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Analytical low-current and numerical high–current models for the impedance of a hydrogen–fed

anode of an anode–supported button SOFC are developed. The models use the dusty gas transport

model for the binary H2–H2O mixture. We show that neglecting the pressure gradient may lead to a

severe underestimation of the e�ective hydrogen di�usivity in the support layer. A least-squares

�tting of the analytical model to a literature spectrum of a button cell is demonstrated. The

analytical impedance allows to indicate traps when using equivalent circuits with the Warburg

�nite-length element for �tting experimental spectra. The model parameters include the Knudsen

hydrogen di�usivity, hydraulic permeability, porosity/tortuosity ratio of the support layer and the

ionic conductivity, double layer capacitance, and HOR Tafel slope of the active layer. All of the above

parameters can be obtained by �tting the models to experimental spectra.

Corresponding author: Andrei Kulikovsky, a.kulikovsky@fz-juelich.de

I. Introduction

Like PEM fuel cells, Solid Oxide Fuel Cells (SOFCs) convert the chemical energy of hydrogen–oxygen

combustion directly into electricity. However, unlike PEMFCs, SOFCs operate at high temperature,

which allows in–situ conversion of methane to hydrogen and hydrogen to electric power. Most of the

households in developed countries have access to methane, which makes the development of a

stationary 10–20 kW SOFC power generator a very attractive goal.
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Electrochemical impedance spectroscopy (EIS) is, perhaps, the most powerful technique for non–

destructive, in-operando analysis and characterization of SOFCs[1]. Impedance spectra contain

virtually all information on the transport and kinetic processes inside the cell. However, extracting

this information requires quite sophisticated modeling.

A vast majority of works on SOFC impedance spectroscopy employ equivalent circuit models (ECMs)[2]

[3][4][5][6][7][8]. The construction of an electrical circuit with an impedance spectrum close to the

experimental one is a relatively straightforward procedure leading to fast �tting codes. However,

equivalent spectra are not unique and they typically contain constant phase elements with no clear

physical meaning. Furthermore, the hydrogen transport in the anode support layer (ASL) is usually

described by the Warburg �nite-length impedance. However, the Warburg impedance does not take

into account the pressure gradient e�ects in the ASL, nor does it account for the �nite double layer

capacitance of the active layer, to which the ASL is attached (see below). A strong criticism of ECM has

been made by Macdonald in his seminal paper[9].

Physics-based impedance models employing classical transient charge and mass conservation

equations are free from these drawbacks. There are two ways to calculate impedance from these

equations. Applying a small-amplitude harmonic current or potential perturbation at  , the

transient equations can be solved in the time domain. The impedance is then calculated from a fast

Fourier transform of the solution[10][11][12][13][14]. Bessler[15]  suggested calculating impedance by

applying a small potential step to the cell rather than a harmonic AC signal. The advantage of this

approach is that the entire impedance spectrum can be obtained from a single model run, as the step-

like function contains all the necessary frequencies in its Fourier spectrum.

Alternatively, the conservation equations can be directly linearized and Fourier-transformed. In the

case of a single spatial dimension, this leads to a system of linear ODEs for the small perturbation

amplitudes, which can be solved either numerically[16][17], or analytically[18], if possible. This

approach requires some preliminary analytical work (linearization and Fourier-transform of

equations), but results in a much faster numerical code.

Fitting an ECM to an experimental spectrum typically returns the cell resistivities and the DL

capacitance. The great advantage of �tting a physics-based model is that it also provides the transport

coe�cients of the porous media.
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Zhu and Kee[11]  developed one of the most comprehensive numerical impedance models that takes

into account methane reforming in the anode chamber. The transport of gases in the porous layers has

been calculated using the full Dusty–Gas Model (DGM), including the pressure gradient term.

However, the charge–transfer reactions in the active layers have been described in a simpli�ed

manner, using parallel  -circuit elements. Hofmann and Panopoulos[14]  calculated the cell

impedance from a transient numerical model for SOFC performance based on a commercial CFD

solver. Bessler et al.[10] reported the impedance model with the detailed multistep hydrogen oxidation

reaction (HOR) mechanism. In his model, the pressure gradient e�ects in the porous layers were

neglected.

Shi et al.[13] developed a one–dimensional through–plane transient model for SOFC performance and

calculated the impedance from a time–domain solution. The hydrogen transport through the ASL was

described neglecting the pressure gradient. Later, Shi et al.[19]  extended their model to two spatial

dimensions.

