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Neural networks have emerged as promising tools for solving partial differential equations (PDEs),

particularly through the application of neural operators. Training neural operators typically requires

a large amount of training data to ensure accuracy and generalization. In this paper, we propose a

novel data augmentation method specifically designed for training neural operators on evolution

equations. Our approach utilizes insights from inverse processes of these equations to efficiently

generate data from random initialization that are combined with original data. To further enhance

the accuracy of the augmented data, we introduce high-order inverse evolution schemes. These

schemes consist of only a few explicit computation steps, yet the resulting data pairs can be proven

to satisfy the corresponding implicit numerical schemes. In contrast to traditional PDE solvers that

require small time steps or implicit schemes to guarantee accuracy, our data augmentation method

employs explicit schemes with relatively large time steps, thereby significantly reducing

computational costs. Accuracy and efficacy experiments confirm the effectiveness of our approach.

Additionally, we validate our approach through experiments with the Fourier Neural Operator and

UNet on three common evolution equations that are Burgers’ equation, the Allen-Cahn equation and

the Navier-Stokes equation. The results demonstrate a significant improvement in the performance

and robustness of the Fourier Neural Operator when coupled with our inverse evolution data

augmentation method.

1. Introduction

Partial differential equations (PDEs) play a fundamental role in modeling various phenomena across

diverse fields, including molecular dynamics, fluid dynamics, weather forecasting, and astronomical

simulations[1][2][3][4]. Many physical phenomena are inherently governed by complex PDEs. However,
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obtaining analytical solutions for these PDEs is often impractical. Consequently, numerical methods

have become the primary means for simulating such systems. Despite their theoretical soundness and

accuracy, conventional numerical methods often suffer from high computational costs and require

specialized designs tailored to different classes of PDEs[5]. These challenges are particularly

pronounced when addressing high-dimensional problems requiring fine discretization.

In recent years, there has been a surge in the development of PDE solvers based on deep neural

networks, aiming to create computationally efficient yet sufficiently accurate surrogates to classical

solvers[6][7][8]. One notable advancement in this area are the physics-informed neural networks[9][7].

These networks compute differential operators using automatic differentiation and enforce equations

and boundary conditions through residual loss functions. This method allows for mesh-free

computation of differential operators and is advantageous for high-dimensional data. However, using

automatic differentiation increases computational memory requirements, and the unsupervised

nature of these methods can complicate the training process and impede convergence, especially in

multi-scale dynamical systems[10].

Another promising approach is the neural operator framework, which learns mappings between

function spaces[11][12][6]. The theoretical foundation of neural operators lies in their ability to serve as

universal approximators for any continuous operator[13][14]. Compared to physics-informed methods,

neural operators are easier to train and do not require automatic differentiation. However, the

effectiveness of these methods relies heavily on the availability of substantial high-quality training

data. In many instances, acquiring this data can be prohibitively expensive, difficult to obtain, or

limited to low-resolution formats[15].

This reliance on high-quality training data is a fundamental limitation of neural operator methods.

Some have proposed integrating physics-informed techniques into the training of neural operators to

solve this problem[16][17]. However, these approaches may increase memory usage and computational

costs due to the introduction of automatic differentiation and do not fundamentally resolve the data

scarcity problem. Given this context, efficient data augmentation becomes a crucial task. While there

is some literature on augmentation methods for neural operators, most focus on finding feasible

transformations of solutions to generate new data[18][19][20]. However, since most transformations

are linear or coordinate-dependent, they are incapable of generating data that exhibit adequate

nonlinear variations from the original data. In this paper, we propose a novel approach to augment
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datasets for neural PDE solvers that does not rely on linear or coordinate-based transformations, and

significantly expands the current data augmentation strategies.

There are many different types of PDEs. In physics, various evolutionary processes can be effectively

modeled using evolution equations. In this paper, we focus on solving evolution equations, which can

be generalized to the following form

with periodic boundary condition. Here    represents an interval or a rectangular domain, 

 denotes the analytical solution of an evolution,    is the initial value and   refers to a

combination of linear and nonlinear operators which can include a variety of gradient operators and

nonlinear terms. For instance,    in the heat equation is a linear Laplacian operator, while for

equations like the Allen-Cahn and Navier-Stokes equations, it involves gradient operators and

nonlinear terms. For simplicity, we adopt periodic boundary conditions for equation (1). Other

boundary conditions can also be considered without loss of generality.

