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Abstract

Gianfranco Spavieri, George T. Gillies & Espen Gaarder Haug
(The Sagnac effect and the role of simultaneity in relativity theory,
Journal of Modern Optics (2021)), claim that the Sagnac effect re-
veals the theory of relativity is incorrect and inconsistent. We prove
that when standard relativity is appropriately interpreted, it is obser-
vationally correct and logically sound.

Keywords: Sagnac effect, relativity theory, synchronization, absolute simul-
taneity, relative simultaneity.

1 Introduction

The so-called absolute Lorentz transformations (LTA) have been hailed in
some quarters as a valid alternative to the usual Lorentz transformations
(LT) [1–5]. Considering only one spatial dimension the LT is,

t′ = γ(t− vx/c2)
x′ = γ(x− vt)

}
(LT ) (1)
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while the LTA,
t′ = t/γ
x′ = γ(x− vt)

}
(LTA) (2)

where γ = 1/
√

1− β2 and β = v/c.
The alleged virtue of (2) would be that it allows us to keep the absolute

character of simultaneity. Without discussing their empirical adequacy, the
most evident problem with the LTA is that it lacks theoretical and conceptual
support. While the LT can be derived from clear physical principles, as was
done for the first time by A. Einstein in 1905, the LTA is an ad hoc alteration
of the LT with the only purpose of making simultaneity absolute.

We shall refrain from referring to the LTA from here. We aim to prove
that relativity theory is free from inconsistencies the Sagnac effect purport-
edly reveals.

In Ref. [4], the authors analyze two versions of the Sagnac experiment.
The ring interferometer (Fig.1 a) and the Wang, Zheng, and Yao [6] linear
version (Fig.1 b). In both instances, we have a light source and a detector
in the same position inside a moving system. The experiments purportedly
reveal two problems: 1) for the comoving observer, the speed of light is
different from its universal value c, and 2) time is “discontinuous” and a clock
cannot be synchronized with itself. The first issue would constitute empirical
evidence against relativity, while the second would reveal its inconsistency.

In section 2, we examine the Wang’s modified Sagnac experiment, and in
section 3, we analyze the ring interferometer that purportedly suffers from
similar difficulties.

Figure 1: Sagnac-Wang Interferometers
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2 The Wang linear interferometer

Spavieri et al. analyze two examples of the Wang modified Sagnac experi-
ment. Since the problems that those examples presumably reveal are very
similar, we only reexamine here the first example given in Ref. [4].

Following a similar approch, all calculations are simplified to first order.
This means that we take γ = 1 in all relativistic formulas, and we can neglect
time dilation and Lorentz contraction effects. Also, the time elapsed at the
turning points A and B is assumed to be null, i.e., at those points, both the
clock and the photon undergo infinite acceleration.

Spavieri et al. note that even with these simplifications within this order
of approximation, we cannot neglect the term vx/c2 in the time transforma-
tion (1) responsible for the lack of absolute simultaneity.

The objective is to evaluate the elapsed time T between the emission and
posterior reception of the photon ϕ, as registered by the clock C (Fig. 1 b).
Since the total distance covered by the photon is 2L and the relative velocity
is c+ v,

T =
2L

c+ v
=

2L

c(1 + β)
(3)

We shall prove that an observer comoving with the clock C finds the same
value (3) applying relativity theory. Indeed, since (3) is the Newtonian result
and we disregard second-order effects, both results are expected to coincide.
This is most obvious by calculating

τ =

∫
dt

γ
(4)

over the clock trajectory since to first order γ = 1. However, Spavieri et
al. explicitly analyze the role of relative simultaneity to highlight the alleged
inconsistent nature of relativity theory.

Thus, we shall use a similar approach to Spavieri et al. We start with the
observer in the inertial frame S+ where the clock C is at rest. The observer
in S+, sees the device moving at speed v from left to right (Fig 2 b). We
assume that point A reaches the clock position at the same time photon ϕ
reaches point B. If the speed of light in S+ is c, the time registered by the
clock at this point is,

Tout =
L

c
(5)
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As seen from the inertial frame S0 where the interferometer is stationary
(points A and B stationary, Fig 2 a), the clock C undergoes a sudden accel-
eration and then continues with its inertial motion in the opposite direction
in the frame S−. From the point of view of an observer in S+, the clock
passed to the the frame S− with relative speed w = 2v (Fig. 2 c).
We want to evaluate the time measured by the clock, now in the frame S−,

Figure 2: Frames S0, S+, S−

when the photon reaches it. We reset the clock reading to zero and use (1)
to first order. The event corresponding to the photon at B when the clock
is at A has spacetime coordinates (0, L) in S+. The same event in S− has
spacetime coordinates (−2vL/c2, L).

