications and, thereby, faster and more informed decision-making.

2. Theoretical Framework

FWI aims to estimate subsurface model parameters, such as P-wave velocity, represented by  ,

from observed seismic data  , where    and    denote the dimensions of model and data spaces,

respectively. In order to capture the uncertainties inherent in this estimation process, any Bayesian

estimation algorithms formulates this inverse problem using Bayes’ rule:

where the probability density function (PDF) of the posterior,  , is determined by the likelihood 

, describing the conditional probability of successfully modeling the seismic data given a seismic

velocity model, and by our prior knowledge    of the model parameters, which reflects our initial

confidence in the unknown model based on any available prior information. Lastly, a normalization

constant, also known as the evidence,  , ensures that the posterior distribution properly integrates to

one over the entire parameter space.

2.1. Variational Inference

At the core of Variational Inference lies the idea of approximating this posterior distribution with a

simpler, surrogate distribution, denoted as  . This distribution should be selected from a family

(called variational family) that is easy to sample and evaluate; a common choice is therefore the Gaussian

distribution. The essence of this optimization process lies in minimizing the Kullback-Leibler (KL)

divergence[46][27], which quantifies the discrepancy between the surrogate (approximate) distribution

and the target (posterior) distribution. The KL divergence is expressed as:

By minimizing Equation 2, we are able to compute the expectation of the model parameters sampled

from the surrogate distribution. Consequently, VI achieves an approximation of the posterior distribution

through the minimization outlined below:

m ∈ R
m

d ∈ R
d m d

p(m|d) =
p(d|m)p(m)

p(d)
(1)

p(m|d)

p(d|m)

p(m)

p(d)

q(m)

KL(q(m)|p(m|d)) = [− logp(m|d) + log q(m)]Em∼q (2)
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2.2. Stein Variational Gradient Descent

Stein Variational Gradient Descent represents a distinctive approach in VI. Unlike traditional VI

techniques, SVGD is a deterministic, particle-based inference algorithm that iteratively minimizes the KL

divergence between the chosen approximate distribution and the target density. This innovative method

leverages the concept of functional gradients to effectively transport a predefined set of particles toward

the target distribution. The transport occurs within the Reproducing Kernel Hilbert Space (RKHS), guided

by the gradient of the KL divergence (for a detailed derivation of the SVGD formulation, we refer the

reader to Liu and Wang[32]).

Given a collection of particles, the optimal update direction   of Equation 3, for each particle, is given by:

If we denote the particles that we are using to represent q as  , the expectation in Equation (4) can

be approximated using the sample mean over the particles. Thus, the KL divergence can be iteratively

minimized as follows:

where l denotes the current iteration, N is the number of particles, and   is the step size. Assuming the

step size to be sufficiently small, the process asymptotically converges to the target posterior as the

number of particles tends to infinity.

Equation 4 comprises two distinct terms: the driving force and the repulsive force. The driving force aims

to direct the particles toward higher probability regions. Conversely, the repulsive force has the crucial

role of maintaining particle diversity, and actively prevents particle collapse by dispersing particles

across the parameter space. This balance enables a comprehensive exploration and characterization of

the target distribution.

Various types of kernel functions have been proposed over the last few years[32][47][38]. In our study, we

adopt the two most commonly employed kernels, namely the radial basis function (RBF) and the inverse

multi-quadratic (IMQ). The RBF kernel is defined as:

= KL(q(m)|p(m|d))q∗ argmin
q

(3)

ϕ∗

(⋅) = +ϕ∗ Em∼q [k(m, ⋅) logp(m|d)∇m

  
drivingforce

k(m, ⋅)]∇m

  
repulsiveforce

(4)
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where h is the bandwidth, a scaling factor that controls the strength of the interaction between different

particles based on their distances. As suggested by Liu and Wang[32], we set  , where   is the

median of pairwise distances between all particles. It is worth noting that this parameter is recalculated

at each iteration with limited heuristic justification, and there is some evidence that this non-linearity

can generate instability. The IMQ kernel, instead, is defined as:

where c and   are two user-defined parameters. We set c and   to 1 and  , respectively, as suggested by

Gorham and Mackey[47].

2.3. Annealed Stein Variational Gradient Descent

Despite the empirical success of SVGD, convergence guarantees are absent — except in the mean-field

limit (where the number of particles  , while the dimensionality    is kept fixed). Zhuo et al.

[45]  showed that SVGD encounters degeneracy issues under finite particle conditions, which cause the

particles to collapse into a small number of modes — the so-called mode collapse issue. On the other

hand, as dimensionality increases (such that   ), the variance estimated by SVGD may significantly

underestimates the variance of the target distribution — a phenomenon known as variance collapse; this

is an important concern in high-dimensional problems like FWI.