These equations are time-dependent and frequently arise in a wide range of applications, such as fluid

dynamics and weather forecasting. Such PDEs can be effectively addressed by neural operators

utilizing recurrent neural network (RNN) structures similar to the Fourier Neural Operator (FNO) in

2D[12]. While neural operators have demonstrated proficiency in solving these PDEs, their heavy

reliance on data is a limitation to their use. We propose a novel data augmentation to address this

challenge. The primary motivation behind our method is that explicitly computing the inverse

evolution is equivalent to implicitly computing the forward evolution, as explained in section 2.

Therefore, our proposed data generation method can produce solutions consistent with reliable

implicit schemes by performing only a few steps of explicit computation, which substantially

alleviates the training data pressure for neural operators. In addition, in contrast to the original data

characterized by predominantly smooth and stable solutions, our inverse evolution augmentation

method produces twinned data sets with higher-frequency components. This augmentation

significantly expands the solution space beyond that of the original data, thereby enhancing the

resilience and robustness of the neural operators.

The main contributions of this work are:

ut

u(0,x)

= F (u) in  := [0,T ] × ΩΩT

= g(x) in Ω
(1)

Ω

u = u(t,x) g(x) F

F
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1. We propose a novel data generation method for neural operator-based PDE solvers based on

inverse evolution. Experiments demonstrate the accuracy of the generated data, its

distinctiveness from the training data, and its efficacy when applied to neural operators.

2. We derive high-order formulas for our data generation method. Experimental results show that

utilizing these high-order formulas significantly enhances the accuracy of the augmented data.

3. We introduce a preprocessing method to address the instability issue that arises when handling

differential equations with sharp interfaces. Experiments indicate that these techniques improve

the accuracy of the generated data and allow for larger time intervals in the inverse evolution.

2. Data Generation Based on Inverse Evolution

Neural Operator Training

A common approach to train a neural operator to solve evolution equations is by predicting the

solution at a later time   based on the solution at time  . Here    is a fixed positive number. We

denote a neural operator as  , where   represents the learnable parameters. Given a dataset of paired

states,  , where    and    are exact solutions with a time difference of  , the

training objective for the neural operator in this setting is to minimize the following loss function

with respect to  :

where the    norm measures the discrepancy between the predicted and true states. This objective

ensures that the neural operator learns to approximate the transition between successive states in the

dataset accurately. In practice, other norms can also be used to measure this discrepancy, such as the 

 norm, depending on the specific requirements of the application.

Longer trajectory predictions can be achieved by recursively feeding the predictions back into the

neural operator. Consequently, with sufficient training pairs of the form  , one can train

a neural operator to recursively solve the evolution equation. It is important to note that one can also

directly train the neural operator to give a solution for large  . However, in practice, the accuracy of

the predictions diminishes for larger  , while autoregressive approaches with appropriate    are

found to perform substantially better[21][22][23].

t + t0 t t0

Nθ θ

{( , )U k U k+1 }N
k=1 U k U k+1 t0

θ

= ∥ ( ) − ,θ∗ argminθ∑
k=1

N

Nθ U k U k+1∥L2 (2)

L2

H 2

(u(t),u(t + ))t0

t0

t0 t0
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For the neural operators, data plays a very important role. However, generating sufficient training

data can be time-consuming. For evolution equations of the form of (1), various numerical schemes

have been designed to obtain accurate numerical solutions in regular domains[24][25][26]. One

commonly used scheme for temporal discretization is the Forward Euler method. Despite its

simplicity, the explicit Forward Euler is prone to instability, necessitating very small time steps for

stability and accuracy[26]. Typically, the time step size for explicit numerical methods needs to be

smaller than   for second-order differential equations and even smaller for high-order explicit

numerical schemes, where   is the mesh size of spatial discretization. Consequently, explicit methods

demand significant computational time to find   given  . To mitigate this, implicit methods

are employed to avoid the small time steps. Although implicit methods offer high stability and

accuracy, they often involve solving a nonlinear equation system at each iteration, which introduces

additional computational iterations and implementation challenges for parallel computation. Semi-

implicit methods can also be used to generate data, but they may smooth sharp interfaces in solutions

and lose accuracy when their time step is relatively large.