Thus, according to the time in S−, the photon was at B when (t−)1 =
−2vL/c2. It is irrelevant that the clock was not in S− at t− = (t−)1. Once it
joints S−, its time is assumed synchronized with the time of that frame and
the photon has already left point B when t− = 0.

Let t2 = Tret be the clock reading when the photon arrives at C. If the
distance is covered with speed c, we have that (t−)2 − (t−)1 = Tret − (t−)1 =

4



L/c,

Tret =
L

c
+ (t−)1 (6)

Tret =
L

c
− 2vL

c2
(7)

The total elapsed time is,

T = Tout + Tret (8)

T =
L

c
+

L

c
− 2vL

c2
(9)

T =
2L

c
(1− β) (10)

Since to first order 1− β = 1/(1 + β), from (10) we have,

T =
2L

c(1 + β)
(11)

Thus, the Newtonian result (3) coincides with the relativist one (11).
Now, the question is, where do Spavieri et al. see the inconsistency?

According to them, since in frame S−, the photon was at B in the past of the
event “E ≡ Clock turning around point A in frame S− at t− = 0” we have
a missing part of the section AB = L in that frame. The missing part would
correspond to the distance the photon traveled during the past of the event
E. The idea seems to be that it is impossible or absurd that the photon
traveled that distance in the past of E. Therefore, it had to jump from B to
its position corresponding to t− = 0.

However, that is true only if we assume that the photon was not indeed at
B in the past of E (in frame S−), which merely means that we are rejecting
the relative character of simultaneity between frames in relative motion.

In other words, Spavieri et al.’s reasoning reduces to proving that relative
simultaneity leads to inconsistencies by assuming that it is inconsistent.

Their reasoning can be considered a more elaborate case of Einstein’s
train-embankment thought experiment [7]. Einstein conceived his example
to show that if we accept the existence of an invariant universal speed c, we
must jettison the absolute character of the simultaneity of distant events.
Similarly, the authors of [4] proved that an observer moving with the clock
cannot measure the speed c unless the event E is not simultaneous with
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the event “photon at B” in S−. Thus, they present another proof that an
invariant universal speed and absolute simultaneity of distant events cannot
stand together.

From a purely logical stance, it is possible to deny relativity. But we have
to reject its postulates from the start. However, it is pointless trying to prove
its internal inconsistency, i.e., once we accept its premises, they do not lead
to contradictions or, at least, no one so far was able to find one.

3 The ring interferometer

We shall prove that the correct application of relativistic formulas gives an
invariant speed of light equal to the universal constant c for observers within
the rotating platform and that the puzzling time gap is a natural consequence
of the relativity of simultaneity and has nothing to do with the alleged impos-
sibility of synchronizing a clock with itself or with time being discontinuous.

Doing this correctly requires the use of the formalism introduced in gen-
eral relativity. This does not mean that we need gravitation theory to de-
scribe noninertial systems. The last point is a widespread misconception,
as Pepino and Mabile [8] recently pointed out. To avoid possible misunder-
standings, we clarify that the following formalism is based on the validity
of the LT and the application of special relativity through the principle of
locality [9].