Fu et al.[20]  presented analysis of multicomponent di�usion in the porous anode and compared the

impedance spectra measured at OCV with the model calculations. The authors[20]  showed that the

pressure gradient e�ects can be neglected if the anode porosity is su�ciently high. However, no

criteria for such a neglect have been reported.

Bertei et al.[16] developed a detailed 1d impedance model with the transport properties of the porous

layers determined from the microstructural model. Their model included the full DGM for the gaseous

transport on both sides of the cell. Bertei et al.[21]  reported an analytical macro-homogeneous

impedance model for the SOFC anode assuming linear kinetics of the faradaic reaction and neglecting

pressure gradient e�ects. The �nite-length Warburg terms were derived for hydrogen and water

transport in the ASL. This derivation used the Nernst equation to relate the perturbation amplitudes of

the overpotential and gas molar fractions. However, the Nernst equation is not valid in non-

equilibrium conditions. A rigorous approach requires the use of the ionic charge conservation

equation, which leads to an  –factor in the Warburg �nite-length formula (section III.2).

Recently, Donazzi et al.[17] reported a 1d+1d impedance model of the SOFC with straight channels on

both sides. The transport in the electrodes was described using a Fick’s type relation for the �uxes.

The conservation equations were linearized and Fourier-transformed, and the resulting linear ODEs

RC

RC

qeios.com doi.org/10.32388/65NJV1 3

https://www.qeios.com/
https://doi.org/10.32388/65NJV1


were solved numerically. Knappe and Kulikovsky[18]  developed an analytical model for the anode

impedance; however, for simplicity, the pressure-gradient driven transport in the ASL was ignored.

From this overview it can be seen that only two works[11][16]  have included the pressure gradient

e�ects in the impedance calculations. Both the models[11][16]  are numerical and none of the works

clari�ed the role of the pressure gradient in hydrogen transport. The e�ect of the pressure gradient in

the ASL on cell impedance is not fully understood.

In this work, we develop analytical and numerical physics-based models for the anode impedance of

an anode-supported SOFC operating on pure hydrogen. The models employ DGM equations to

describe the H2–H2O mixture transport in the ASL. The models highlight the role of the pressure

gradient in hydrogen transport through the ASL. The analytical model allows to discuss the traps

when using the Warburg �nite–length element in ECMs.

The analytical model is very fast and it can replace the ECMs in �tting low-current spectra, including

those measured at OCV. The slower and more complicated numerical model could still be used to �t

spectra measured at medium to high DC currents.

II. Transport and charge conservation equations

The models are based on the following assumptions.

The hydrogen transport loss in the anode active layer (AAL) is negligible. This assumption is

justi�ed as the AAL thickness is typically two orders of magnitude smaller than the support layer

thickness.

The rate of the HOR is described by the Butler–Volmer equation. This is the standard approach in

modeling SOFC impedance.

The variation of the electronic phase potential in the anode is ignored, since the electron

conductivity of the nickel cermet is usually several orders of magnitude higher, than the ionic

conductivity.

Additional assumptions speci�c to the analytical model are discussed in Section III.B.

The hydrogen and water transport in the ASL is described within the scope of the classical DGM:
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Here    is the molar �ux of the  th component,    the pressure,    the e�ective binary molecular

di�usion coe�cient,   the e�ective Knudsen di�usion coe�cient,   the hydraulic permeability

of the porous media,    the mixture kinematic viscosity, and    is the coordinate through the ASL

(Figure 1). The DGM takes into account the inter–di�usion Stefan–Maxwell �uxes (the �rst term on

the left side), the Knudsen di�usion in smaller pores (the second term on the left side), and the �ux

due to the pressure gradient (the last term in Eq.(1)).

Figure 1. Schematic of the anode–supported SOFC anode. The sketch is strongly not to scale: the

active layer thickness is two orders of magnitude smaller than the ASL thickness.

A. Transport equations in the support layer

No reactions run in the ASL and hence the transient hydrogen mass conservation equation is

where    is the hydrogen molar fraction,    the pressure,    the hydrogen molar �ux. Below, the

following dimensionless variables will be used

where
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  is the coordinate through the active layer (Figure 1),    the ASL thickness,    is the AAL thickness, 

  the cell current density,    the positive by convention HOR overpotential,    the HOR Tafel slope, 

 the Knudsen hydrogen di�usivity in the ASL,   the double layer volumetric capacitance,   the

HOR volumetric exchange current density,   the AAL ionic conductivity,   the angular frequency, and 

 the impedance.