To address this challenge, we propose a novel data augmentation method for evolution equations

inspired by inverse evolution. Instead of solving for    from  , our approach begins with 

 and seeks to determine the corresponding  . Our method efficiently finds feasible values

of    without solving any nonlinear equations. It also significantly increases the richness of the

solution pairs which allows a more effective training of the neural operator. Additionally, it can be

proved that the generated data pairs   satisfy the form of the implicit schemes.

Inverse Evolution

The concept of inverse evolution is introduced in[27], where inverse evolution serves as an error

amplifier to regularize the output of neural networks. Essentially, inverse evolution is the inverse

process of the original evolution. In our work, we employ inverse evolution to generated reliable data

for the neural operators. The inverse evolution corresponding to the Eq. (1) follows the PDEs

with periodic boundary conditions. For inverse evolution problems, one can also employ different

numerical methods to solve them and determine the values of numerical solutions at different time

point. For example, if solving the Eq. (3) by the Forward Euler method for temporal discretization and

O( )h2

h

u(t + )t0 u(t)

u(t + )t0 u(t)

u(t + )t0 u(t)

u(t)

(u(t),u(t + ))t0

ut

u(0,x)

= −F (u) in  := [0,T ] × ΩΩT

= g(x) in Ω
(3)
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a finite difference scheme for spatial discretization, we can obtain the following discrete numerical

scheme for inverse evolution:

Here    and    respectively denote the numerical solution at time    and  , where 

.    represents finite difference approximations of  , and    can be

conceptualized as a combination of convolutions of   with designated filters.

Data Generation Schemes

In this part, we demonstrate how to use inverse evolution to produce data consistent with an implicit

method without solving any implicit problems.

Let us consider the Forward Euler method for the inverse evolution, i.e. scheme (4). Given  , if we

compute with a large time step  , we can efficiently obtain  , although    may not

accurately satisfy the inverse evolution equation. Introducing a new pair   by interchanging

the order of   and  :

then   can be interpreted as pairs originating from the original forward equation.

By substituting Eq. (5) into Eq. (4), we derive

This formula implies that the pair  , i.e.  , satisfies the formula of the implicit

Backward Euler method derived from the original equation. Given  , we can directly compute 

  according to (4) without solving any nonlinear equations. Subsequently, we can utilize 

, which perfectly conforms to the implicit Euler formula, as training data for the neural

operator.

The data pair    results from the Forward Euler method tailored to the inverse evolution,

while its reverse pair   precisely satisfies the Implicit Euler method of the original evolution.

This ensures the reliability of the acquired data for training. With sufficient  , we can efficiently

obtain enough data pairs  . It is noteworthy that the favorable attributes of implicit

methods provide us with the flexibility to choose a larger time step,  , rather than being confined to 

= −F( )
−U n+1 U n

Δt
U

n (4)

U n U n+1 Tn Tn+1

− = ΔtTn+1 Tn F F F( )U n

u

U n

Δt U n+1 ( , )U n U n+1
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U n U n+1

( , ) := ( , ),V n V n+1 U n+1 U n (5)
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. This flexibility significantly enhances computational efficiency while maintaining accuracy of

the generated data.

Initialization for Inverse Evolution

While this approach appears promising, there remains a significant challenge that needs to be

addressed: obtaining an appropriate initial value, i.e.  , for the inverse evolution process. One

option is to choose random initial values for  . However, it is important to note that the inverse

evolution is inherently unstable. This instability means that a random initialization is likely to result

in   transitioning to a more irregular, or even singular state  . Consequently, the obtained data

pairs may lack practical physical significance and may not adequately capture the characteristics of a

desirable solution space.

To address the initialization challenge, we propose a method where we randomly combine the values

of solutions at different time points and utilize them as the initialization for the inverse evolution.

Specifically, let    represent a time series from the original data. And let 

 denote the set of   different time series. By performing different random sorts on the samples

in    for    times, we obtain  . Here    is the

permutation mapping corresponding to the  -th random sort. Then, we set    as the

initialization such that

where    and    are constants, and  . We anticipate that the    will span the

solutions at various time points and differ from the original data  . By using elements of   at

different time as initializations, we can compute inverse evolution to generate training data pairs of

different time. Importantly, although the initializations are derived from combinations of  , the

resulting data pairs are distinct due to the nonlinear nature of both the original and inverse evolution

processes. This nonlinearity ensures that the solutions obtained after one time step from a linear

space will differ significantly from the original space. Therefore, the generated data pairs do not

overlap with the original data. With a small set of original data points, we can apply different   and 

 values to create a large number of initializations. These initializations can then be used to generate

a diverse and extensive set of training pairs for the FNO.

