
Assessment of COVID-19 from Features Extraction of 
Exhaled Breath Using Signal Processing Methods 
 
Exhaled	breath	waveforms,	utilized	in	ventilation	monitoring,	are	aimed	at	
upgrading	into	COVID-19	disease	screening.	An	algorithm	for	valid	exhaled	
breath	waveform	segmentation	and	feature	computation	is	developed	to	
identify	COVID-19	infection	using	exhaled	breath	patterns	for	distinguishing	a	
COVID	and	non-COVID	condition.	Two	minutes	of	exhaled	breath	patterns	
were	recorded	using	a	device	and	a	nasal	cannula	sampling	tube,	resulting	in	
the	collection	of	exhaled	breath	waveforms	from	each	subject.	The	developed	
algorithm	is	utilized	to	evaluate	the	valid	exhaled	breath	waveforms	and	
compute	the	features	classiGied	to	distinguish	COVID	and	non-COVID	
conditions.	Slope	e2,	activity	e2,	and	intersection	angle	of	expiration	and	
inspiration	phases	showed	p-values	of	0.000,	denoting	the	strong	signiGicant	
difference	between	COVID	and	non-COVID	conditions.	The	statistical	analyses	
revealed	p-values	of	0.039,	0.008,	and	0.024	for	area	e2,	mobility	of	e2,	and	
complexity	e3,	indicating	their	signiGicance	in	differentiating	the	COVID-19	
condition	from	the	non-COVID	condition.	The	slope,	area,	and	intersection	
angle,	as	signiGicant	features,	showed	good	predictive	power	for	compliance	
with	p-value	analysis,	with	area	under	the	receiver	operating	characteristic	
curves	of	0.667,	0.693,	and	0.775.	The	slope	of	e2, the	area	of	e2, and	the	
intersection	angle	of	expiration	and	inspiration	phases	are	identiGied	as	the	
promising	features	to	be	chosen	in	discriminating	the	COVID	and	non-COVID	
conditions. 
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1. Introduction 
COVID-19 disease is referred to as a respiratory illness that causes serious pulmonary 
complications and multi-organ infection. The severe effect caused by the spread of the 
SARS-CoV-2 virus, which resulted in an uncontrollable infectivity rate and a significant 
number of deaths (Seo et al., 2020; Taleghani and Taghipour, 2021). It has recapitulated the 
historical evidence caused by pneumonias like SARS and MERS (Ramanathan et al., 2022b; 
Wang et al., 2021). Medical professionals have been compelled to concentrate on the 
disease's virology, physiology, and immunology for clinical practices to stop the pandemic 
due to the widespread COVID-19 global pandemic. Both during and after their infection, the 
COVID-19-infected individuals reportedly displayed an acute abnormal breathing pattern 
(Ramanathan et al., 2022a; Zubieta-Calleja et al., 2023). Numerous studies have been done in 
this regard to identify COVID-19 illness using breath samples. Breath-based detection has 
attracted a lot of interest in clinical settings due to its significant reduction in workload and 
expense compared to invasive sampling methods like nasal swabs and other sophisticated 
sampling methods like RT-PCR, isothermal amplification techniques, and enzymatic assays 
(Kreyer et al., 2021; Maurya et al., 2022). Breath analysis is a quick and reliable process. It 
demonstrates massive potential for primary COVID-19 screening at the point of patient 
admission, which would aid in commencing preventive measures at clinical practices 
(Marshall et al., 2021; Shan et al., 2020). Over the years and to the present day, breath 
monitoring has become popular for the early detection of acute respiratory illnesses. 
Additionally, studies have demonstrated the ability to identify viral infections using breath 
samples. Given this, numerous studies have been conducted to determine the presence of 
COVID-19 transmission in breath samples (Godoy et al., 2023; Robba et al., 2020). 

As critical care clinicians become more acquainted with the harmful course of COVID-19, 
experts in clinical practice suggest initiating invasive ventilation as soon as patients show a 
sudden surge in respiratory distress. One of the most important techniques for preventing 
fatalities is invasive ventilation, which was vital during the first COVID-19 pandemic 
outbreak (Carmichael et al., 2021; Mauer et al., 2021). To support patient survival as the 
virus's infectivity varies, most COVID-19 patients typically receive monitoring under 
mechanical ventilation for 14–20 days. To satisfy the demand for simultaneous life support in 
these circumstances, mechanical ventilators are in high demand (Stroh et al., 2023). 