Ba et al.[48]  compared the SVGD update to the application of gradient descent to a Maximum Mean

Discrepancy (MMD) objective function. In a high-dimensional example, they found that SVGD and MMD

descent differ primarily in the driving force term that becomes increasingly problematic in higher

dimensions. They have empirically demonstrated that removing the bias introduced by the deterministic

update present in the driving force leads to more accurate estimation of the variance. Consequently, Ba et

al.[48]  proposed modifying the driving force term of SVGD with a damped version, resulting in the

damped SVGD approach. At a high level, this modification mirrors the approach taken by D’Angelo and

Fortuin[49]  under the name of Annealed SVGD (A-SVGD), where a heuristic temperature parameter 

  is introduced to adjust the intensity of the driving force. The updated rule is then simply

expressed as follows:

k(m, ) = exp(− )m
′ ∥m − ∥m

′ 2

2h2
(6)

h = /logNd
∼2

d
∼

k(m, ) =m
′ ( + )c2 ∥m − ∥m

′ 2

2h2

β

(7)

β β − 1
2

n → ∞ d

d > n

α(l) ∈ [0, 1]
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Varying the   parameter within the    range induces two distinct phases. A first exploratory phase,

dominated by a strong repulsive force (   close to 0) that disperses the particles from their initial

positions, facilitating broad coverage of the target distribution. This is followed by a second exploitative

phase, where the driving force dominates (  close to 1) and concentrates the particle distribution around

different modes. The selection of the temperature parameter   is crucial to maintain the convergence

properties of SVGD, in order to ensure that the final iterations operate effectively on the target density,

i.e.  . In this work we will employ and compare the performances of two different

annealing schedules proposed by D’Angelo and Fortuin[49]. The first schedule is the hyperbolic tangent,

defined as:

where   is the current iteration,   is the total number of iterations, and   is a user-defined parameter that

controls the rate of transition between the two phases. The second is the cyclic schedule, which allows a

sequence of exploratory and converging phases and can be defined as:

where   is the number of cycles, where the   value ranges from 0 to 1.

2.4. Principal Component Analysis

Principal Component Analysis is a dimensionality reduction technique, particularly effective when

dealing with high-dimensional and highly correlated data. The main objective of PCA is to find a smaller

set of features that can accurately represent the original data in a lower-dimensional space, while

preserving as much information as possible[50]. PCA operates under the assumptions of linearity

(principal components are orthogonal to each other), and can be summarized as follows.

First, let us consider a set of velocity particles    of size  , where    is the number of particles

(observations) and   is the number of dimensions (variables). PCA begins by computing the mean vector 

, which contains the mean of each column and allows us to standardize the data to have a

zero mean:

(m) = [α(l)k( , m) logp( ) + k( , m)].ϕ∗
,pql

1

N
∑
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l
j
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j
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j
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α(l) = 1liml→∞

α(l) = tanh [ ](1.3 )
l

N

p

(9)

l N p

α(l) = ( )
mod(l,N/C)

N/C

p

(10)

C α

X n × m n

m
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¯ ¯¯̄ 1

n
∑

n
i=1 Xi

Z = X − In×1 X
¯ ¯¯̄ (11)
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Next, we compute the covariance matrix   of the mean-centered data  :

We then perform eigenvalue decomposition on the covariance matrix  :

where    is the    matrix of eigenvectors (principal components) and    is the    diagonal

matrix of eigenvalues. Finally, we sort the eigenvalues in descending order and reorder the eigenvectors

accordingly to project the mean-centered data onto the new principal components:

where   is the   matrix of the transformed data.

In the present study, we apply PCA to the entire set of particles collected per iteration (after SGVD is

performed) for a number of components equal to  , where    is the number of particles. We aim to

obtain the explained variance per component, which quantifies the proportion of the total variability in

the data that each principal component captures. Given a user-defined number of components, the

explained variance for each component is determined by its respective eigenvalue:

where    represents the eigenvalue of the  -th component, and    denotes the sum of all

eigenvalues, which accounts for the total variance. Analyzing the explained variance per component

helps us understanding the behavior and distribution of the particles.

2.5. Clustering

Given the highly non-linear nature of FWI, the particles obtained at the end of the SVGD iterations may

have converged to different modes (i.e., become trapped in various local minima). Whilst the particles

that have reached the global minimum are likely to be geologically meaningful, this may not be the case

for those that reached other basins of attraction. Consequently, it is important to identify clusters of

particles within our high-dimensional model space and distinguish those that are geologically

meaningful from the other ones.