O( )h2

U n+1

U n+1

U n+1 U n

U := ( , , ⋯ , )U 1 U 2 U n

{Ui}ni=1 n
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High-order Schemes for Inverse Evolution

In practical implementation, we have found that the data generated through the Forward Euler

method-based inverse evolution are not sufficiently accurate, as shown in the top left corner of Figure

1. This inaccuracy arises because the Forward Euler method is a first-order numerical scheme. To

obtain more accurate data, we have explored higher-order methods for the inverse evolution given as

follows:

First-order scheme

Second-order scheme

Third-order scheme

where

Similarly, it can be proved that the data pairs acquired from the high-order scheme derived from the

Taylor expansion also satisfy the corresponding high-order implicit schemes. The comparison

between different schemes in terms of the accuracy is displayed in Table 1. Notably, one can also

derive schemes with higher order through the Taylor expansion. Given a sufficiently small  ,

higher-order schemes yield more accurate data. However, higher-order schemes also tend to be more

unstable due to the instability arising from the computation of high-order derivatives of  . Therefore,

when handling very fine meshes, we recommend using relatively small time steps and second-order

schemes. For coarser meshes, third-order or higher schemes with relatively larger time steps are

advisable.

= − Δt ,U n+1 U n U n
t (8)

= − Δt + ,U n+1 U n U n
t

Δt2

2
U n
tt

(9)

= − Δt + − ,U n+1 U n U n
t

Δt2

2
U n
tt

Δt3

6
U n
ttt (10)

= F(U),Ut (11)

= (U) ,Utt F ′ Ut (12)

= (U) + (U) .Uttt F ′ Utt F ′′ U 2
t (13)

Δt

U
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Inverse Evolution vs. Original Evolution

As discussed previously, the data pairs obtained via inverse evolution come from implicit numerical

methods derived from the original evolution, making them suitable as training data. Figure 1 and

Table 1 can further demonstrate the effectiveness of data generated through inverse evolution.

However, employing similar explicit schemes on the forward evolution to generate data is not

suitable. While both inverse and forward evolutions exhibit instability, the nature of this instability

differs. Inverse evolution instability affects the input data, whereas forward evolution instability

impacts the output data. Consequently, data pairs from inverse evolution can train neural operators to

map unstable input to stable output, whereas data pairs from forward evolution would compel neural

operators to map stable input to unstable output. This distinction makes the two approaches

fundamentally opposite. Additionally, even though the generated input data might be irregular and

contain some noise, it can still evolve into the generated output data according to the given PDE since

the data pairs conform to implicit numerical schemes of the PDE. For forward evolution, the

instability of explicit schemes makes it nearly impossible to obtain accurate data pairs with a large  .

The difference is illustrated in Figure 1.

Δt
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Figure 1. Comparison between inverse evolution and forward evolution on heat diffusion equation

with  . Inverse evolution produces more accurate data pairs ( ) as the order increases,

while forward evolution yields inaccurate data pairs ( ) across all schemes.

Preprocessing for Data with Sharp Interfaces

We observe that solutions with poor differentiability can exacerbate the instability of the inverse

evolution. For instance, solutions of Burgers’ equation often exhibit sharp interfaces, particularly

when the viscosity approaches zero. During such instances, the solution may contain abrupt, nearly

discontinuous changes, leading to poor properties for a numerical solution, such as very high

gradients. As a consequence, the inverse evolution may struggle to provide accurate training pairs.

One approach to address this is by reducing the spatial mesh size  , and hence   to ensure stability.

However, in many cases, there is a preference for a relatively large time interval between generated

data pairs. An alternative way is to smooth the initialization. The inherent instability can be somewhat

mitigated by smoothing techniques. However, while smoothing can alleviate the instability caused by

sharp interfaces, it also tends to smooth out the sharp interfaces of the solutions. Consequently, the

generated data may not effectively assist neural operators in learning to predict solutions with sharp

interfaces.