The current research aims at evaluating the CO2 partial pressure variation in a COVID-19 
patient, in contrast to other studies that focused on the biomolecules present in breath 
samples. For obtaining accurate breath cycles from patient-exhaled breath samples, a precise 
and targeted algorithm has been created. The core of the technique is to divide the exhaled 
breath waveform into five epochs, compute the features of each epoch (e), and assess the 
variance between the COVID and non-COVID conditions. The significant features on 
differentiating the COVID-19 condition based on the CO2 gas threshold determined in the 
exhaled breath waveform were identified by a sequential statistical analysis. The proposed 
method of recognizing COVID-19 and the carefully constructed algorithmic simulation for 
exhaled breath cycle profiling is schematically illustrated in Fig. 1. 



Fig. 1. Schema(c illustra(on of screening for COVID-19 from the exhaled breath waveform. 

2. Methods 

2.1. Study Protocol 

Clinical data collection was conducted at the emergency department of Hospital Pulau 
Pinang, located in the northern region of Malaysia, in June 2022. The Medical Research and 
Ethics Committee (MREC) approved the study. The clinical study is registered in the 
National Medical Research Register (NMRR) with the reference number (NMRR-21-763-
59692). The clinical study was performed as it complies with the regulations and guidelines 
of Good Clinical Practice Malaysia 2018. The section below discusses the strategies 
conducted to evaluate the relationship between COVID-19 exhaled breath waveform features 
in developing an algorithmic-based COVID-19 diagnosis. 

2.2. Target Population 

The preliminary clinical research was focused on adult COVID-19 patients between the ages 
of 21 and 60 years old. Patients with only COVID-19 category 2 (CAT 2) infection stage 
were approached to participate in this study. Patients with a history of asthma, COPD, and 
pulmonary edema were excluded to ensure the exhaled CO2 recording was not affected by 
other respiratory complications. The breath analysis was carried out with 40 participants, 
where the confirmed COVID-19 CAT 2 participants numbered 20. The study was evaluated 
with 50 non-COVID patients, who were negative COVID-19 participants. 



2.3. Study Design 

COVID-19 with CAT 2 infection stage was validated with an RTK test kit upon arrival at the 
administration of the emergency department. The patient was approached to request 
participation in the clinical study. As the patient agreed, the patient concern form was 
explained, and the patient signature was obtained prior to beginning the data acquisition. The 
patient was instructed to sit and lean against a chair. The patient was advised to stay relaxed 
and breathe calmly through the nasal cannula, which was used as the sampling tube and fixed 
at the patient's nose. The other end of the nasal cannula was locked at the device filter 
opening. The patient was instructed to breathe normally using the nasal cannula to ensure the 
patient was comfortable and, hence, the obtained data was reliable. During the measurement, 
the patient was advised to not speak or move body position as it may disrupt the flow of 
CO2 gas in the sampling tube. Once a stable waveform was observed, the data was recorded 
for two minutes using a stopwatch. The recorded data is stored in comma-separated values 
(CSV) file format on an SD card, which was later extracted for further evaluation. As the 
measurement and recording process were completed, the nasal cannula was disconnected and 
removed from the patient’s nose for disposal. The same study protocol was applied to 
negative COVID-19 patients, and the non-COVID data was acquired. 

2.4. Signal Preprocessing 

The filter implementation is designed using the Signal Processing Toolbox of MATLAB 
v2022a. A digital filter was implemented: a first-order FIR low-pass filter with a cut-off 
frequency of 10 Hz and a moving average filter. The FIR low-pass filter was implemented to 
restrict the bandwidth of the CO2 signal to 10 Hz and focus on the important signal within the 
respiration signal, as specified in (Klco et al., 2018). The low-pass filtered data was used for 
the moving average filter. The filter was tested with varying span widths (8, 10, 18, 23, 30, 
35, 50, 100, 150) to justify the suitable span width to be applied to the signal. The span width 
of 8 has been used in (Singh et al., 2018), and a span width of 13 has been utilized in 
(Balakrishnan et al., n.d.), while the additional widths were added for investigative purposes. 
The concept applied in the moving average filter is it moves a window of specified length 
down the data and calculates the averages of the data included in each window (Avuti et al., 
2019; Kumar et al., 2019; Maramis and Delopoulos, 2011). The implementation is shown in 
equation 1. 

