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Abstract

Blood disorders caused by SARS-CoV-2 that may lead to hypoxaemia and 

subsequently to ARDS in COVID-19 patients as well as possible therapeutic effects of 

erythropoietin in order to restore oxygenation are analyzed.

T he pulmonary inefficiency observed in COVID-19 patients may not be caused by cell

damage in the lungs alone, this is suggested by the atypical presentation of ARDS (1).

While there is an increased concentration of ACE2 receptors in alveolar cells, the most

probable point of entry for the virus, there are cases where patients are unable to

breathe while there isn't substantial damage to the lungs and under mechanical

ventilation (2). T he lack of oxygenation in these conditions suggests that SARS-CoV-2

may affect oxygenation via paths not directly correlated with pulmonary function.

T he main cytokines which are elevated in severe patients with a SARS-CoV-2 infection are

IL-1 , IL-6 , INF-γ  and T NF-α (2,3), these cytokines are known to cause blood disorders,

IL-1 reduces RBC count by neocytolysis (4), T NF-α and IL-1 inhibit erythropoietin (EPO)

production by reactive oxygen species (5) , INF-γ  downregulates EPO receptor

expression and causes apoptosis of erythrocyte progenitor cells (6) and IL-6 impairs

hemoglobin production and erythroid cell maturation (7).

T he elevated red blood cell width distribution - RBCW (dyserythropoiesis) found in severe

COVID-19 patients is also found in malaria patients reportedly caused by the need to

upregulate erythrocyte production by the bone marrow (8) since RBCs are constantly

attacked in a malaria infection.

A molecular docking study of various SARS-CoV-2 glycoproteins and hemoglobin reveals

that SARS2-CoV-2 glycoproteins bind to components of the hemoglobin conglomerate

inhibiting the proper folding of hemoglobin, thus hemoglobin is dissociated and release

heme and iron ions in the blood stream further increasing the hypoxia of the patients by

inhibiting the body's ability to carry oxygen (9). Chloroquine was shown to disrupt SARS-
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CoV-2 and hermoglobin interaction. Free heme from hemoglobin is cytotoxic and in the

presence of T NF increases cell damage (10) while excess Fe2+ iron forms reactive

oxygen species (ROS) which are cytotoxic (11,12), further reduce EPO production and

hamper erythropoiesis (13). During a COVID-19 infection the high oxidative environment

can damage the RBC membrane increasing the lysis of RBCs (14). RBCs act as dynamic

reservoirs of cytokines and hemoglobin (13), the lysis of RBCs leads to an increase of

inflammatory cytokines, free heme and free iron. RBCs can cross the capillary

endothelium in the lungs and have been found in the alveoli of patients with ARDS (14,15)

so there may be an increase of cytokines, heme and iron ions near alveolar cells due to

this action. An increased level of ferritin in severe patients reveals the body's response in

order to reduce iron ion concentration since ferritin can store excess iron ions in a safe

form (3). Hepcidin upregulation is common after viral infection thus there is a decrease in

iron dietary uptake and an increase of storage of iron in macrophages (16). EPO

administration lowers hepcidin directly and indirectly through decreasing IL-6 (since IL-6

downregulats ferroportin an inhibitor of hepcidin), releases iron from macrophages and

increases iron uptake from the bone marrow which leads to an increase in RBC

production (17). A distant similarity between hepcidin and SARS-CoV-2 glycoproteins has

been found (18) which may also be a factor for reduced RBC and hemoglobin count.

SARS-CoV-1 directy increases the activation/phosphorylation of p38 MAPK and the

downstream targets in the p38 MAPK pathway (19), phosphorylation of p38 MAPK

increases apoptosis of erythroid progenitors while inhibition of the p38 MAPK increases

erythroid and myeloid cell concentration in a dose-dependent manner (20). Some

cytokines namely IL-6 and T NF-α may also be increased after phosphorylation of p38

MAPK (21).

T he papain like protease of SARS-CoV-1 is shown to upregulate the expression of the

transforming growth factor beta 1 (T GF-β1) and pro-fibrotic genes via ubiquitin

proteasome, ERK1/2 and p38 MAPK mediated pathways (22), T GF-β1 inhibits

erythropoiesis by blocking proliferation and accelerating differentiation of erythroid

progenitors (23).