Δt = 0.05 ,U0 U1

,U1 U2

h Δt
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To overcome this challenge, we propose normalization and rescaling techniques to preprocess our

generated initializations. We find that normalization and rescaling can alleviate instability issues

without reducing   or resorting to smoothing, which can be observed in Figure 2 It is worth noting

that normalization and rescaling techniques can still preserve the sharp interface, which makes the

preprocessed data more valuable than smoothed data. Given an initial value    for the inverse

evolution, the preprocessed   can be expressed as:

where   used for rescaling and   is a constant, and   is the mean value of  .

It is important to note that normalization and rescaling preprocessing are only applied to

initializations when the solution requires consideration of very fine spatial structures, such as in the

case of the Burgers’ equation with a very small diffusion coefficient. In addition, the rescaling in the

preprocessing method is a form or r-adaptivity in which the local mesh points are rescaled to give a

more accurate local solution. It is known (see the book[28]) that this is effective in reducing solution

error.

Figure 2. Inverse evolution between original data and preprocessed data. The first row shows the inverse

evolution of the original data, while the second row presents the results based on preprocessed data.

Δt

U

U

= a ⋅ (U − mean(U)) + C,U pre (14)

a ∈ [0, 1] C mean(U) U
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Spatial Discretization for Inverse Evolution

In addition to the temporal discretization, the spatial discretization is also crucial in the numerical

scheme. Various numerical methods have been developed for spatial discretization, including finite

difference, finite element, finite volume and spectral methods (see  [29]). For inverse evolution, we

employ finite difference methods due to their ease of implementation on regular domains.

Additionally, we test the pseudo-spectral method, and both methods exhibit comparable

performance. However, when testing the Navier-Stokes equation, we observe that the accuracy of data

pairs generated using the finite difference method is sensitive to the constant in Eq. (7), whereas the

pseudo-spectral method is not. More precisely, as the absolute value of the constant changes, the

stability and accuracy of the data pairs generated using the finite difference method changes

apparently. Conversely, for the pseudo-spectral method, changes of the constant have minimal

impact on data stability and accuracy. This suggests that when using the pseudo-spectral method, we

have flexibility to choose different and relatively large constants for data augmentation. This

flexibility becomes particularly valuable when preprocessing is required, as preprocessed data often

have smaller scales compared to the original data. By employing a large constant, we can expand the

range of generated data, enabling them to encompass a broader space. Therefore, when dealing with

the Navier-Stokes equation, we adopt the pseudo-spectral method for spatial discretization to ensure

greater stability and higher accuracy for the data augmentation.

3. Experiments

3.1. Accuracy Test

In this part, we evaluate the accuracy of our data augmentation method across four equations with

periodic boundary conditions: the heat diffusion equation, Burgers’ equation, the Allen-Cahn

equation, and the Navier-Stokes equation. The heat diffusion in 1D is given by  , and the

specific formulas for other equations are given in Eq. (15), Eq. (16) and Eq. (17). The accuracy is

assessed under varying data resolutions, time intervals ( ), and inverse evolution schemes. The

results of test accuracy are displayed in Table 1. We also provide some samples of generated data in

Figure 3 and Figure 4. Our results indicate that the generated data exhibit high accuracy, particularly

when   is not large. Furthermore, accuracy tends to increase with the order of the schemes. Changes

in data resolution have minimal impact on accuracy; however, increasing resolution can exacerbate

=ut uxx

Δt

Δt
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the instability of high-order schemes, especially when    is large. This instability can significantly

affect accuracy. Therefore, for high-resolution data, we recommend using relatively small   values

with second-order schemes to balance the time interval, accuracy, and stability.

Figure 3. Generated data for Allen-Cahn equation with   and  . The first two columns are

generated inputs and outputs from the inverse evolution, respectively. The last column shows the true

solutions of the generated input.

Δt

Δt

ϵ = 0.01 Δt = 0.5
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Figure 4. Generated data for Navier-Stokes equation with   and  . The first two columns

are generated inputs and outputs from the inverse evolution, respectively. The last column shows the true

solutions of the generated input.