In order to do so, we have employed the Hierarchical Density-Based Spatial Clustering of Applications

with Noise (HDBSCAN) to perform such a clustering operation[51]. HDBSCAN is an advanced clustering

C Z

C = Z
1

n − 1
Z
T (12)

C

CV = VΛ (13)

V m × m Λ m × m

Y = ZV (14)

Y n × m

n − 1 n

Explained Variance of the i-th component =
λi

∑
n
j=1λj

(15)

λi i ∑
n
j=1λj
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algorithm that extends Density-Based Spatial Clustering of Applications with Noise (DBSCAN)[52]. In

short, HDBSCAN uses the Mutual Reachability Distance, a metric that combines a density-based measure

with pairwise distances to facilitate meaningful clustering. The algorithm creates a Minimum Spanning

Tree (MST) from the mutual reachability distances, assembling the basis of the hierarchical cluster tree.

Through Condensed Clustering, HDBSCAN extracts significant clusters by systematically removing edges

in the MST. Finally, Stability-based Clustering selects the most stable clusters from the hierarchical tree.

Unlike other clustering methods, HDBSCAN is well-suited for high-dimensional data and does not

require the user to specify the number of clusters in advance. This flexibility makes HDBSCAN an ideal

candidate for our analysis, as it allows for robust identification of clusters and noise.

3. Numerical examples

3.1. Synthetic data

In this section, we present a series of numerical experiments using a portion of the Marmousi

model[53]  to evaluate the capability of the previously described SVGD approaches to estimate the

uncertainty associated with FWI when working with a limited number of particles. Synthetic data are

modeled using Deepwave[54]  in a rectangular uniform grid with dimensions of    and 

 and spacing of 20m in both directions, using five shots evenly distributed along the horizontal

axis and recorded by 201 receivers placed at 1-meter intervals. The seismic source is modeled using a

Ricker wavelet with a peak frequency of 7 Hz. The registration time is set to 3s and the sample interval

used for the forward modelling is 1ms. To simulate more realistic conditions, colored noise matching the

frequency spectrum of the signal is added to the synthetic data, resulting in noisy observed data with a

Signal-to-Noise Ratio (SNR) of approximately 17 dB (see Figure 1).

= 81nz

= 216nx
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Figure 1. Portion of the Marmousi model used in our numerical experiments. The left panel illustrates the

velocity model in meters per second (m/s), with red dots indicating shot locations and white dots

representing receivers. Vertical white lines represent pseudo-well logs, and black circles indicate pixel

locations for marginal plots discussed in the results section and appendix. The right panel shows the shot

gather for the source in the middle of the model.

3.2. Selection of hyperparameters

The primary objective of this work is to investigate the uncertainty associated with the modeling

operator (the likelihood is assumed to be Gaussian) by deliberately excluding any influence of our prior

knowledge, rather than imposing a uniform bound limits on velocities. Since the uncertainty associated

with the FWI problem is expected to encapsulate both the scattering (high wavenumber) and

transmission (low wavenumber) components of the model, the choice of perturbations of the initial

particles is crucial. Drawing inspiration from Izzatullah et al.[44], we aim to explore the uncertainties of

these components by generating Gaussian Random Field (GRF) perturbations that introduce variability

in both amplitude and scale.

In terms of the hyperparameters employed in this study, we opt for the Gaussian RBF and IMQ kernels.

Bandwidth selection is performed using both the median trick and a fixed constant value. The constant

value of the bandwidth is determined after a meticulous analysis of the bandwidth evolution in the

scenario where the median trick is used. Finally, we use the Adam optimizer to update the particles at

each iteration, given their gradient in Equation 5, with a constant learning rate of 100 and a fixed number

of iterations equal to 600.

The experiments are conducted in two particle sets: one with a small number of particles (50) and the

other with a larger number (200). To mitigate the effects of mode and variance collapse, we evaluate both

the vanilla and annealed SVGD approaches. For the annealed SVGD, we consider two formulations for the
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temperature parameter, namely hyperbolic and cyclic. For the hyperbolic formulation (Eq. 9), we set 

  and maintained    for the last 20% of iterations. For the cyclic formulation (Eq. 10), we set 

 and  , ensuring that the temperature remains at   during the last two cycles.

The overall performance in terms of data misfit (L2 norm) and SNR for the various experiments with

different hyperparameters is presented in Figures A1 and A2. The subsequent results and discussion

focus on the vanilla and annealed SVGD (tanh) formulations, utilizing the RBF kernel with the median

trick and a set of 200 particles, as these configurations showed the best performance.