T he SARS-CoV-1 spike glycoprotein activates the nf-κΒ pathway (24), nf-κB activation

supresses erythroid-specific genes (25) while exogenous administration of EPO inhibits

NF-κB and regulates and promotes the anti-inflammatory balance (26).

A BLAST  comparison reveals that the membrane glycoproteins of SARS-CoV-1 and

SARS-CoV-2 have a 90.52% similarity so there is a high possibility that most of the target

molecules as well as the affected signaling pathways for the membrane glycoproteins

are the same for both viruses.

T he above factors all affect oxygenation and hypoxia may lead to a positive feedback

Qeios, CC-BY 4.0   ·   Article, May 2, 2020

Qeios ID: 67WH9K   ·   https://doi.org/10.32388/67WH9K 2/11



loop via ACE2 and furin upregulation and an increase of the number of the infected cells

hence an increase of the inflammatory factors which increase hypoxia. T he ACE2

receptor is known to play an integral role in SARS-CoV-2 infection since it the allows the

docking of the virus and entry of the viral RNA in cells (27). Although HIF-1 (Hypoxia

Inducible Factor-1) which is increased in response to hypoxia and is responsible for EPO

production is usually increased after a SARS-CoV-1 infection (28) there is a delay between

the onset of severe hypoxia and ACE2 downregulation with ACE2 levels increasing above

baseline for 48 hours before falling back to normal and reduced after enough Ang II is

accumulated (29,30). An increase of the proprotein furin is associated with the increase

of HIF-1 (31), SARS-CoV-2 has a furin cleavage site on the S1/S2 spike proteins junction

which faciliates cell-cell fusion and possibly viral entry (32,33) increasing furin

concentration should increase the rate of cell infection. According to the above there

should be an an increase of furin concentration once hypoxaemia sets on, upregulation

of ACE2 for 48 hours and downregulation of ACE2 for the rest of the duration of

hypoxaemia, the above agrees with experimental data redarding COVID-19 and ACE2

(34).

A hypoxia induced cytokine feedback loop due to blood disorders in COVID-19 can cause

a buildup of inflammatory cytokines (IL-1, T NF) and increase the concentration of

hyalyronic acid (HA) in the lungs, HA is a powerful humectant which can absorb water

many times it's weight and inhibit pulmonary oxygen transfer (35). T hus, there is a

secondary path in which the pulmonary function can be impaired in COVID-19 patients.

Hyaluronidase has been suggested to reduce HA concentration in the lungs of SARS-

CoV-2 patients.

Aftter prolongerd hypoxia HIF-1 is reduced while HIF-2 is increased (36), HIF-1 reduces

the expression of IL-8 while HIF-2 increases IL-8 (37), elevated IL-8 is found in severe

COVID-19 patients (38) and IL-8 is associated with cystic fibrosis and lung damage (39).

Further evidence supporting the role of hypoxia is the increase of myoglobin in severe

patients (40), hypoxia increases myoglobin production in the heart even without physical

excercise (41).

T here may be a correlation between the reduced disease severity in younger ages and

reduction of erythropoietic activity with age progression since older ages have reduced

growth hormone compared to younger individuals which through IGF-1 reduces

apoptosis of erythroid cells and increases the activity of EPO, the HIF-1 response

decreases with the progression of age and there exists a correlation between age,

inflammation and high IL-6 levels (42).

Various suggestions to lower T NF-a in order to treat SARS-CoV-1 patients have been

made (43). Erythropoietin and T NF-a are shown to have a reverse depedency factor and
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exogenous administration of EPO can lower T NF-a levels (44).

T  lymphocyte cell activity and count is very important in the body's ability to fight the

SARS-CoV-2 infection suggested by the low T  cell count found in severe patients (45).

IFN-γ  and exogenous EPO are shown to restrain T  cell activitation via arginine

catabolism while administration of methylarginine can restore the above T  cell activity

(46,47). SARS-CoV-2 glycoproteins bind to human CD26 and possibly reduce CD26

concentration (48), CD26 is known to participate in T  cell activation (49). Exogenous EPO

releases immature and mature B and T  cells from the bone marrow in the first 24 hours

from administration thereby increases the T  cell count (50).