With these variables, Eq.(2) takes the form

where 

The dimensionless DGM equations for   and   in the binary H2–H2O mixture are[22]:

where

and   is the e�ective molecular di�usion coe�cient of the H2–H2O mixture in the ASL. Eq.(7) is the

dimensionless DGM equation (1) for the hydrogen molar fraction/�ux. Eq.(8) is the sum of Eqs.(1) for

the hydrogen and water   molar fractions, taking into account that   and the water molar

�ux  .

Application of the small–amplitude harmonic AC current to the cell induces the small–amplitude

response of all transport variables. Mathematically, equations for this response can be derived by

linearization and Fourier–transform of Eqs.(5), (7) and (8) using the substitutions
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where the subscripts 0 and 1 mark the static variables and the small perturbation amplitudes,

respectively. Note that  ,    and    are the perturbation amplitudes in the  –space. Neglecting

terms with the perturbations product and subtracting the respective static equations we come to

Multiplying Eq.(12) by 2 and summing with Eq.(13), we get a more compact equation for  :

For the static shapes   and   we use the approximate analytical solutions to the system (7), (8) [22]:

where  ,   are the parameters in the anode chamber, and

The derivative   is given by Eq.(B2) and  .

The boundary conditions for Eqs.(11), (13), (14) are
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system of Eqs.(11), (13), (14) with the boundary conditions (18) form a linear initial–value (Cauchy)

problem for  ,   and   in the ASL.

B. Ionic charge conservation in the active layer

Due to the small AAL thickness, we neglect the variation of hydrogen and water concentrations

through the AAL depth. The ionic charge conservation equation in the AAL is

where   is the volumetric double layer capacitance,   the AAL ionic conductivity,   the Tafel slope

of the hydrogen evolution reaction (HER). The right side is the Butler–Volmer reaction rate, where the

�rst exponent describes the direct HOR rate and the second exponent represents the rate of the

reverse HER.

With the dimensionless variables Eqs.(3), Eq.(19) takes the form
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expanding exponents, neglecting the terms with perturbation products and subtracting the static

equation for  , we get the problem for the overpotential perturbation amplitude  , Eq.(26)

The terms    and    in Eq.(26) include solutions    and    of the problem (11), (13), (14)

calculated at the ASL/AAL interface (at  ). The factors  ,   and   are given by Eqs.(24) with

the static parameters  ,   calculated at  .

The left boundary condition in Eq.(26) means zero ionic current through the ASL/AAL interface (

), and   is the ionic current density equivalent to the stoichiometric hydrogen �ux entering the

AAL/ASL interface

Note that    is scaled to satisfy the Ohm’s law in the form of    used in Eq.(20) and in the

boundary condition to Eq.(26).

III. Impedance models

A. Numerical impedance model

A high–current numerical anode impedance   is calculated taking into account the variation of the

pressure and hydrogen concentration through the ASL and the variation of the static overpotential 

 along  . The procedure is as follows.
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3. Solve the problem for  , Eq.(26), with  ,   and   from Eqs.(24) and   from the previous

step.

4. Calculate the numerical impedance 

B. Analytical low-current impedance model

When the DC current is small, we can neglect the variation of the static pressure    and hydrogen

concentration    through the ASL depth, but keep the perturbation amplitudes  ,  , and    as

functions of  . The static overpotential   can also be approximated by a constant value. Under these

assumptions, the analytical anode impedance   can be derived (Appendix A)

where

 is given in Eq.(6), and

(see also Table 4 for the dimensionless parameters in this work).

The �rst term in Eq.(30) is the combined faradaic and ionic transport impedance of the AAL. The

second therm in Eq.(30) is the ASL transport impedance
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The  -factor arises since the transport layer is attached to the porous active layer with the �nite

double layer capacitance. This capacitance (and the displacement current) were ignored by Warburg in

his classic derivation of the semi–in�nite transport layer impedance[23] and later in the derivation of

the Warburg �nite-length impedance.

It can be shown that in the limit of  , Eq.(34) reduces to the Warburg impedance. Indeed, in Eq.

(34), the ratio  , and the factors  ,  ,  ,    are all independent of  . The only term

proportional to   is   in the denominator of Eq.(34). Thus, at   the  –impedance reduces

to the constant real value    and Eq.(34) transforms to the scaled Warburg impedance 

 (see[24] for further discussions).