3.3. Single-scale experiments

In the first set of experiments, we perform FWI using a single frequency band with a peak frequency of 7

Hz. Initial particles are generated by applying GRF perturbations with different variances to a highly

smoothed version of the true Marmousi model. During the inversion process, we impose lower and

upper-velocity bounds, allowing velocity values between 1500 m/s and 4370 m/s.

Figure 2. Data misfit (left) and SNR with respect to the true model (right) for vanilla and annealed (tanh)

SVGD in the single-frequency scenario using 200 particles. The zoom window provides a clearer misfit

comparison for the final 150 iterations.

Figure 2 illustrates the performances of the different methods in terms of data misfit and SNR with

respect to the true model, computed from the mean over iterations for the various experiments. The

vanilla and annealed SVGD with hyperbolic tangent demonstrate superior performance compared to the

other methods (see Appendix A). Notably, the annealed SVGD using the cyclic formulation results in

poorer data misfit and SNR; this may be due to its design, which aims to explore the parameter space

p = 3 α = 1

p = 2 C = 8 α = 1
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better and identify widely separated high-probability regions. As a result, the mean model may be

perturbed, fitting the data less precisely compared to a more compact, but less comprehensive, posterior

distribution.

A more detailed comparison of the mean and standard deviation for the 200-particle experiments is

presented in Figures A3 and A4, respectively. Figure 3 shows the mean obtained after 600 iterations for

the vanilla and annealed versions for the 200-particle experiment, along with the mean of the initial

distribution. All predicted models are relatively similar in the shallower part ( 1 km) and reproduce most

of the main features of the true model. However, the model reconstruction is poorer in the deeper part,

likely due to a lack of illumination (especially near the edges of the model). As stated before, the results

obtained using the vanilla SVGD and the annealed SVGD with the hyperbolic tangent formulation (both

with the RBF kernel) exhibit higher SNR and are less affected by artifacts. In contrast, the models

predicted using other approaches show errors in terms of velocity magnitudes, particularly in the last

500 meters of depth.

Figure 3. Mean and standard deviation comparison of the experiments using 200 particles for vanilla SVGD

and annealed SVGD using RBF kernel and median trick after 600 iterations in the single-scale scenario. The

velocity values are expressed in m/s.

In addition, Figure 3 presents the standard deviation maps (expressed in m/s) obtained after 600

iterations using 200 particles. Both maps exhibit a similar expected pattern, with very low values in the

shallower parts where illumination is greater and the values increasing towards the deeper portions of

the model. These deeper regions, along with the lateral edges of the model, are expected to have higher

uncertainties due to limitations in acquisition geometry and the physics of wave propagation within the

<
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subsurface. Higher uncertainties are also observed in areas of high velocity and near the main velocity

contrasts.

The standard deviation associated with the initial distribution is relatively low (   150 m/s) across the

entire model. We select a narrow proposal for the initial samples to prevent SVGD from rapidly repelling

particles into undesirable modes at the early stages (particles converging to suboptimal local minima). By

maintaining an initial low standard deviation, we aim to direct the convergence toward fewer and more

geologically consistent local minima. In contrast, the values associated with the predicted models are

substantially higher, reaching over 800 m/s. Notably, the standard deviation maps associated with the

annealed version of SVGD show significantly higher values throughout the model compared to those

associated with the vanilla SVGD. This indicates that the annealed approach allows for better exploration

of the model space and reduces the variance collapse phenomenon affecting the vanilla SVGD.

Figure 4. Pseudo-well marginal distributions showing mean and three confidence intervals for the

experiment using vanilla SVGD (left) and annealed SVGD (right), using the RBF kernel with median trick and

200 particles in the single-frequency scenario.

Moreover, to better highlight the differences between the vanilla and annealed approaches, in Figures 4

(left) and 4 (right) we present three pseudo well logs corresponding to three distinct spatial locations, as

indicated by the white vertical lines in Figure 1. For each position, we illustrate the true velocity varying

<
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with depth, the velocities extracted from the mean model obtained using both approaches, and three

confidence intervals (corresponding to one, two, and three standard deviations) based on the standard

deviation maps shown in Figure A4. We observe that in both cases, the width of the confidence intervals

increases with depth, indicating larger uncertainty at greater depths, as expected. Within the first 800

meters of depth, the mean model closely resembles the true model, with standard deviation values close

to zero. The main differences between the two approaches become more evident at greater depths, where

discrepancies between the predicted and true models are more significant. Specifically, the logs

associated with the annealed SVGD show larger confidence intervals, with the values extracted from the

true model falling almost entirely within these bounds. In contrast, the vanilla SVGD approach yields

smaller confidence intervals, with the true values occasionally falling outside these bounds (e.g., the

pseudo well at the spatial position of 0.6 km and around 1.4 km of depth). This comparison indicates that,

while the annealed approach captures a broader range of uncertainty, the vanilla approach may

sometimes underestimate the true variability at greater depths. Similar results are also obtained at three

different pixel locations for vanilla (see figure 5) and annealed formulations (see figure 6).