The need of the general metric formalism is necessary because when we
pass to a noninertial system we need general nonlinear transformations yµ =
yµ(x0, x1, x2, x3). The Minkowski metric ηµν = diag{1,−1,−1,−1} becomes,

gµν =
∂xα

∂yµ
∂xβ

∂yν
ηαβ (12)

The metric tensor components gµν become functions of the spacetime coordi-
nates. We assume the Einstein summation convention. Greek letters indicate
spacetime indices varying from 0 to 3, while Latin indices are space indices
ranging from 1 to 3. The interval ds in a noninertial frame can be expressed
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as,

ds2 = gµνdx
µdxν (13)

= g00(dx
0)2 + 2g0idx

0dxi + gikdx
idxk (14)

= g00

[
(dx0)2 + 2

g0idx
0dxi

g00

]
+ gikdx

idxk (15)

= g00

[
(dx0)2 + 2

g0idx
0dxi

g00
± g0i

g00

g0k
g00

dxidxk

]
+ gikdx

idxk (16)

= g00( dx
0 − gidx

i︸ ︷︷ ︸
δx0

)2 +

(
gik −

g0ig0k
g00

)
︸ ︷︷ ︸

−γik

dxidxk (17)

where gi = −g0i/g00. The quantities δx
0 and γik has relevant physical mean-

ings. The 3-tensor γik determines the geometry of space with respect to the
noninertial frame, while the quantity δx0 is the “synchronized” time interval
(see, Refs. [10–12]).

As is well known by relativists, in a noninertial frame the geometry of
space can be non-Euclidean notwithstanding that we are dealing with flat
spacetime without gravitation [11].

Furthermore, synchronization of clocks as in inertial systems where all
clocks can be set to show the same reading simultaneously is in general
impossible inside a noninertial system.

The proper elapsed time indicated by a physical clock in the same point
of space within the noninertial frame is,

dτ =

√
g00

c
dx0 (18)

However, owed to the lack of synchronization of clocks in different points of
space, the elapsed time as mark by two different neighboring clocks is

δτ =

√
g00

c
δx0 ̸= dτ (19)

Velocities should be calculated with (19), not with (18) (see, Ref. [13]).
In particular, the speed of a given particle is,

v =
dl

δτ
(20)

not the usual formula dl/dτ used in inertial systems with globally synchro-
nized clocks.
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3.1 The speed of light in a rotating platform

Using cylindrical coordinates in an inertial frame with origin at the center of
the platform (Fig. 1 a),

ds2 = c2dt′2 − dr′2 − r′2dφ′2 − dz′2 (21)

We perform a transformation to a frame rotating with the platform,

t = t′, r = r′, φ = φ′ − ωt, z = z′ (22)

In the rotating frame the interval is,

ds2 =
(
1− β2

)
c2dt2 − dr2 − r2dφ2 − dz2 − 2βrc dt dφ (23)

where β = ωr/c. The values of gi and γik are,

(gi) = (0,
βr

1− β2
, 0) (24)

dl2 = γikdx
idxk (25)

= dr2 +
r2

1− β2
dφ2 + dz2 (26)

The null geodesics giving the light paths on the rim of the platform is
obtained by setting ds = 0 in (23),

R
dφ+

dt+
= c(1− β) (27)

R
dφ−

dt−
= −c(1 + β) (28)

Applying the correct formula for the speed, according to (17), (19), (20),
(24), (26), and (27),

dl+

δτ+
=

γc(1− β)√
1− β2(1− βR

c(1−β2)
dφ+

dt+

) (29)

=
γ2c(1− β)

1− β
c(1−β2)

Rdφ+

dt+

(30)

=
γ2c(1− β)

1− β
1+β

(31)

= γ2c(1− β2) (32)

= c (33)
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Similarly, we can prove that dl−/δτ− = c.
Thus when we correctly apply the relativistic formulas with the appropri-

ate formalism, we find that observers in the rotating platform measure with
their physical instruments, clocks and rulers, the correct invariant value of
the speed of light.

As a further consistency test, we can calculate the total times T+ and T−

that take for both light rays to complete a closed path around the platform
according to observers inside it. That time must be calculated by summing
the actual (corrected) time increments along their paths,

T+ =

∮
δτ+ (34)

T+ =

∫ 2π

0

√
1− β2

(
dt+ − βR

c(1− β2)
dφ+

)
(35)

T+ =

∫ 2π

0

√
1− β2

(
R

c(1− β)
dφ+ − βR

c(1− β2)
dφ+)

)
(36)

T+ = γ
2πR

c
(37)

According to (26), total length L+ of the closed path is

L+ =

∮
dl (38)

= γ2πR (39)

The mean speed along the closed path is again L+/T+ = c. Similarly,

T− =

∮
δτ− (40)