In the limit of  , the factor    and from Eq.(34) we get the anode

transport resistivity   at low cell current density

Dimension formulas for   and   can be obtained from Eqs.(37) and (30), respectively, using the

list of the dimensionless parameters and variables in Table 4.

IV. Numerical results and discussion

A. Model spectra

A custom Python code for numerical calculations has been used. Eqs.(11), (13), (14) with the boundary

conditions (18) form a complex-valued Cauchy problem, which has been solved by the standard

Runge–Kutta solve_ivp solver. The current–voltage relation, Eq.(A2) has been solved using the fsolve

procedure. Eq.(28) for the static overpotential, and the system of real and imaginary parts of Eq.(26)

for the overpotential perturbation amplitude are the boundary–value problems, which have been

solved using the BVP solve_bvp solver. Unfortunately, solve_bvp fails to directly solve the complex–

valued BVP Eq.(26) for su�ciently high frequencies.

The transport coe�cients have been calculated from Eqs.(B1). The cell parameters taken from the

literature are listed in Table 1. Comparison of the analytical low-current impedance, Eq.(30), with the

numerical one is shown in Figure 2. Both the impedances are calculated at the small current density of
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1 mA cm-2, which mimics the electronic leakage current density in the cell at OCV. As can be seen, the

analytical and the exact numerical spectra are indistinguishable.

Figure 2. (a) The Nyquist spectra of the numerical anode impedance, Eq.(29), (solid

points), and the analytical impedance, Eq.(30), (open circles) for the cell current

density of 1 mA cm-2. The other parameters are listed in Table 1. (b) The Bode plots

of the real and imaginary parts of impedance in (a).

Figure 3 shows the numerical and analytical model spectra for the cell current density of 20 mA cm-2

and the set of parameters in Table  1. The analytical model quite well describes the exact numerical

spectrum up to 20 mA cm-2. Eqs.(30) can thus be used for fast �tting the impedance spectra measured

at low currents, down to OCV conditions. Eq.(37) can be used for calculation of the anode transport

resistivity  .

The numerical model allows to rationalize the e�ect of pressure gradient on the anode impedance. For

this purpose, the terms with  ,    and    have been set to zero. The reduced numerical

Rtr

p~1 ∂ /∂p~1 x~ ∂ /∂p~0 x~
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model describes the isobaric anode impedance with purely di�usive hydrogen transport through the

ASL.

The resulting spectra are shown in Figure 4. A comparison of Figures 3 and 4 shows that in spite of the

low current density, the e�ect of the �nite pressure gradient on the spectrum is quite signi�cant: at

zero  , the transport arc becomes more than twice smaller (cf. Figures 3a and 4a). Note that the

peak of the transport arc imaginary part in Figure 4b is shifted to twice higher frequency as compared

to Figure  3b. Both the changes could be “corrected” in the isobaric model by using twice lower

e�ective hydrogen di�usivity in the ASL. In other words, �tting the isobaric impedance model to the

experimental spectra could give a greatly underestimated e�ective hydrogen di�usivity.

Figure 3. (a) The Nyquist spectra of the numerical anode impedance, Eq.(29), (solid

points), and the analytical impedance, Eq.(30), (open circles) for the current density

of 20 mA cm-2 and the cell parameters in Table 1. (b) The Bode plots of the real and

imaginary parts of impedance in (a).

∂p/∂x
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Figure 4. (a) The Nyquist spectrum of the numerical anode impedance, Eq.(29),

corresponding to the zero pressure gradient in the anode. The current density is 20

mA cm-2 and the cell parameters are listed in in Table 1. (b) The Bode plots of the

real and imaginary parts of impedance in (a).
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Cell temperature, K 273 + 800

Pressure in the anode chamber, Pa

Current density, A m-2

ASL thickness, m

AAL thickness, m

Mean pore diameter, m  Ref.[25]

Porosity/tortuosity ratio 0.033, Ref.[26]

AAL ionic conductivity@800∘C, S m-1 0.1

Double layer capacitance, F m-3

HOR exchange current density A m-3

HOR Tafel slope, V/exp 0.1

Parameter  1/3, Ref.[27]

Reference H2 pressure,

Reference water pressure

Hydrogen viscosity@800∘C, Pa s

H2/H2O molecular di�usivity m2 s-1 , Ref.[26]

Anode gas composition   85%H2 + 15%H2O

Table 1. The cell parameters used in the calculations.