Figure 5. Single-scale scenario:, pixels marginals for vanilla SVGD with RBF kernel and 200 particles.
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Figure 6. Single-scale scenario: pixels marginals for annealed SVGD (tanh) with RBF kernel, and 200 particles.

To further investigate the behavior and distribution of particles during the SVGD optimization process,

we performed PCA. This analysis helps us understand the explained variance of the components,

providing insights into how the particles evolve throughout the optimization. By examining the

explained variance for   components (where    is the number of particles), it is possible to identify

the dominant directions in which the particle positions vary the most. This allows us to understand the

main variances captured by components and the structural dynamics of the particle distribution.

Figure 7 (left) illustrates the PCA variances for the vanilla SVGD case with 200 particles using the RBF

kernel. We observe a relatively uniform spread of the components over the variance but erratic

convergence, with a significant portion of the components converging towards mid- and low-variance

values. In contrast, Figure 7 (right) shows the PCA for the annealed SVGD with the tanh formulation,

which demonstrates a more stable convergence pattern and a more balanced distribution of variance

between high and low variance directions. These PCA results highlight the effectiveness of the annealed

SVGD to provide a more stable and informative representation of the particle dynamics compared to the

vanilla SVGD approach.

n − 1 n
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Figure 7. Explained variance per component (using   components, where   is the particle number) for

the experiments using (left) vanilla SVGD with the RBF kernel and (right) annealed SVGD with the tanh

formulation and RBF kernel with 200 particles.

3.4. Multi-scale experiments

In this section, we present results for the multi-scale FWI experiments, focusing exclusively on the

Vanilla and Annealed variants of SVGD (see Figure 8), as these have demonstrated superior performance

in our single-frequency experiments. The multi-scale approach (introduced by Bunks et al.[55]) has

become a standard practice in FWI due to its ability to improve the inversion’s convergence and accuracy,

mitigating the cycle-skipping issue. It begins with the lowest frequencies available in the observed data

and progressively incorporates higher frequencies, thereby mitigating the non-linearity of the inversion

process by initially targeting large-scale features, which are more sensitive to low frequencies, and then

refining the model with higher frequencies to capture higher-resolution details. Specifically, the

inversion process is conducted in three stages: 200 iterations at a peak frequency of 4 Hz, 200 iterations

at 7 Hz, and 200 iterations at 10 Hz, with learning rates of 100, 10, and 10, respectively. This step-wise

frequency escalation ensures that each scale of the model is accurately resolved before moving on to the

next, providing a robust framework for the inversion process.

n − 1 n
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Figure 8. Data misfit (left) and SNR (right) across different experiments for 200 particles in the multi-scale

scenario. The close-up window provide a clearer comparison of the final 150 iterations.

As in the single-frequency experiment, the multi-scale approach using annealed SVGD demonstrates

superior performance compared to the vanilla formulation in terms of SNR with respect to the true

model (see Figure 8). It is essential to highlight that multi-scale SVGD not only achieves higher SNR

values but also yields more meaningful and representative statistics compared to the single-frequency

approach. This improvement is primarily due to the enhanced control over the particle refinement

process, which prevents some particles from diverging and causing high standard deviation values.

Consequently, the optimization process is more likely to converge toward geologically representative

models, leading to more accurate and reliable results.

qeios.com doi.org/10.32388/5L6HVE 18

https://www.qeios.com/
https://doi.org/10.32388/5L6HVE


Figure 9. Mean and standard deviation comparison of the experiments using 200 particles for vanilla SVGD

and annealed SVGD using RBF kernel and median trick after 600 iterations in the multi-scale scenario. The

velocity values are expressed in m/s.

Appendices A and B provide supplementary results for both the single-scale and multi-scale approaches,

respectively, which further strengthen the evidence supporting our findings.