𝑦(𝑛) = 	 !
"#$%	'()*+

	'𝑥(𝑛) + 𝑥(𝑛 + 1) +⋯+ 𝑥,𝑛 − (𝑠𝑝𝑎𝑛	𝑤𝑖𝑑𝑡ℎ − 1)67   (1) 

Then, a moving average filter for the span width of 8 was implemented in the MATLAB 
code. First, the window width was selected, then the coefficient, depicted as ‘A’, was 
prepared following the equation. The function ones returns a 1 by 1 matrix, which was 
divided by the window span. Then, by using the filter function, it filters the input data with a 
preprogrammed rational transfer function defined by the coefficients set. 

2.5. Feature Extraction Algorithms 

A sorting hierarchical algorithm is developed to analyze the exhaled breath waveforms 
recorded. The algorithm for valid breath cycle selection is developed by assessing the 
minimum end-tidal carbon dioxide (EtCO2) value, the peak-to-peak distance, and the 
pathologic properties of the exhaled breath waveforms. These assessments were validated in 



previous studies by computing the mean, standard deviation, and its derivatives in each 
breath cycle recorded in the prototype (Malarvili et al., 2021). The selection criteria outlier 
exhalation breath cycles in the breathing pattern, which are designated as the valid 
CO2 signals recorded from a patient. The core of the presented study is the algorithmic 
segmentation of exhaled breath. Fig. 2 shows the overview of the presented study of detecting 
COVID-19 from exhaled breath profile analysis. Each valid exhaled breath cycle extracted is 
divided into five epochs using a CO2 partial pressure threshold value, as shown in Fig. 2. 

Fig. 2. Overview of the presented study of detec(ng COVID-19 from exhaled breath profile 
analysis. 

These epochs are the original proposal of the study, which contrasts with the visual analysis 
of exhaled breath waveforms, where the alveolar plateau and EtCO2 peak value were highly 
prioritized. These epochs were developed in contrast to the visual interpretation of the 
exhaled breath waveforms, which gave top priority to the alveolar plateau and EtCO2 peak 
value. By considering the standard CO2 partial pressure throughout a breath cycle, these 
portions were created. An exhaled breath waveform's e1 and e2 represent the expiration phase, 
whereas e4 and e5 stand for the inspiration phase. The end-tidal point of an exhaled breath 
waveform is shown as e3, and the epoch is shown as being 0.25 seconds to and from the 
EtCO2 peak. The trend-line-based analysis carried out in this study, which contributed to the 
epoch being created in this approach (Howe et al., 2011), and the developed algorithm, which 



identifies each valid exhaled breath and segments it into five epochs, incorporate this 
information (Homayoonnia et al., 2021; van Bohemen et al., 2023). As established in 
previous studies, the slope and area indices of each epoch were computed using Equations 2 
and 3, respectively (Malarvili et al., 2021). The least squares linear fitting method was used 
to compute the slopes of each sub-cycle. By lowering the residue in accordance with (3), it is 
possible to include the entire CO2 signal while still computing the intercept and slope of the 
CO2 waveform. 

𝑆𝑙𝑜𝑝𝑒	,𝑆,6 = 	
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Where slope (S) length is defined by C, Sj defines the jth element, and the best fit and weight 
of the jth element are defined by Mj and bj, respectively. The CO2 signal and the sampling 
interval are defined by R(t) and dt in area (ARi) computational formulas. In addition, the 
Hjorth parameters of each epoch were extracted. These parameters are based on the standard 
deviations of the amplitude of the signal and its derivatives (i.e., the first and the second 
derivative). Hjorth parameters are a set of three parameters, which are the activity, mobility, 
and complexity. These parameters provide information related to the amplitude, slopes of the 
signal, and the similarity between the shape of the signal under analysis and that of a pure 
sine wave. As the Hjorth parameters are highly important in differentiating the asthmatic 
condition, the parameters are included in the present study for evaluating the exhaled breath 
waveforms of COVID and non-COVID subjects. Hjorth activity indicates the signal's 
variability with respect to its mean value and provides a measure of the amplitude variance. 
When the variance is relatively high, it means that the signal's amplitude is widely distributed 
around the mean value. A slight difference, however, shows the reverse. Equation 4 defines 
the computational formula for Hjorth activity (variance) (El-Badawy et al., 2022). 