Figure 5 shows the ASL transport resistivity   calculated from the full DGM and from the reduced

DGM with zero pressure gradient vs the mean pore diameter   in the ASL. As can be seen, the full DGM

shows the strong e�ect of    on  , while the approximation of zero pressure gradient makes 

 practically insensitive to  . Again we note that any point on the full DGM curve in Figure 5 could be

obtained within the scope of the zero pressure gradient approximation by lowering the ASL hydrogen

T

pc 105

J (20 ⋅ ) ⋅10−3 104

L ⋅103 10−6

la 15 ⋅ 10−6

d 0.96 ⋅ 10−6

λ

σi

Cdl 2 ⋅ 106

i∗ 108

bh

β = /bh bw β

p
ref
h 0.125pc

prefw 0.042pc

μ 2 ⋅ 10−5

D
free
m 8.154 ⋅ 10−4

Rtr

d

d Rtr

Rtr d
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di�usivities, i.e., the parameters   and/or   derived from the models neglecting   could be

underestimated.

Figure 5. The dependence of transport resistivity on the mean pore diameter in the

ASL. Solid line – the full DGM, dashed line – the reduced DGM with the zero pressure

gradient.

B. Fitting the experimental spectrum

To demonstrate the analytical model at work, it has been �tted to the impedance spectrum of the

anode–supported button cell measured by Shi et al.[13]. The majority of experimental papers present

Nyquist spectra; however, they do not include the complete impedance data necessary for �tting.

Ideally, the frequency dependence of the real and imaginary parts should be demonstrated. The work

of Shi et al.[13] is one of the very few papers, where the necessary data are reported.

The spectrum in[13] was acquired at open–circuit and the operating conditions collected in Table 2. To

describe the high–frequency features of the spectrum, the following model impedance    has been

�tted to the experiment:

DK,h Dm ∂p/∂X

Za

= + iω +Za
la

σi
Z
~
anly LcabScell RHFR (38)
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where    is given by Eq.(30),    the cable inductance,    the cell active area, and    the

high–frequency cell resistivity. The cathode impedance has been neglected[16]. The �tting has been

performed using the Python constrained least_squares procedure.

Cell temperature  , K 273 + 800

Total anode pressure  , kPa 101.325

Hydrogen partial pressure  ,

Reference H2 pressure, 

Water vapor partial pressure 

Reference water pressure 

ASL thickness  ,  m 680

AAl thickness  ,  m 15

Cell active area,  , cm2 1.54

Parameter   Ref.[27]

Table 2. The working cell parameters reported by Shi et al.[13][28]

The quality of the spectrum �tting is not high; however, the model correctly captures the faradaic and

transport peaks (Figure 6). The �tting parameters are listed in Table 3. All the anode parameters are

close to their literature values (see discussion in[18]). The present model returns the estimate for the

porosity/tortuosity ratio   (Table 3), which is nearly twice the value of   following from

the data reported by Shi et al.[13]. It should be noted that the parameters  ,    and

porosity/tortuosity ratio strongly depend on the HOR exchange current density  . The latter has been

�xed here using Eq.(39)[29]:

where  ,  ,  ,   kJ mol-1.

Z
~
anly Lcab Scell RHFR

T

p

ph 0.958p

ph,ref 0.125p

pw 0.042p

pw,ref 0.042p

lb μ

la μ

Scell

β = / = /bh bw αw αh 1/3

λ ≃ 0.076 0.043

bh rref

i∗

= (1 − exp(− ),i∗
γ

la
yac yc)

b Eact

RT
A m−3 (39)

γ = 1.83 ⋅ T106 a = −0.1 b = 0.33 = 105.04Eact
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The results presented in Table  3 should be considered as estimates. More accurate and reliable data

could be obtained through the analysis of several spectra. The spectrum in Figure 6 could, of course,

be �tted using the numerical model. In this case, the Python code runtime is about 33 s on a standard

notebook, which is three orders of magnitude larger than the �tting with the analytical model.

Figure 6. (a) The experimental (solid points) and �tted analytical model, Eq.(30),

(open circles) Nyquist spectra of a button SOFC at open–circuit potential. The

experimental points are digitized from Figure 6 of Shi et al.[13]. The cell operating

parameters are listed in Table 2. (b) The Bode plot of imaginary part of impedance in

(a).
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HOR Tafel slope  , mV / exp 107

HOR transfer coe�cient  0.864

DL volumetric capacitance  , F cm-3 3.36

DL super�cial capacitance  , mF cm-2

HOR exchange current density  , A cm-3

AAL ionic conductivity  , mS cm-1

ASL Knudsen H2 di�usivity  , cm2 s-1

High–frequency resistance  ,   cm2 0.268

Ratio  0.723

ASL porosity/tortuosity 0.0761

Cable inductance  , nH

Table 3. The anode parameters resulted from �tting of the analytical model to the experimental spectrum

in Figure 6. The parameter indicated by asterisk has been �xed.