3.5. Cluster Analysis and Statistical Evaluation

Our single-frequency experiments yield several key observations. A small number of principal

components explain the majority of the variance (Figure 7, left). Consequently, many components capture

small variances rather than meaningful patterns in the data. This is further supported by the presence of

abnormal individual particles (see Appendix A) and artifacts in the shallower parts of the particles, which

are evident in the respective mean and standard deviation maps (Figures A3 and A4). These observations

suggest that the particles tend to converge to different modes, some of which may not be geologically

meaningful. Although these particles fit the data term, they do not accurately represent the subsurface

structure. Therefore, it is crucial to perform clustering to identify the presence of different modes and

conduct statistical analysis within each cluster, rather than assuming all samples have converged to the

same global minima.
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Figure 10. HDBSCAN clustering for the experiment using annealed SVGD with tanh formulation and RBF

kernel with 200 particles. The left panel displays clusters obtained in high-dimensional data, plotted after

dimensionality reduction to two components. The right panel shows the distribution of each cluster after

computing the SNR.

To illustrate the importance of identifying clusters in the final particles and use such information for any

subsequent statistical analysis, we consider the experiment with annealed SVGD employing a tanh

temperature parameter and RBF kernel for a set of 200 particles. After the optimization process (600

iterations), we apply HDBSCAN to the final particles. In this case, the clustering algorithm produces three

distinct groups, labeled as -1, 0, and 1, of sizes 35, 163, and 2, respectively. For visualization purposes, we

plot the particles in the 2D space defined by the first two components of the PCA and color-code the

particles to indicate which cluster they belong to. (Figure 10 left). We then compute the SNR for each

individual particle in the different clusters and display their distribution in Figure 10 (right). Overall,

cluster 0 and cluster 1 contain particles with higher SNR values, although some of the particles in cluster

0 converge to similar SNR values. More importantly, cluster -1 is identified as the noisy cluster,

representing particles not assigned to any other cluster, to be considered as outliers and geologically

implausible. (Figure 11).
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Figure 11. Noisy particles corresponding to cluster -1 for the experiment with annealed SVGD using the tanh

formulation and RBF kernel with 200 particles.

Further analysis of the mean and standard deviation for each cluster (Figure 12) reveals that while the

mean of cluster -1 appears reasonable, the individual particles are not representative, which leads to

significant variations in the shallow parts of the model and, therefore, high uncertainty. This observation

correlates with the artifacts detected in the shallow regions of the results in subsection 3.3. In contrast,

clusters 0 and 1 display more consistent and plausible mean and standard deviation patterns, similar to

those obtained with the multi-scale approach. This underscores the importance of performing clustering

analysis of the particles produced by SVGD in order to discard non-representative particles and thereby

obtain more accurate and geologically plausible outcomes.
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Figure 12. Cluster statistics for the experiment with annealed SVGD using the tanh formulation and RBF

kernel with 200 particles.

4. Discussion

In the context of FWI, addressing uncertainty quantification presents significant computational

challenges. Given the high-dimensionality of our model space, we operate in a regime where the number

of particles is much smaller than the number of unknown parameters, and therefore, it is only possible to

provide a low-rank approximation of the posterior covariance, with the rank limited to at most 

 (particles) – 1. A key aspect of variance collapse occurs when the actual rank falls below this theoretical

limit. This limitation prevents us from fully capturing uncertainty across all directions, thus our analyses

produce only relative — but still meaningful — uncertainty estimates.

The SVGD algorithm stands out due to its flexibility, enabling optimization problems to be solved

through standard gradient descent algorithms for a certain number of particles, whilst introducing inter-

particle communication. However, it is crucial — yet laborious — to address the complexities of

hyperparameter tuning. In our study, we experimented with two variants of SVGD (vanilla and annealed),

Gaussian Random Field (GRF) perturbations to build initial particles, Gaussian kernels (RBF and IMQ),

different bandwidth selection strategies (median trick and constant value), a constant learning rate, and

varying particle counts. Moreover, our experimental evaluations were confined to single-scale and multi-

scale scenarios and only assessed the uncertainties associated with the data misfit term (modeling

operator). This methodology has the potential to produce nuanced standard deviation maps of velocities,

though the integration of more informative prior information remains a subject for future exploration.

n
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Our primary motivation was to apply annealed SVGD to mitigate mode- and variance-collapse issues that

affect the vanilla SVGD approach. In the single-scale scenario, our findings reveal that annealed SVGD

with the tanh formulation provide better model estimates (i.e., higher SNR, lower data misfit, and overall

more meaningful uncertainty estimates) than the vanilla formulation. Higher standard deviation values

are associated with high-velocity layers and areas of poor coverage due to the limited acquisition

geometry. The vanilla approach yields smaller confidence intervals, sometimes following a different

trend than the true model. Conversely, the annealed approach with the tanh formulation captures a

broader range of uncertainty and increases the standard deviation values throughout the model. The

single-scale outcomes present undesirable artifacts in the shallower parts, which should theoretically be

well-illuminated areas. Under such conditions, there is no guarantee that all particles will converge to a

unique local minimum. When projecting the particles onto a subspace spanned by   components, we

observe that the annealed version recovers higher variances per component (reducing the variance

collapse issue). Visualization of individual particles shows some particles fitting the data term but not

representing the subsurface, which confirms the hypothesis that particles converge to different modes.