Recombinant EPO has recently been used to treat COVID-19 patients with very

encouraging results (51). EPO along with methylarginine, chloroquine or other antiviral

agents may have therapeutic effects for the patients.

EPO acts by modulating the immune response (suppressing memory T  cell and

promoting regulatory T  cell response) (52), increasing T -cell count (50), decreasing

inflammatory cytokines such as T NF-α (44). IL-8 (26) and IL-6 (17). EPO has anti-

inflammatory and anti-apoptotic effects for many cell types (53) and increases viable

RBC and hemoglobin production which can help restore oxygenation.

Some studies mention the action of nicotinic choligenic receptors in COVID-19 since

SARS-CoV-2 appears to have similar genetic sequences as snake venom derived toxins

(54) which act as agonists of hematopoietic α7-nACh receptors, are known to reduce

available acetylcholine which can reduce the activation of platelets (55) and with this

action achieve a thrombogenic effect. Since snake venom derived toxins act on both

nicotinic cholirgenic and muscarinic cholirgenic receptors there is a high possibility that

SARS-CoV-2 has an inhibiting action for muscarinic cholirgenic receptors which can

reduce the self-renewal of erythroid progenitors (55).

T here have recently been reported incidences of thrombotic complications in severe

COVID-19 patients (56) although D-dimer a blood clot degradation product was known to

be correlated with patient severity and was proposed as a severity market since the start

of the pandemic (57). It was shown before that SARS-CoV-2 can cause the release of

iron ions in the blood stream, when blood coagulation occurs under physiological

conditions thrombin converts plasma fibrinogen into an insoluble clot however in the

presence of Fe3+ iron produced by the dissociation of hemoglobin, hydroxyl radicals are

produced that cause the polymerization of fibrinogen into a highly hydrophobic matrix

which when fused with RBCs resists the fibrinolytic degradation of regular blood clots

(58). Although antioxidants such as ascorbic acid can reduce certain oxidative reactions,

they can have a catalyzing effect in hydroxyl radical formation (59) which is dentrimentral

in thrombotic complications, however oxidizing substances can assist in the
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decomposition of hydroxyl radicals. T his may sound paradoxical since ascorbic acid can

reduce oxidative damage which occurs during a SARS-CoV-2 infection and is generally

recommended as supplementation to combat COVID-19 but may prove damaging to

patients with thromboembolic predisposition.

Membrane stabilizers can enhance the stability of RBCs reducing RBC lysis and

subsequent increase of cytokines, free heme and free iron (60) however specific action of

membrane stabilizers has not been elucidated in COVID-19 patients.

T he elevated chemokines in SARS-CoV-1 infection are MCP-1 (monocyte

chemoattractant protein 1), MIP-1α (monocyte chemoattractant protein 1α) and

RANT ES (Regulated on Activation, Normal T -cell Expressed and Secreted) (3,61).

RANT ES suppression is normally found in typical ARDS (62). T he Monocyte Migration

Inhibitory Factor (MIF) is decreased in SARS-CoV-1 infection (63), SARS-CoV-1

Nucleocapsid N-glycoprotein has a specific binding to human MIF protein (64). Hypoxia

stimulates MIF production via a HIF-1 dependent pathway (65) and MIF is normally

increased in typical ARDS (66,67). T hese findings suggest that SARS-CoV-2 similarly to

SARS-CoV-1 may exhibit abnormal concentrations for RANT ES and MIF which are not

found in typical ARDS. Increase in RANT ES and decrease in MIF concentration can

paradoxically increase the erythropoietic response (68) however this antagonistic effect

is not sufficient to normalize blood oxygenation.

Another path in which SARS-CoV-2 may infect cells is through endocytosis utilizing lipid

rafts that are present on cell membranes (69), lipid rafts form aggregates in response to

cytokines or integrins to optimize signal transduction while erythropoietin causes the

EPO-R receptor to translocate to lipid drafts and increase lipid draft coalesence (70)

however whether EPO increases or reduces viral infection through lipid rafts is unknown.

 

Disclaimer: T he presentation is not peer-reviewed; it should not replace individual clinical

judgment and the sources cited should be checked.T he views expressed in this

commentary represent the views of the authors. Opinions are not a substitute for

professional medical advice.
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