C. Traps when using the Warburg �nite-length element

The Warburg �nite-length element has been widely used in ECMs for �tting the impedance

spectra[29][6][30]  (see also a review[8] and the references therein). The analytical model, Eq.(30) and

Eq.(40) below enable to indicate possible traps when using this element. The condition for neglecting

the pressure gradient in the ASL is[22]:

where  ,    are the hydrogen molar fraction and total pressure, respectively, in the channel. Under

this condition, the pressure growth toward the active layer produced by the Knudsen di�usion and/or

due to the �nite hydraulic permeability of the porous media can be neglected.

Care should be taken when using isobaric ECMs for �tting the spectra measured at OCV. In cells with

the YSZ electrolyte, the electronic leakage generates current on the order of 1–10 mA cm-2, depending

bh

= RT /( F)αh bh

Cdl

Cdl,s 5.04

i∗ 355∗

σi 1.65

DK,h 0.807

RHFR Ω

/p
ref
w p

ref
h

Lcab 418

≪ 1
JRTL

F (1 + )DK,h
(3−2 )pcB0 yc

μDK,h
pc

(40)

yc pc
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on the electrolyte thickness[31]. Under certain set of the ASL transport parameters, the condition (40)

could be violated already at OCV due to the leakage current. In this case, the e�ect of the pressure

gradient cannot be ignored and it is recommended using Eq.(30), rather than the isobaric Warburg

�nite-length element.

More speci�cally, at low to medium frequencies, the transport term in Eq.(30) is close to the Warburg

�nite-length impedance (Figure  7). Thus, the Warburg element can be safely used to determine the

transport resistivity. However, if Eq.(40) does not hold, it is impossible to extract a correct ASL

hydrogen di�usivity from the Warburg element.

Further, the active layer ionic conductivity    manifests itself in the high–frequency part of the

impedance spectrum. The characteristic frequency   of ionic transport in the active layer is[32]

With the parameters from Table  1,    Hz. The high–frequency behavior of the Warburg

impedance and the transport term in Eq.(30) are very di�erent (Figure  7), and using the Warburg

element may return incorrect  .

Figure 7. The Warburg �nite–length impedance  , Eq.(35), (solid curve)

and the transport impedance, Eq.(34), (dotted curve) calculated with the parameters

from Table 1. The inset shows the zoomed high–frequency part.

To summarize,

The Warburg �nite-length element can be safely used to derive the static transport resistivity.

σi

fi

= , Hz.fi
1.71σi

Cdll
2
a

(41)

≃ 400fi

σi

/(q )ZW E1
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The ASL e�ective hydrogen di�usivity can be correctly estimated from the �tted Warburg element

only if Eq.(40) holds.

The Warburg element distorts the high–frequency part of the spectrum, which may result in an

incorrect value of the �tted active layer ionic conductivity.

The validity of Eq.(30) is limited by Eq.(A3), which typically is much less restrictive than Eq.(40).

Using Eq.(30) for �tting OCV and low–current spectra is thus much safer than using ECMs with the

Warburg element.

Finally, we note that Eq.(40) was derived for the H2–H2O mixture. The presence of the third non-

reacting component in the mixture (e.g. nitrogen) would increase the pressure gradient in the ASL.

The higher pressure gradient would be required to achieve zero total �ux of the non-reacting gas in

the transport layer. Thus, in ternary systems, the condition Eq.(40) for neglecting the pressure

gradient is necessary but not su�cient.

V. Conclusions

Analytical low-current and numerical high–current models for the anode impedance of an anode–

supported button SOFC operated with neat hydrogen is developed. The models are based on the dusty

gas transport model and they take into account the di�usive and the pressure–gradient driven

transport of the hydrogen–water vapor mixture in the porous anode support layer (ASL). Numerical

tests show that for the standard anode parameters, the analytical model, Eq.(30), works well up to the

cell current density on the order of 20 mA cm-2. The ASL transport resistivity is given by Eq.(37). We

show that �tting the model which neglects the pressure gradient to an experimental spectrum may

strongly underestimate the e�ective hydrogen di�usivity of the anode.