ν = 0.001 Δt = 0.5
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Dim PDEs Res. -order -order -order Magnitude

1D

Heat Diffusion

0.01

256 0.904

512 0.797

1024 0.715

0.05

256 5.709

512 5.049

1024 2.729

Burgers ( )

0.01

256 1.247

512 0.731

1024 0.813

0.05

256 6.039 6.221

512 5.713 657.5

1024 7.305

2D

Allen-Cahn ( )

0.1

0.132

0.143

0.474

0.5

20.06

20.41

98.21

Navier-Stokes ( )

0.1

1.621 1.505

0.346 0.389

0.432 0.410

0.5

6.240

5.081

9.853

Δt 1st 2nd 3rd

3.918 1.032

×10−4

3.967 0.881

4.004 0.796

75.81 12.80

76.45 12.74

78.94 10.32

ν = 0.1

44.48 4.651

×10−5

26.26 0.810

31.47 185.2

58.13

58.99

61.61 −

ϵ = 0.05

128 16.23 0.996

×10−4

256 17.34 0.961

512 18.78 0.938

128 393.1 88.37

256 455.1 92.01

512 524.1 −

ν = 0.001

128 3.332

×10−4

256 2.968

512 3.015

128 65.71 14.32

256 63.87 13.51

512 63.86 13.73
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Table 1. Accuracy test for data generated by inverse evolution. The error isevaluated by the relative error

on   norm. We put — when error fails toreach below 1.0.

3.2. Computational Efficiency Analysis

In this section, we assess the computational efficiency of our data augmentation process by

comparing the runtime of our method against the traditional forward Euler method for generating 100

data pairs. The runtime comparison is presented in Table 2. It is important to emphasize that the

measured times are for 100 data pairs, while typical datasets for training and testing consist of tens of

thousands of pairs. As a result, the difference in computational efficiency would be significantly

magnified in larger datasets. Moreover, higher-resolution and higher-dimensional data would further

exacerbate the disparity in computational demands.

Methods Burgers’ Equation (1D) Allen-Cahn Equation (2D) Navier-Stokes Equation (2D)

Explicit Forward Solver 3.218 11.800 74.831

Ours 0.2727 0.1541 0.0325

Table 2. Time required (in seconds) to generate 100 data pairs at a resolution of 256. Our method

significantly outperforms the traditional explicit forward solver. This difference is expected to increase

with higher resolutions and dimensions.

3.3. FNO with Inverse Evolution Data Augmentation

In this part, we assess the effectiveness of our data augmentation technique on the Fourier Neural

Operator (FNO), a state-of-the-art neural operator designed for efficiently solving partial differential

equations (PDEs). FNO utilizes Fourier transforms to project the input function into the frequency

domain, enabling the model to capture global information more effectively. In the frequency domain,

learnable filters are applied to modify specific frequency components, allowing the model to adjust its

representations during training. The FNO architecture has demonstrated superiority in solving a

variety of PDEs, achieving high accuracy and computational efficiency.

L2
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We conduct tests on three equations: Burgers’ equation, the Allen-Cahn equation, and the Navier-

Stokes equation with periodic boundary conditions. The FNO is implemented using the code available

at https://github.com/neuraloperator/neuraloperator. For all experiments, FNOs are trained for 500

epochs with the Adam optimizer. The learning rate is set to 0.001 for Burgers’ equation and 0.0025 for

the Allen-Cahn and Navier-Stokes equations. We apply a learning rate weight decay of 1e-4 across all

experiments, with the learning rate decaying by a factor of 0.5 after every 100 epochs. The number of

Fourier modes is set to 32 for Burgers’ equation and 48 for Navier-Stokes equation. For the Allen-

Cahn equation, the modes are set to 32 when   and 64 when  . The numbers of hidden

and projection channels are (24, 24) for Burgers’ equation, (64, 128) for the Allen-Cahn equation, and

(64, 256) for the Navier-Stokes equation. The batch size for all experiments is 64. All experiments are

conducted on a single NVIDIA A100 GPU. For all experiments, we employ the third-order inverse

evolution schemes for data augmentation. The results are presented in Table 3.

Burgers’ Equation

Burgers’ equation is a nonlinear PDE with various applications including modeling shock formation in

fluid dynamics. In 1D it is given by the following PDE:

where    is the initial state and    is the diffusion coefficient. In our

experiments,    is chosen to be 0.1 and 0.001 and the final time  . We aim to learn the operator

mapping  . We solve Burgers’ equation using the same method as [30] to generate

original data, and the code can be found in https://github.com/pdebench/PDEBench. 1000 time series

of resolution    are solved, with 500 allocated to the training set and 500 to the test set,

respectively. Preprocessing is applied to the initialization of inverse evolution augmentation when 

. The rescaling coefficient is 1 and   is randomly chosen between   for each initial

value.