𝜎41 =
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Where, y(l) defines the CO2 signal, and L indicates the data length. Mobility is the second 
Hjorth parameter, which indicates the ratio of the standard deviation of the signal's first 
derivative to that of the signal itself. The square root of the first derivative's standard 
deviation and the signal itself are both equally influenced by the signal's mean amplitude. As 
a result, the ratio will depend only on the signal's structure and be configured so that it 
measures the relative average slope. The computational formula for mobility is as follows, 
where y’(l) refers to the first derivative of the signal (Oh et al., n.d.). 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦[𝑦(𝑙)] = 7!"
7!

                 (5) 

The concept of complexity, which has no dimensions, describes how the shape of the signal 
under study resembles a sinusoidal waveform. When the signal's structure is more akin to a 
pure sine wave, the complexity value is near to one. The ratio of the mobility of the signal's 
first derivative to its own mobility is used to calculate complexity. Equation 6 represents the 
formula to calculate Hjorth complexity (Hjorth, n.d.). 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦[𝑦(𝑙)] = 89:(6(*4	[4"(6)]
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      (6) 



The y´(l) and y´´(l) represent the first and second derivatives of the CO2 signal. The following 
equations define the expressions for the derivatives. 

𝑦@(𝑙) = !
A#
[𝑦(𝑙 + 1) − 𝑦(𝑙)]                    (7) 

𝑦@@(𝑙) = !
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[𝑦′(𝑙 + 1) − 𝑦′(𝑙)]        (8) 

Where Ts defines the sampling time interval (El-Badawy et al., 2022). Fig. 3 shows the 
flowchart of the algorithm for epoch segmentation and feature extraction. The overall results 
are typically impacted by the choice of data length, which can therefore have an impact on 
the findings' accuracy. In this study, an approximate 2-minute data sampling resulted in 
approximately 35 valid exhaled breath waveforms from a single patient. About 700 valid 
exhaled breath waveforms resulted in feature computation and interpretation for high-
resolution prediction and the ability to detect even minute waveform changes. The 
EtCO2 value and respiratory rate of a patient are computed from the exhaled breath 
waveform. The features and the indices for each patient were presented in a comma-separated 
values (CSV) Excel file. The features in digital and infographic forms are the output of the 
simulation. 

2.6. Data analysis 

A descriptive statistical analysis was performed to present the baseline data acquired as the 
outcome of the developed algorithm. The significance of features in each epoch in defining 
COVID and non-COVID conditions was evaluated using the significance p value from a 
paired sample T-test. Receiver operating characteristic (ROC) curves were generated for 
features and indices, where the sensitivity and specificity were quantified through the area 
under the curve (AUC) and its 95% confidence interval. The predicted values from the 
statistical analyses were interpreted to classify the presence of COVID and non-COVID 
conditions in a subject. A Bland-Altman plot was generated for significant features, and the 
data distribution was evaluated. The descriptive statistical analyses were performed using 
IBM SPSS (Version 25, USA), and the limit of statistical significance was fixed at p = 0.05. 



Fig. 3. Flowchart of a valid exhaled breath segmenta(on employed in the developed 
algorithm for detec(ng COVID-19 from exhaled breath profile analysis. 

3. Results 

3.1. Study Population 

The CAT 2 infection stage of COVID-19 patients was validated through RTK-antigen rapid 
tests performed by the medical officers. The age of patients ranged from 21 to 60 years old, 
where 24 of them were male and the rest were female patients. The majority of 16 COVID-19 
patients showed infection symptoms such as fever, sore throat, and high body temperature. 
About 4 patients showed symptomless CAT 2 COVID-19 condition. The 20 negative 
COVID-19 subjects were recruited equally in gender. The non-COVID condition of the 
subjects was validated through the RTK antigen rapid test. It was made sure that the tested 
patients had no history of breathing problems like asthma, chronic obstructive pulmonary 
disease, or airflow blockages. This was a significant input variable for the study to estimate 
the respiratory indices. Table 1 shows the clinical characteristics of subjects chosen in the 
study. The number of RTK-confirmed positive and negative CAT 2 COVID-19 patients is 20, 
respectively. The clinical features of the recruited subjects are shown in Table 1. 