In the multi-scale scenario, both convergence and exploration are significantly enhanced. The mean and

standard deviation estimates are improved and the shallower artifacts observed in the single-scale

scenario are absent. This suggests that a sequential approach from low to high frequencies may mitigate,

though not entirely eliminate, the mode-collapse issue. For what concerns the variance-collapse issue,

the annealed version with the tanh formulation yields more reasonable standard deviation maps, as

indicated by a more significant number of components explaining the majority of the data variance.

Given the non-linearity and high-dimensionality of the problem, it is challenging to ensure that all

particles belong to a single mode. Therefore, it is essential to perform clustering analysis, regardless of

the scenario. We opted for HDBSCAN due to its applicability in high dimensions. HDBSCAN enables the

easy discovery of a noise cluster composed of non-geological particles. Independent statistical analysis

per cluster in the single-scale scenario produced mean and standard deviation maps that are more

realistic and do not suffer from shallower artifacts. The primary goal of using clustering analysis on the

final set of particles as a post hoc technique is to quickly identify different modes and geologically

meaningful particles. We prioritize this approach over incorporating a prior term, which can be

mathematically challenging to formulate for filtering out geologically implausible features. A promising

future direction could involve training a generative adversarial network (GAN) or variational autoencoder

(VAE) to incorporate such a prior into the optimization process[43].

n − 1
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While annealed SVGD does not entirely solve the problem of variance collapse, it seems a promising

method for FWI, where gradient computations are usually computationally expensive. Furthermore,

when annealed SVGD is combined with a multi-scale FWI scenario, reasonable estimates could be

obtained with fewer gradient evaluations (iterations). This study highlights the potential of advanced

SVGD methods to improve the reliability of FWI.

One promising direction for future work involves applying SVGD in a reduced or projected space[56][57] to

decrease the number of unknowns in our inverse problem and assess the impact on computational

efficiency, convergence rates and quality of the inversion results. This approach would align with the

ideal conditions for SVGD, i.e., when the number of particles equals or exceeds the number of unknowns.

For example, a potential solution could be to run the SVGD FWI algorithms in a DCT compressed domain,

following the works of Aleardi[20], Berti et al.[22] and Berti et al.[58], who found that model compression

through DCT effectively reduces the dimensionality of the problem. Also, we could use variational auto-

encoders to compress both the model and data and apply SVGD in the compressed (latent) domain[59].

This exploration holds the potential to significantly advance the application of SVGD in FWI, which could

pave the way for more accurate and computationally feasible seismic imaging techniques.

5. Conclusions

This study demonstrates that annealed SVGD can significantly improve convergence and performance

compared to vanilla SVGD in FWI applications, in scenarios where the number of particles is much

smaller than the number of unknown parameters. Specifically, the annealed SVGD with the tanh

formulation enhances the accuracy of mean estimates, leading to higher SNR, lower data misfit, and

more reasonable standard deviation maps and thereby mitigating — but not eliminating — the variance-

collapse issue. Additionally, applying multi-scale FWI with SVGD yields better mean and standard

deviation estimates compared to the single-frequency scenario. Also, combining multi-scale FWI with

annealed SVGD yields superior performance. The use of Principal Component Analysis to explain

variance by component provides valuable insights into the behavior of the samples during the

optimization process. This method provides additional understanding of how different components

contribute to the overall variance to give a clearer picture of the sample distribution and convergence

patterns. Finally, given the inherent complexity and high dimensionality of the problem, it is crucial to

account for the possibility of multiple modes in the solution space. Consequently, statistical analysis

should be conducted to identify clusters of particles; HDBSCAN is recommended for its ability to handle
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high-dimensional data and identify noise clusters composed of non-geological particles. These strategies

collectively offer a more robust and insightful approach to uncertainty analysis in FWI as they enhance

the reliability of the results, provide a deeper understanding of the subsurface, and ultimately aid more

informed decision-making in industrial applications.

Appendixes

Appendix A — Supplementary Results for Single-scale Experiments

Figure A1. Data misfit for 50 particles (left) and 200 particles (right) across different experiments in the

single-frequency scenario. The zoom window provides a clearer misfit comparison of the final 150 iterations.