The Allen-Cahn Equation

The 2D Allen-Cahn equation is a nonlinear PDE that can be used to describe the phase separation

process. It takes the form

ϵ = 0.05 ϵ = 0.01

ut

u(0,x)

= −u + ν/πΔu, x ∈ [0, 1],  t ∈ (0,T ), 0 < ν ≪ 1,ux

= (x), x ∈ [0, 1]u0
(15)

∈ ((0, 1),R)u0 L2
per ν ∈ R+

ν T = 2

u(t, ⋅) → u(t + 0.05, ⋅)

(41, 256)

ν = 0.001 C [−0.1, 0.1]

ut

u(0, x)

= u − + Δu, x ∈ [0, 1 ,  t ∈ (0,T )u3 ϵ2 ]2

= (x), x ∈ [0, 1u0 ]2 (16)
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where    is the initial value and    is a constant related to the thickness of

the interface between different phases. In our experiments,    is chosen to be 0.01 and 0.05. And the

operator mapping we learn is that from   and the final time  . We generate the

original data using Forward Euler with time-step of 1e-4. 800 time series of resolution 

 are solved, with 400 used for the training set and 400 for the test set, respectively.

The Navier-Stokes Equation

We consider the vorticity-stream form of Navier-Stokes equation for a 2D incompressible fluid:

where   is the initial value,   is the viscosity coefficient,   represents

the velocity and   is a force term. In our experiment, we test the cases   and   with

a fixed force term    and the final time  . We learn the

operator mapping from  . The original data are generated based on pseudo-spectral

method and Crank–Nicolson method with a time-step of 1e-4. We solved 400 time series of

resolution  , with 200 for the training set and 200 for the test set, respectively. Pseudo-

spectral method is employed for the spatial discretization for the inverse evolution.

Data Size Augment.

Burgers’ Equation Allen-Cahn Equation Navier-Stokes Equation

1000 no 3.414e-2 6.532e-2 4.149e-2 1.050e-2 2.775e-2 1.545e-1

1000 yes 2.848e-2 5.783e-2 5.185e-3 6.648e-3 1.345e-2 1.116e-1

5000 no 4.782e-3 1.571e-2 3.187e-3 7.872e-3 3.491e-3 9.450e-2

5000 yes 4.662e-3 1.257e-2 1.941e-3 6.522e-3 3.321e-3 6.784e-2

10000 no 3.460e-3 1.090e-2 2.945e-3 7.098e-3 2.626e-3 6.071e-2

10000 yes 2.436e-3 9.561e-3 9.388e-4 6.253e-3 2.293e-3 5.470e-2

Table 3. Test relative error on   norm for FNO trained on different datasets.

∈ ([0, 1 ,R)u0 L2
per ]2 0 < ϵ ≪ 1

ϵ

u(0, ⋅) → u(0.5, ⋅) T = 16

(33, 128, 128)

ωt

ω

= −u ⋅ − v ⋅ + νΔω + f, x ∈ [0, 1 , t ∈ (0,T )ωx ωy ]2

= − , w(0, x) = (x), x ∈ [0, 1 ,vx uy w0 ]2
(17)

∈ ([0, 1 ,R)w0 L2
per ]2 0 < ν ≪ 1 (u, v)

f ν = 0.001 ν = 0.0001

f = 0.1(sin(2π(x + y)) + cos(2π(x + y))) T = 50

ω(0, ⋅) → ω(0.5, ⋅)

(100, 128, 128)

ν = 0.1 ν = 0.001 ϵ = 0.05 ϵ = 0.01 ν = 0.001 ν = 0.0001
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Results

The test error for the three equations are shown in Table 3. We compare the performance of FNO using

both original training data and augmented training data. The original training data refers to the

initially collected pairs of solutions, which serve as the baseline dataset. In contrast, the augmented

training data includes both the original data pairs and additional pairs generated through inverse

evolution data augmentation. Specifically, we use original datasets with 1000, 5000, and 10000 pairs,

and the inverse evolution generates an equal number of additional pairs, resulting in augmented

datasets of 2000, 10000, and 20000 pairs, respectively. It can be observed that for all three equations,

FNO on the augmented data have generally higher performance than that on the original data,

especially when data size is small. In addition, we found in the experiments for the Allen-Cahn

equation that the robustness of the FNO trained on the augmented data is also increased, which can be

observed in Figure 5. When noise is added to some regular input, the FNO trained on augmented data

can still give a good prediction, while that trained on the original data fails.