Characteris1cs RTK-confirmed posi1ve 
COVID-19 pa1ents 

RTK-confirmed nega1ve 
COVID-19 pa1ents 

Total 
number 

Age distribu(on       
0-20 0 3 3 
21-40 7 11 18 
41-60 13 6 19 
61-80 -     
Gender 
distribu(on       

Male 14 10 24 
Female 6 10 16 
Symptoma(c 
pa(ents 16     

Asymptoma(c 
pa(ents 4     

Table 1. Clinical characteris(cs of subjects chosen in the study. The number of RTK-
confirmed posi(ve and nega(ve CAT 2 COVID-19 pa(ents is 20, respec(vely. 

3.2. Exhaled Breath Cycle from Average CO2 Partial Pressure 

Fig. 4a shows the exhaled breath pattern recorded from a healthy subject. The figure indicates 
the breath pattern plotted using Microsoft Excel, based on the average CO2 recorded using 
the nasal cannula. Prior to being used in the algorithmic simulation, the breath pattern 
recorded for two minutes was visually analyzed. Fig. 4b shows the expanded region of the 
exhaled breath waveform from the plot shown in Fig. 4a. 



Fig. 4. Exhaled breath paXern; (a) breath paXern ploXed using MicrosoZ Excel; (b) magnified 
vision of breath paXern, indica(ng the criteria set for valid breath cycle selec(on; (c) valid 
exhaled breath cycle, deno(ng the valid exhaled breath waveform. 

The figure is remarked with the criteria for a valid exhaled breath cycle selection, which is 
the minimum EtCO2 value at 26.6 mmHg and the minimum peak-to-peak distance at 1 s. 
These criteria were visually evaluated to detect the valid breath cycles recorded from the 
COVID and non-COVID subjects. The figure denotes that the minimum EtCO2 and peak-to-
peak distance are acceptable for selecting the valid exhaled breath cycles, which are the main 
input for the algorithm to produce valid exhaled breath waveforms. Fig. 4c shows the further 
expanded exhaled breath pattern, which denotes the valid exhaled breath cycles that are 
visualized from the average CO2 plot. The shape of each valid exhaled breath cycle is close to 
the exhaled breath waveform, which is expected to be obtained in the designed simulation. 

3.3. Algorithmic Exhaled Breath Classification 

The developed sorting algorithm selects valid exhaled breath cycles and delivers the valid 
exhaled breath waveform. Fig. 5 shows the outcome of the simulation on selecting valid 
exhaled breath cycles from COVID and non-COVID subjects. Fig. 5a(i) shows the selection 
of a valid exhaled breath waveform pattern, whereas Fig. 5a(ii) shows a valid exhaled breath 
waveform extracted from a non-COVID subject. It is evident that the exhaled breath pattern 
of the non-COVID subject is nearly consistent with the similar shape and volume of the 
exhaled breath pattern. Fig. 5b(i) shows the exhaled breath cycle of a COVID subject. The 
green triangle on top and the red triangle at the bottom line of each peak indicate the selection 
of the exhaled breath cycle. Triangles with filled color indicate that the breath cycle meets the 
selection criteria and is extracted as a valid exhaled breath waveform. Inversely, triangles 
with unfilled color denote that the breath cycles do not meet the selection criteria and are 
eliminated from being extracted for a valid exhaled breath waveform. Fig. 5b(ii) shows a 



valid exhaled breath waveform extracted from a COVID subject. The shape and volume of 
the exhaled breath waveform differs from the non-COVID waveform, which denotes the 
distinct difference between COVID and non-COVID subjects. The differences were further 
analyzed using a two-tail paired sample T-test. 

Fig. 5. Algorithmic simula(on output on exhaled valid breath cycle selec(on; (a) i. Exhaled 
breath waveform of non-COVID subject. ii. Zoomed vision; (b) i. Exhaled breath waveform 
from COVID-19 subject. ii. Zoomed vision of valid exhaled breath cycle shows dis(nct 
difference between COVID and non-COVID waveforms. 