Figure A2. SNR for 50 particles (left) and 200 particles (right) across different experiments in the single-

frequency scenario.
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Figure A3. Comparison of the mean models from different experiments using 200 particles, highlighting

various SVGD variants and hyperparameters after 600 iterations in the single-frequency scenario. The

velocity values are expressed in m/s

Figure A4. Comparison of standard deviation from different experiments using 200 particles, highlighting

various SVGD variants and hyperparameters after 600 iterations in the single-frequency scenario. The

velocity values are expressed in m/s
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Figure A5. Evolution of the mean for the 200-particle experiment using Vanilla SVGD with RBF kernel.

Figure A6. Evolution of the standard deviation for the 200-particle experiment using Vanilla SVGD with RBF

kernel.
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Figure A7. Evolution of the mean for the 200-particle experiment using Annealed SVGD (tanh) with RBF

kernel.

Figure A8. Evolution of the standard deviation for the 200-particle experiment using Annealed SVGD (tanh)

with RBF kernel.
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Figure A9. Single-frequency scenario: visualization of 12 particles from a 200-particle experiment using

vanilla SVGD with RBF Kernel after 600 iterations.

Figure A10. Single-frequency scenario: visualization of 12 particles from a 200-particle experiment using

annealed SVGD (tanh) with RBF Kernel after 600 iterations.
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Figure A11. Single-frequency scenario: Visualization of 12 particles from a 200-particle experiment using

Annealed SVGD, (tanh) with RBF kernel and constant bandwidth ( ) after 600 iterationsh = 4000
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Figure A12. Single frequency scenario: pseudo-wells marginals from a 200-

particle experiment using vanilla SVGD with RBF kernel and constant bandwidth

( ) 200 particles.h = 4000
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Figure A13. Single frequency scenario: pseudo-wells marginals from a 200-

particle experiment using annealed SVGD (tanh) with RBF kernel and constant

bandwidth ( ) 200 particles.h = 4000
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Figure A14. Single frequency scenario: pixels marginals for vanilla SVGD with RBF kernel and constant

bandwidth ( ), and 200 particles.

Figure A15. Single frequency scenario: pixels marginals for annealed SVGD (tanh) with RBF kernel and

constant bandwidth ( ), and 200 particles.

h = 4000

h = 4000
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Appendix B — Supplementary Results for Multiscale Experiments

Figure B1. Multiscale scenario: Mean evolution for the 200-particle experiment using vanilla SVGD with RBF

kernel.

Figure B2. Multiscale scenario: Standard deviation evolution for the 200-particle experiment using vanilla

SVGD with RBF kernel.
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Figure B3. Multiscale scenario: Mean evolution for the 200-particle experiment using annealed SVGD (tanh)

and RBF kernel.

Figure B4. Multiscale scenario: Standard deviation evolution for the 200-particle experiment using annealed

SVGD (tanh) and RBF kernel.
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Figure B5. Multiscale scenario: visualization of 12 particles from a 200-particle experiment using vanilla

SVGD with RBF Kernel after 600 iterations.

Figure B6. Multiscale scenario: visualization of 12 particles from a 200-particle experiment using annealed

SVGD (tanh) with RBF Kernel after 600 iterations.
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Figure B7. Multiscale scenario: visualization of 12 particles from a 200-particle experiment using annealed

SVGD (tanh) with RBF kernel and constant bandwidth ( ) after 600 iterations.h = 2500

qeios.com doi.org/10.32388/5L6HVE 37

https://www.qeios.com/
https://doi.org/10.32388/5L6HVE


Figure B8. Multiscale scenario: pseudo-wells marginals from a 200-particle

experiment using vanilla SVGD with RBF kernel.
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Figure B9. Multiscale scenario: pseudo-wells marginals from a 200-particle

experiment using vanilla SVGD with RBF kernel and constant bandwidth (

).h = 2500
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Figure B10. Multiscale scenario: pseudo-wells marginals from a 200-particle

experiment using annealed SVGD (tanh) with RBF kernel.
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Figure B11. Multiscale scenario: pseudo-wells marginals from a 200-particle

experiment using annealed SVGD (tanh) with RBF kernel and constant

bandwidth ( ).

Figure B12. Multiscale scenario:, pixels marginals for vanilla SVGD with RBF kernel, 200 particles.

h = 2500
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Figure B13. Multiscale scenario: pixels marginals for vanilla SVGD with RBF kernel and constant bandwidth (

), 200 particles.

Figure B14. Multiscale scenario: pixels marginals for annealed SVGD (tanh) with RBF kernel, 200 particles.

Figure B15. Multiscale scenario: pixels marginals for annealed SVGD (tanh) with RBF kernel and constant

bandwidth ( ), 200 particles.

h = 2500

h = 2500
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