Fitting of the developed analytical model to the spectrum of a button–type SOFC measured at open

circuit conditions returns a set of reasonable anode transport and kinetic parameters. The derived Eq.

(30) for the anode impedance contains the ASL Knudsen hydrogen di�usivity, hydraulic permeability,

porosity/tortuosity ratio, the active layer ionic conductivity, the DL capacitance and the HOR Tafel

slope. Theoretically, all the aforementioned parameters could be obtained from �tting the model to

experimental spectra. The analytical model reveals the traps when �tting the equivalent circuit

models with the Warburg �nite–length element to the SOFC spectra.
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Appendix A. Derivation of the analytical impedance, Eq.(30)

If the DC current is small, the factors  ,    and    can be approximated by constant values. The

terms  ,  ,   in Eq.(26) and   in Eq.(27) are thus independent of  . Here,  ,   and   are

calculated setting  ,    in Eqs.(24). Note that the perturbation amplitudes are still

functions of   (see below).

A good approximation of the overpotential    can be obtained from the static charge conservation

equation, Eq.(28), in the form

where    is the local ionic current density. Assuming that the right side of Eq.(A1) is

constant and integrating this equation over   from 0 to 1, we get the current–voltage relation

Eq.(A2) is valid if the cell current density is small[33]:

For the set of active layer parameters in Table  1, the right side of Eq.(A3) is 67 mA  cm-2, i.e., under

given cell temperature, the equations of this section are valid up to the cell currents on the order of 10

mA cm-2.

With this assumption, Eq.(26) is an ODE with the constant coe�cients and the solution to Eq.(26) is

The anode impedance is   and since  , from Eq.(A4) we get

where   is given in Eq.(31).

Further, at low DC currents, Eqs.(11), (13), (14) can be simpli�ed. Setting  , 

, and  , from Eqs.(11), (13), (14) we get the reduced equations for the perturbation

Y1 P1 E1

Y1y
1
1 P1p

~1
1 E1 N

~1

1 x~ Y1 P1 E1

=p~0 p~c =y0 yc

X
~

η
~0

= −q ( exp( ) − (1 − ) exp(−β ))ε2 ∂ ĵ
0

∂x~
p~c yc η~0 rref yc η~0 (A1)

= ∂ /∂ĵ
0

η~0 x~

x~

J = q ( exp( ) − (1 − ) exp(−β ))lai∗ p~c yc η~0 rref yc η~0 (A2)

J ≪
σibh

la
(A3)

( ) =η~1 x~

where ϕ =

− ,
cosh(ϕ )ĵ

1
x~

ϕ sinh(ϕ)

q( + )Y1y
1
1 P1p

~1
1

i + qω~ E1

1

ε
i + qω~ E1
− −−−−−−

√

(A4)

= /Z
~
anly η~1 ĵ

1
| =1x

~ = /ĵ
1

N
~1

1J∗ j∗

= − ,Z
~
anly

1

ϕ tanh(ϕ)

χ( + )Y1y
1
1 P1p

~1
1

(i + q )N
~1

1 ω~ E1

(A5)

χ

∂ /∂ = ∂ /∂ = 0p~0 X
~

y0 X
~

=p~0 p~c =y0 yc
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amplitudes  ,   and  :

Eqs.(A6)–(A8) form a system of linear ODEs with constant coe�cients. This system with the

boundary conditions Eq.(18) can be solved analytically. The solution is rather cumbersome and it is not

displayed here. Setting   in the solutions we obtain the explicit formulas for  ,   and  , which

appear in the second (transport) term in Eq.(A5). After some algebra, this gives the formula for the

analytical impedance 

N
~1

p~1 y1

=ψ2 ∂N
~1

∂X
~

(1 + (3 − 2 )) =p~c yc
∂p~1

∂X
~

2 + (1 + 2 + 3 ) =p~c
∂y1

∂X
~ yc p~c

∂p~1

∂X
~

− ( + ) i ,p~cy
1

ycp
~1 ω~

2N
~1

− 2KN
~1

(A6)

(A7)

(A8)

= 1X
~

N
~1

1 y1
1 p~1

1

Z
~
anly
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Appendix B. Transport coe�cients and the dimensionless
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parameters

, Eq.(24) where  ,  ,

for numerical model, or  , 

for analytical model

 Solution to Eq.(28) (numerical model),

or solution to Eq.(A2) (analytical model)