3.4. Feature Interpretation 

Fig. 6 shows the output of valid exhaled breath waveforms for COVID and non-COVID 
conditions. The figure indicates the five epochs identified and segmented in the simulation. 
Slope, areas, angle, activity, mobility, and complexity are the features evaluated in the study. 
Fig. 6a-6c shows the exhaled breath waveforms extracted from CAT 2 COVID subjects. The 
shape of the exhaled breath waveforms deviates from the standard shape. Deviation plays a 
key role in computing the algorithmic output of each epoch. Such variation is analyzed to 
determine the presence of COVID and non-COVID states in patients based on an algorithmic 
approach. Fig. 6d-6f shows the exhaled breath waveforms of non-COVID subjects. 



Fig. 6. Exhaled breath feature extrac(on; (a) – (b) show waveforms indica(ng slope, angle, 
and area of each epoch segmented from a COVID-19 subject breath profile, whereas (d) – (f) 
indicate segmented features for non-COVID. 

3.5. Statistical Evaluation: Significant Features 

The primary analyses of features in each epoch were presented as the mean with standard 
deviation (SD). Out of the possible features identified in the literature, 26 features were 
evaluated in this study. The slope e2, activity e2, and the intersection angle of the expiration 
and inspiration curves showed high significance between COVID and non-COVID conditions 
with 0.000 p-values. The area of e2 showed high significance with p = 0.039. The mobility of 
e2 showed p = 0.008, indicating significant variation to be considered for evaluating COVID 
conditions. The complexity feature showed significant variation for only e3, with p = 0.024. 
The rest of the features of each epoch indicated insignificant variation between COVID and 
non-COVID conditions. The T-test outputs manifest good correlation between COVID and 
non-COVID conditions, with the p values exhibited by the significant features, which is 
highly approached for preliminary clinical decision making upon COVID-19 diagnosis. 

3.6. Respiratory Indices: EtCO2 and Respiratory Rate 

The EtCO2 and respiratory rate (RR) values were recorded to determine the discrepancy 
between COVID and non-COVID subjects recruited in this study. Fig. 7a shows the bar chart 
with error bars indicating the respiratory indices are variable in the range of 6 – 42 and 3 – 
24, predicted for EtCO2 and RR, respectively, within the COVID and non-COVID subjects. 
The RR did not reveal huge variation, with a 21.26 mean value and 3.57 SD, and with a 19.86 
mean value and 4.72 SD for COVID and non-COVID subjects, respectively. However, the 
EtCO2 mean for COVID subjects is 32.81 with an SD of 6.38, whereas the non-COVID 
subjects showed a 36.17 mean with 5.46 SD. The paired T-test analysis for both EtCO2 and 
RR values showed no significant difference, with p values equal to 0.862 and 0.341, 
respectively. The results denote that EtCO2 and RR indices did not show significant disparity 
in evaluating COVID and non-COVID conditions. 



Fig. 7. (a) Correla(on between EtCO2 and RR; (b) Receiver opera(ng characteris(cs (ROC) 
curves for the significant features indica(ng predictors of good agreement for differen(a(ng 
COVID-19 condi(on. 

3.7. Receiver Operating Characteristics (ROC) Analysis 

The preliminary clinical studies revealed that receiver operating characteristics (ROC) 
showed good predictive values in comparing the significance of features for predicting 
COVID and non-COVID conditions. The area under the curve (AUC) values of the 
significant features denote the statically pertinent ability to detect the presence of COVID 
obstruction in the respiratory airway. The predictive value for the angle of intersection 
between the expiration and inspiration phases indicates a higher value than the other 
significant features, with a 0.775 AUC. The slope of e2 and the area of e2 showed moderately 
good ability for discriminating COVID and non-COVID conditions with AUC values of 
0.667 and 0.693, respectively. Table 2 shows the statistical significance analysis performed 
for the extracted exhaled breath features between COVID and non-COVID patients. The 
significant Hjorth parameters of activity, mobility, and complexity showed fairly good 
compliance with AUC values between 0.500 and 0.550 (Fig. 7b, Table 2). The maximum 
Kolmogorov-Smirnov index was 0.471 and achieved a cut-off value of 8.30. At this cutoff 
value, the sensitivity obtained is 92.7%, and the specificity is 57%. The slopes and areas of 
e2 revealed 89.8% and 80.1% sensitivity and specificities of 52.1% and 68.4%, respectively, 
for predicting good compliance with COVID and non-COVID conditions with the respective 
maximum cut-off values. 