T− =

∫ −2π

0

√
1− β2

(
dt− − βR

c(1− β2)
dφ−

)
(41)

T− =

∫ −2π

0

√
1− β2

(
− R

c(1 + β)
dφ− − βR

c(1− β2)
dφ−)

)
(42)

T− = γ
2πR

c
(43)

Since L− = L+ we also have L−/T− = c for the clockwise beam.
Thus the mean speeds, when correctly evaluated, also coincide with their

local value c. One could still think that we have a paradox here because as
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is well known the clockwise and counterclockwise beams do not arrive at C
simultaneously. But that is also easily explained because the desynchronizing
effect is different in both directions.

3.2 Clock synchronization in a rotating platform

This is perhaps the only point on which we partially agree with Spavieri
et al. They claim that relativity implies an inconsistency arising from the
synchronization of distant clocks. Next, we explain that the alleged incon-
sistency is only a consequence of the inappropriate definition of simultaneity
that sometimes is given.

The simultaneity of distant events and synchronization of distant clocks
cannot be consistently defined in arbitrary reference frames. Specifically, the
case that concerns us here is that of stationary fields.

A gravitational field is called constant if the components gµν are indepen-
dent of the time coordinate x0. Besides, when the cross terms g0i = g0i = 0,
the field is called static; otherwise they are called stationary. The same clas-
sification applies to the metric field gµν when we are in flat spacetime without
gravitation.

In a rotating platform we have, according to (24), g0φ ̸= 0, so we must
be careful when defining simultaneity of distant events.

We can always define simultaneity for infinitesimally near points. The
difference of coordinate time ∆x0 that correspond to simultaneous infinites-
imally near points in space is given by δx0 in (17). The fact that ∆x0 ̸= 0
for simultaneous events simply means that clocks cannot be assumed to be
synchronized.

What about simultaneity of distant events? Here is where the confusion
arises because some authors define simultaneity of distant events by integra-
tion of the infinitesimal concept,

(x0)B = (x0)A +

∫
CAB

gidx
i (44)

According to (44) we have that (x0)A and (x0)B would be time labels for
simultaneous events at A and B. Since in general we have that∮

gidx
i ̸= 0 (45)
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Spavieri and other authors [4, 5, 14] have correctly pointed out such defi-
nition leads to the obvious inconsistency that a given event would not be
simultaneous with itself! Therefore relativity is inconsistent.

As we mentioned at the beginning of this section, the problem does not
resides in the theory but in the incorrect definition of simultaneity according
to (44). Indeed any consistent definition of simultaneity requires a property
that (44) lacks, namely, transitivity. Really, we have that in general (Fig. 3),∫

CAC

gidx
i ̸=

∫
CAB

gidx
i +

∫
CBC

gidx
i (46)

(46) means that if A is simultaneous with B, and B simultaneous with C,

Figure 3: Paths of simultaneity

A is no longer simultaneous with C.
There is one case when (44) can lead to a consistent definition of distant

simultaneity. It is when the integration is path independent. In those cases,
we have that,

g⃗ = −∇f (47)

However, in such cases it can be proved that a change in the time coordinate
x′ 0 = x0 + f(x1, x2, x3), leaving invariant the space coordinates, leads to
g⃗ = 0, so we are indeed in a static field [13].

In the case that concerns us, i.e., the rotating platform, (47) is not verified
because,

∂gφ
∂r

̸= ∂gr
∂φ

(48)

(48) simply means the concept of distant simultaneity does not make sense
for observers within the rotating platform.
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4 Conclusions

We have proved that the alleged inconsistencies and empirical evidence that
the Sagnac effect presumably reveals against relativity theory are based on
incorrect applications of the theory and the use of erroneous definitions.

Regarding the modified Sagnac experiment of Wang et al., the explication
is no more puzzling than relative simultaneity itself. So, it cannot be consid-
ered inconsistency proof unless we declare relative simultaneity inconsistent.
This type of circular reasoning is typical of arguments trying to find internal
inconsistencies in relativity theory.

As long as the relative nature of distant simultaneity does not lead to
observable or logical contradictions, its absolute character shall remain a
forsaken relic of our past metaphysical prejudices.
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