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The authors develop an empirical model based on data regression of some relevance. However, their

analysis and predictions are somewhat flawed because:

1. data utilized does not represent an ensemble of sea states with similar statistical characteristics. In this

case, the principle statistical parameters comprise r, variance, skewness and kurtosis. These vary between

sea states. Scaling the wave height and crest data with Hs( = 4σ?) eliminates the variability of variances

but not others.

2. Further, some data likely represent mixed seas situations, e.g. swell + wind seas or two different wind

seas. In general, there are no rigorous models for describing the distributions of wave heights or crests in

such seas.

3. Combining records gathered from mixed sea states and/or those characterized with different r,

skewness and kurtosis in a composite as if the resulting ensemble represented the outcomes from the

same random process is not appropriate. What is needed is an ensemble comprised of buoy records

characterized with adequately similar statistical characteristics, say, within less than a maximum of +/-

10% variation, excluding those cases clearly recognized as mixed sea state situations. The latter

necessitates spectral analysis.

4. If such filtering is done based on the similarity of skewness and kurtosis but not r , then a regression of

the rogue probability P(H > 2.2Hs) based on wave data characterized by variable r in the same population

(as in the authors’ case) can be carried out as follows: describe r in a number of discrete intervals or bins.

Each bin contains Nj sea states and it is centered at rj with width Δr . Drawing on Fedele (2016), the rogue

probability is

P(H > 2.2Hs |r = rj) = ∫P(H > 2.2Hs |r = x)p(r = x |r = rj)ⅆx

where p(r) is the probability density function of r associated to the bin and p(r = x |r = rj)dx is the number

of sea states with crest-trough correlation r in [x, x+ dx] . In discrete form

P(H > 2.2Hs |r = rj) =
∑

k=1,NjP(H > 2.2Hs |r = rj)

Njk
Nj ,

where Njk ∼ p(r = xk |r = rj)Δx is the number of sea states with crest-trough correlation r in [xk, xk + Δx] ,
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and we subdivide the bin width in M parts (Δx = Δr/M). Given a sea state, the conditional rogue probability 

P(H > 2.2Hs |r = rj) ∼ Rjk/Mjkfollows from the data. Here, Rjk is the number of waves of the kth sea state

whose height exceeds 2.2Hs , and Mjk is the total number of waves observed in that sea state. So,

P(H > 2.2Hs |r = rj) = ∑k=1,Nj

Rjk
Mjk

Njk
Nj

 It appears that the authors have instead mixed all waves from different sea states as part of the same

population and estimated the rogue probability as

P(H > 2.2Hs |r = rj) =

∑k=1,Nj
Rjk

∑k=1,Nj
Mjk

by assigning the same rj to all the sea states observed within a bin. This is an issue of some concern here.

A simple formula for the rogue probability can also be derived by Taylor-expanding the PDF p(x) up to

second order obtaining (Fedele 2016) 

P(H > 2.2Hs |r = rj) = P(H > 2.2Hs |r =
¯
rj) +

1
2

∂2P(H > 2.2Hs |r = rj)
∂r2 σ2

r

where 
¯
rj and σ2

r  are the average value and variance of the parameter r observed within the bin interval.

This formula can be used to compare their predictions with theoretical models as described below.

5. buoy data is not the best alternative for developing models, especially for wave crests. Further, wave

breaking effects are not mentioned at all whereas drooping of the probability observed toward the

extremes are indicative of such effects.

6. what does second-order model mean in their plots and analysis? Why is the steepness ε defined as kpσ ?

That underestimates the second-order predictions particularly for narrow-band waves (largest r values in

their data). The correct choice here is to set  ε = σ(wm)2/g = σkm , with km the mean wavenumber. For

example, in deep waters km = w2
m/g  with wm = m1/m0  the mean frequency and mj the spectral moments

of the frequency spectrum.

7. The authors do not compare their regressions with available theoretical models in the literature. They

mention about the Naess (1985) and Tayfun (1990) models, but they don't compare their results with

theoretical predictions. Furthermore, the authors are unaware that Boccotti (1982, 1983, 1985, 2000)

originally introduced the cross-correlation parameter ψ∗ (similar to r ) that naturally followed from its

asymptotic analytical solution of the distribution of large wave heights in Gaussian seas of any spectral

bandwidths. The Naess model is just an approximation of the wave height distribution for narrow-band

waves (see letter to the editor by Boccotti (1986) in reply to Naess' (1985) work). The correct asymptotic

model for wave heights in the limit of narrowband waves has been derived by Tayfun (1990) and reported

below 
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PT(y |r) = P(H > yHs |r) =
1+r
2r 1 +

1−r2

64ry2 exp −
4y2

1+r

Is the Tayfun model the second order model used by the authors in their plots and analysis ?

Recently, Alkhalidi & Tayfun (2013) have generalized the Boccotti model to nonlinear waves and have

shown that it is the best model that predicts wave heights, including rogue waves.

8. Below I compared their regression against the Tayfun (1990) model and its extension to account for the

variability of r ( σ_r =0.25 ), leading to the expression

PT(H > 2.2Hs |
¯
r) = PT(y = 2.2|r =

¯
r) +

1
2

∂2P(y = 2.2|r)
∂r2

r=
¯
r
σ2
r ,

where the expression of the second derivative of PT with respect to r is given by

∂2PT
∂r2 = PT(y |r)

B1 + B2

4r2(r + 1)4 r2 − 64ry2 − 1

and

B1 = 3r4 704y4 − 80y2 − 3 − 2r3 2048y6 − 1536y4 + 312y2 + 21

B2 = 24r2 40y4 − 22y2 − 3 − 18r 8y2 + 3 − 15

The authors should compare their regression against the Tayfun and Boccotti models to validate their

analysis.
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