  
Mean ± Standard devia1on 

AUC p value 
95% Confidence interval 

COVID pa1ents Non-COVID pa1ents Lower limit Upper limit 
Slope e2 10.52 ± 8.27 14.14 ± 8.26 0.667 0.000 -7.5036420 -5.5726855 
Area e2 37.57± 36.84 25.13 ± 14.09 0.693 0.039 20.7961909 28.1491159 
Angle 11.60 ± 8.88 8.10 ± 7.00 0.775 0.000 6.1376349 8.2249380 

Ac1vity e2 9.32 ± 5.30 13.33 ± 7.16 0.528 0.000 -5.4246899 -3.8987386 
Mobility e2 0.041 ± 0.015 0.043 ± 0.018 0.503 0.008 -0.0038495 0.0000657 

Complexity e3 10.82 ± 8.00 9.78 ± 7.73 0.603 0.024 -4.4076976 5.8604478 
Table 2. Sta(s(cal significance analysis performed for the extracted exhaled breath features 
between COVID and non-COVID pa(ents. 



3.8. Bland-Altman Correlation 

Fig. 8 shows the Bland-Altman plots generated for the readings of significant features 
obtained from the two-tailed T-test. The plot indicates the differences in a computed feature 
(y-axis) and the mean (x-axis) between COVID and non-COVID subjects. The analysis for 
the slope of the e2 feature (Fig. 8a) showed a bias of 6.54 with 30.73 and -17.65 limits of 
agreement (LOA). The readings for the area of e2 (Fig. 8b) showed a 24.45 bias with 116.58 
and -67.65, lower and upper LOA, respectively. Fig. 8c shows a narrow distribution of angles 
with a 7.19 bias and 33.32 and -18.97 LOA. The mean difference of activity e2 is highly 
scattered, showing a -4.66 bias and 14.45 and -23.18 LOA, as shown in Fig. 8d. The 
significant Hjorth parameters of mobility (Fig. 8e) and complexity (Fig. 8f) showed narrow 
distributions with -0.02 (-0.067 – 0.067) and 2.60 (-19.81 – 25), respectively. Although the 
data distributions are uneven, the linear regression coefficient computed between the 
dependent bias and the independent mean revealed a significant p-value for these features, as 
indicated in each plot of Fig. 8. It is evident that the slope, area, and the angle features show 
proportional distributions with significant p values equal to 0.027 for slope e2, and 0.000 for 
area e2 and angle. The significant Hjorth parameters showed insignificant correlation, 
denoted by the linear regression between bias and the mean of the features. The plots 
revealed the agreement between the significant features output of COVID and non-COVID 
by denoting the differences in a computed feature (y-axis) and the mean (x-axis). 

Fig. 8. Bland-Altman plots for (a) slope e2, (b) area of e2, (c) intersec(on angle between 
expira(on and inspira(on phases, (d) ac(vity e2, mobility e2, and complexity e3. 

4. Discussions 
The presented work demonstrates a preliminary approach to identifying the presence of 
COVID-19 infection through the exhaled breath-based waveform using the developed 
algorithm. The study was evaluated based on the statistical significance output score in 
distinguishing the state of COVID and non-COVID. The generation of the algorithm for 



exhaled breath waveform segmentation was challenged by the variance that existed in 
COVID-19 patients and the many features associated with the segmented exhaled breath 
waveforms (Abbasi-Kesbi et al., 2020). Since the study demands the least variance in clinical 
data acquisition, the preliminary research was focused on only category 2 (CAT 2) COVID-
19 patients. Out of 20 RTK-positive COVID-19 patients, only 4 showed asymptomatic 
infection. The rest of the patients showed symptoms of a runny nose, sore throat, loss of taste 
and smell, fever, severe cough, and general appearance of unwellness. However, the patients 
were approachable for declaring their interest in taking part in the pre-clinical study. The 
work that was displayed has significant medical applications. With the least amount of patient 
cooperation, the exhaled breath waveform recording can be performed. The data recording 
can therefore be repeated without being altered (Godoy et al., 2023; Tiller et al., 2021). Using 
a nasal cannula and monitoring equipment, the system is simple to set up and straightforward 
to carry out. It is acceptable for a non-clinician to do the assessment since the data collected 
is statistically analyzed. As COVID-19 disease infection begins at the upper respiratory tract, 
it is likely to be recognized through the breath pattern of infected individuals. One of the 
acceptable biomarkers for the detection of COVID-19 is volatile organic molecules (VOC). 
Nonetheless, VOCs are found in the breath of infected patients, and the infection state is 
assessed based on these findings. The statistical evaluation of the algorithmic outputs for 
COVID-19 infection detection was performed in this study. 