= /j∗ σibh la

= J/ , = 2Fμ /(RTL )J
~

J∗ J∗ D2
K,h B0

= j/ , = /ĵ j∗ j∗ σibh la

K = /DK,h Dm

= N/ , = μ /(RTL )N
~

N∗ N∗ D2
K,h B0

= p/ , = μ /p~ p∗ p∗ DK,h B0

q = μ /( )DK,h B0p
ref
h

= /R
~
tr Rtrla σi

= /rref p
ref
h p

ref
w

= t/ , = /t
~

t∗ t∗ Cdlbh i∗

= X/LX
~

= x/x~ la

, ,Y1 P1 E1 =p~0
p~0

1 =y0 y0
1

=p~0
p~c =y0 yc

= Z /Z
~

σi la

α = RT /( F)bh

β = / = 1/3bh bw

ε = /( )σibh i∗ l
2
a

− −−−−−−−−
√

= η/η~ bh

η~0

ξ = (3 − 2 )K + 3) + K + 1)/(1 + (3 − 2 ))yc p~c p~c yc

ϕ = /εi + qω~ E1
− −−−−−−

√
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Table 4. The dimensionless variables and parameters in alphabetic order.

The transport coe�cients have been calculated as

where   is the porosity/tortuosity ratio,   the mean pore diameter (Table 1). [Ref.: [34]]

The �rst derivative of Eq.(15) over   is given by

χ = RTL /(2F )σibh DK,hp
ref
h la

ψ = /( )CdlbhDK,h i∗L
2

− −−−−−−−−−−−−−
√

= ω /ω~ Cdlbh i∗

=B0

=DK,h

=Dm

, Ref. [34]
λd2

32

λd

3

8RT

πMh

− −−−−

√

λD
free
m

(B1)

λ d

X
~

=
∂y

∂X
~ −

Wp~cyc

( + W )p~c X
~ 2

−
6W + 2(3 + 2K + W) + 3p~2

c W 2X
~

J
~

p~c W 3X
~2

4( + W )p~c X
~ 2

(B2)
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Nomenclature

Marks the dimensionless local ionic current density

Marks the other dimensionless variables

Hydraulic permeability, m2

Tafel slope, V

Mean pore diameter, m

Double layer volumetric capacitance, F m-3

Reference hydrogen pressure, Pa

Reference water vapor pressure, Pa

E�ective binary H2–H2O molecular di�usion

  coe�cient in the ASL, m2 s-1

Binary H2–H2O molecular di�usion

  coe�cient in a free space, m2 s-1

E�ective Knudsen di�usion coe�cient

  of hydrogen, m2 s-1

Dimensionless parameter, Eq.(24)

Faraday constant, C mol-1

DC cell current density, A m-2

Local ionic current density, A m-2

Anode support layer thickness, m

Anode active layer thickness, m

Molecular weight, kg mol-1

Molar �ux of hydrogen, mol m-2 s-1

^

∼

B0

b

d

Cdl

p
ref
h

p
ref
w

Dm

D
free
m

DK,h

E

F

J

j

K = /DK,h Dm

L

la

M

N
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Dimensionless parameter, Eq.(24)

Pressure, Pa

Characteristic pressure, Pa, Eq.(3)

Dimensionless parameter, Eq.(22)

Gas constant, J K-1 mol-1

Dimensionless parameter, Eq.(22)

Cell active area, m2

Cell temperature, K

Dimensionless parameter, Eq.(17)

Coordinate through the ASL

  counted from the chamber, m

Coordinate through the anode active layer

  counted from the ASL/AAL interface, m

Dimensionless parameter, Eq.(24)

Molar fraction of hydrogen

Impedance, Ohm m2

P

p

p∗

q

R

rref

Scell

T

W

X

x

Y

y

Z
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Subscripts

Characteristic value

ASL/active layer interface

Analytical (impedance)

Channel/ASL interface

Hydrogen

Knudsen di�usion

Parallel  –circuit impedance

Transport

Molecular di�usion

Warburg impedance

Water

Superscripts

Steady–state value

Small–amplitude perturbation

∗

a

anly

c

h

K

RC RC

tr

m

W

w

0

1
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Greek

Dimensionless parameter, Eq. (21)

Dimensionless parameter, Eq. (21)

HOR overpotential, positive by convention, V

ASL Porosity/tortuosity ratio

Mixture dynamic viscosity, Pa s

AAL ionic conductivity,   m-1

Dimensionless parameter, Eq. (31)

Dimensionless parameter, Eq. (31)

Dimensionless parameter, Eq. (6)

Angular frequency, s-1
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