The total thickness of each electrostatic nanocapacitor is only 25 nanometers, and they can be packed together many times. So far, arrays of electrostatic nanocapacitors cannot store much total energy because they are too small. Electrostatic nanocapacitors contain billions of nanocapacitors to store large amounts of energy. Scaling up to a practically trivial level is not, but the pair works together to create larger arrays. In the structure, electrostatic nanocapacitors can effectively connect several arrays together. In general, nanoelectric supercapacitors can store large amounts of energy, but they tend to charge slowly and wear out quickly. Meanwhile, capacitors have a longer life and can be discharged quickly, but store much less total energy. To make nanostructured arrays of electrostatic capacitors, a nano supercapacitor can be created. Electrostatic nanocapacitors are the simplest type of electronic energy storage device. They store electrical charge on the surface of two metal electrodes separated by an insulating material. The storage capacity of the electric nano supercapacitor is directly proportional to the surface area of these sandwich-like electrodes. The storage capacity of the electric nano supercapacitor can be increased by using nanostructures to increase the level of energy storage. The electrodes of the nanoelectric supercapacitor work like the electrodes in regular capacitors, but instead of being flat, they are tubular and collect in the depth of nano cavities.

Conclusion:

Electrostatic nanocapacitors also benefit from a very short distance between their electrodes, and electrostatic nanocapacitors are unique in this sense. If the electrodes are far apart, like charges on their surface strongly repel each other. When the electrodes are placed closer together, the negative and positive charges on both sides balance these repulsive forces, and more total charge can be stored in a given area.
References

1. ^Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/23oxov.

2. ^Afshin Rashid. (2024). Review of: "transistor nMOS (with ultra-low power consumption, energy-efficient computing, during the sub-threshold range)". Qeios. doi:10.32388/1a4jb.

8. ^Chad Allen. (2024). Review of: "FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities". Qeios. doi:10.32388/h3qk7b.

28. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”. Qeios. doi:10.32388/a0nexa.

29. Prienna Radochevich. (2024). Review of: “Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas”. Qeios. doi:10.32388/a0nexa.

33. Afshin Rashid. (2024). Review of: “bipolar transistors (pMOS) have a state voltage connected (Von) around 2 to 3 volts". Qeios. doi:10.32388/c8zgvw.