A two-tailed paired sample T-test was performed as the primary statistical analysis to identify 
the features that show significant differences between the COVID and non-COVID 
conditions. Based on Table 2, the algorithmic simulation showed that the slope and area of 
e2 are significant. It is highly expected that significant differences exist between the slope and 
area of e2 as the e2 indicates the exhalation region of the waveform. These results indicate 
that the slope and area features for e2 are significant for use in distinguishing the COVID and 
non-COVID conditions. The developed algorithm was designed as it results in the 
intersection angle between the expiration and inspiration phases of a valid exhaled breath 
waveform. The angle targeted in this study has a huge difference from the alpha and beta 
angles of exhaled breath waveforms reported in the literature. The alpha and beta angles are 
prominently utilized for detecting respiratory diseases, which comes along with the 
simulation of computing the transition angles of phase II and phase III of a waveform. In this 
study, the intersection angle of expiration and inspiration is introduced as it simplifies the 
relationship between the alpha and beta angles (Peveling-Oberhag et al., 2020). In an aim of 
simplifying the use of these indexes, the intersection angle of the two phases is 
algorithmically obtained and analyzed. This feature showed a significant difference between 
the COVID and non-COVID conditions with p value equal to 0.000 with T-test analysis. This 
angle is expected to be highly employed in detecting airway obstruction, where 
inhomogeneity in ventilation is associated with the deviation of the slope and area of the 
expiration and inspiration regions. It is preliminarily determined by manual exhaled breath 
waveform inspection and helps for detecting malfunction in alveolar ventilation and the 
chambers in the bronchial region. In the presented study, the intersecting angle feature was 
statistically computed through the developed algorithm. It is justified to be significant in 
differentiating the COVID and non-COVID conditions. The activity and mobility features of 
e2 showed significant differences. The computation of activity for one breath is proved to 
distinguish between asthmatic and non-asthmatic conditions in the stated report (Arjaria et 
al., 2021). Mobility is reported to be used in identifying transitional errors in 
electroencephalogram (EEG) signal evaluations. Based on p-value analysis, the activity and 
mobility of e2 can be used in discriminating the COVID and non-COVID conditions. Besides, 
the complexity of e3showed significant differences. The e3 reveals the EtCO2 peak variation 



between the COVID and non-COVID conditions. The complexity feature aids in EEG signal 
interpretation and photoplethysmography examination (Grover and Turk, 2020; Rizal et al., 
2019). As these features are highly welcomed in medical applications, they are further 
evaluated for identifying the COVID and non-COVID conditions. The significant features are 
further analyzed using ROC analysis. The area under the ROC curve is moderately greater 
than 0.500 for all significant features. The intersection angle showed a higher AUC than the 
rest, which emphasizes its importance in identifying the COVID and non-COVID conditions. 
The analyses on respiratory indexes revealed that EtCO2 and RR computational analysis are 
insufficient to identify the COVID condition. 

6. Conclusion 
The work presented has provided support for an alternate method of identifying COVID-19 
infection. According to the study, the developed algorithm divides a valid exhaled breath 
waveform into five epochs and computes its feature readings to provide the appropriate 
result. According to the statistical analyses, the slope of e2, area of e2, intersection angle of 
the expiration and inspiration phases, and exhaled breath features are the most promising for 
differentiating between COVID and non-COVID conditions. Prior to the algorithm developed 
in giving the accurate exhaled breath waveform features output, the preliminary clinical trial 
with 20 RTK-positive and 20 RTK-negative participants has proven that the exhaled breath 
waveform delivers an easy and speedy COVID-19 detection technique. The research has 
stressed the importance of exhaled breath analysis as a tool for algorithmic and statistical 
simulation that targets a particular threshold, in addition to aiding in the detection of diseases 
based on biomolecules. This will assist physicians in initiating preventative measures and 
reduce the workload associated with invasive sample methods. 
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