Figure 5. Predictions of FNO trained on different datasets for Allen-Cahn equation ( ). (a) inputs

with noise (b) 1000 data pairs (c) 10000 data pairs (d) 1000 data pairs + 1000 generated data pairs (e) 5000

data pairs + 5000 generated data pairs (f) ground truth

ϵ = 0.05
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3.4. UNet with Inverse Evolution Data Augmentation

In addition to the FNO, we assess the impact of our data augmentation approach on the performance

of the neural operator with a UNet architecture. Although UNet’s performance is generally inferior to

FNO for solving PDEs, it is a well-established model across various fields, including scientific

computing, and serves as a reliable baseline for evaluating the performance of neural operators. The

experiments are conducted using the Burgers’ equation, the Allen-Cahn equation, and the Navier-

Stokes equation. The results are presented in Table 4. The data show that our augmentation method

still enhances the performance of the UNet-based neural operator. However, the improvement is less

pronounced compared to that observed with the FNO. In certain cases, the performance with

augmented data is nearly equivalent to that obtained using only the original data. This may be

attributed to the fact that the augmented data introduce more complex input structures.

Consequently, neural operators with greater capacity to process complex inputs are likely to benefit

more from our augmentation strategy, while those with lower capacity benefit less.

Data Size Augment.

Burgers’ Equation Allen-Cahn Equation Navier-Stokes Equation

1000 no 1.066e-1 1.035e-1 4.682e-2 1.349e-2 1.592e-2 1.139e-1

1000 yes 6.330e-2 8.052e-2 3.848e-2 6.648e-3 1.503e-2 8.789e-2

5000 no 7.449e-3 4.260e-2 2.221e-2 8.219e-3 5.477e-3 5.304e-2

5000 yes 6.464e-3 3.214e-2 1.842e-2 8.168e-3 5.024e-3 4.388e-2

10000 no 6.443e-3 3.172e-2 1.691e-2 6.956e-3 3.179e-3 4.090e-2

10000 yes 3.543e-3 2.706e-3 1.595e-2 7.387e-3 3.056e-3 3.388e-2

Table 4. Test relative error on   norm for the UNet trained on different datasets. Again we see that our

method is effective for the neural operators of the UNet architecture.

ν = 0.1 ν = 0.001 ϵ = 0.05 ϵ = 0.01 ν = 0.001 ν = 0.0001
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4. Discussion

Summary

This paper proposes a data augmentation technique based on inverse evolution for neural operators.

This data generation method is easy to implement and can guarantee that the data obtained satisfies

the implicit numerical schemes. We also propose high-order schemes for the inverse evolution to

obtain data with higher accuracy. We carefully choose the initialization for inverse evolution to ensure

the effectiveness of generated data. In addition, the instability caused by equations which have

solutions with high gradients, is also considered in this paper and we introduced normalization and

rescaling techniques to deal with them. We demonstrate the effectiveness of our data generation

method by conducting a series of experiments on four different equations. Experimental results

demonstrate that our data generation method indeed improve the performance of the neural

operators and can also increase the robustness to noisy inputs for the Allen-Cahn equations.

Limitations and Future Work

The proposed data augmentation approach is efficient and effective for most equations; however, the

instability of inverse evolution remains a significant challenge. This issue is particularly undesirable

when solving equations with chaotic solutions and evolving sharp interfaces. While the proposed

preprocessing techniques can mitigate these instabilities, they also restrict the augmented data to a

specific space rather than the original solution space. Additionally, instability poses challenges for

large time steps. To address the instability issue, designing new numerical schemes such as

appropriate adaptive methods for inverse evolution is a viable solution. In this paper, we focus on

explicit methods for inverse evolution because they ensure that the obtained data align with

corresponding implicit methods. However, exploring high-order semi-implicit methods for inverse

evolution could enhance stability while maintaining accuracy. Furthermore, initialization is

fundamental to our data augmentation method. It is crucial to investigate how to generate appropriate

initial values to ensure the generated data better covers the solution space. Spatial discretization

methods also play a pivotal role for inverse evolution. Implementing suitable spatial discretization

methods can mitigate instability, thus enabling more flexible initialization for inverse evolution.
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Notes

Subject Areas: 68T07, 35Q35, 65N99.
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