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Abstract

Robin's criterion states that the Riemann hypothesis is true if and only if the inequality σ(n) < eγ ⋅ n ⋅ loglogn holds for all

natural numbers n > 5040, where σ(n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the Euler-Mascheroni

constant. We require the properties of superabundant numbers, that is to say left to right maxima of n ↦
σ(n)

n . In this

note, using Robin's inequality on superabundant numbers, we prove that the Riemann hypothesis is true. 
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1. Introduction

This is a “Corrigendum” for a paper presentation at the ICRDM 2022 held at Canadian University Dubai, Dubai, UAE

during 24-26 August 2022 [[1], pp. 15--17]. Besides, this proof is an extension of the article “Robin's criterion on divisibility”

published by The Ramanujan Journal on May 3rd, 2022 [[2], pp. 750--752].

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers

and complex numbers with real part 

1
2 . It is considered by many to be the most important unsolved problem in pure

mathematics. It was proposed by Bernhard Riemann (1859). The Riemann hypothesis belongs to the Hilbert's eighth

problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's

Millennium Prize Problems. As usual σ(n) is the sum-of-divisors function of n
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∑
d∣nd,

 where d ∣ n means the integer d divides n. Define f(n) as 

σ(n)
n . We say that Robin(n) holds provided that

f(n) < eγ ⋅ loglogn,

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The Ramanujan's

Theorem stated that if the Riemann hypothesis is true, then the previous inequality holds for large enough n. Next, we

have the Robin's Theorem:

Proposition 1. Robin(n) holds for all natural numbers n > 5040 if and only if the Riemann hypothesis is true [[3], Theorem

1 pp. 188].

In 1997, Ramanujan's old notes were published where he defined the generalized highly composite numbers, which

include the superabundant and colossally abundant numbers [4]. Superabundant numbers were also defined by Leonidas

Alaoglu and Paul Erdős (1944). Let q1 = 2, q2 = 3, …, qk denote the first k consecutive primes, then an integer of the form 

∏k
i=1qai

i  with a1 ≥ a2 ≥ … ≥ ak ≥ 1 is called a Hardy-Ramanujan integer [[5], pp. 367]. A natural number n is called

superabundant precisely when, for all natural numbers m < n

f(m) < f(n).

We know the following property for the superabundant numbers:

Proposition 2. If n is superabundant, then n is a Hardy-Ramanujan integer [[6], Theorem 1 pp. 450].

A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n)
n1+ϵ

≥

σ(m)
m1+ϵ

  for  (m > 1).

 There is a close relation between the superabundant and colossally abundant numbers.

Proposition 3. Every colossally abundant number is superabundant [[6], pp. 455].

Several analogues of the Riemann hypothesis have already been proved. Many authors expect (or at least hope) that it is

true. However, there are some implications in case of the Riemann hypothesis might be false.

Proposition 4. If the Riemann hypothesis is false, then there are infinitely many colossally abundant numbers n > 5040

 such that Robin(n) fails (i.e. Robin(n) does not hold) [[3], Proposition pp. 204].

Putting all together yields the proof of the Riemann hypothesis.

2. Main Results
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The following is a key Lemma.

Lemma 1. If the Riemann hypothesis is false, then there are infinitely many superabundant numbers n such that Robin(n)

 fails.

Proof. This is a direct consequence of Propositions 1, 3 and 4. ◻

For every prime number qk > 2, we define the sequence:

Yk =

e

0.2
log2 (qk )

(1 −

1
log (qk)

) .

As the prime number qk increases, the sequence Yk is strictly decreasing [[2], Lemma 6.1 pp. 750]. We use the following

Propositions:

Proposition 5. [[2], Theorem 6.6 pp. 752]. Let ∏k
i=1qai

i  be the representation of a superabundant number n > 5040 as the

product of the first k consecutive primes q1 < … < qk with the natural numbers a1 ≥ a2 ≥ … ≥ ak ≥ 1 as exponents.

Suppose that Robin(n) fails. Then,

αn <

loglog(Nk)Yk

loglogn ,

where Nk = ∏k
i=1qi is the primorial number of order k and αn = ∏k

i=1

qai+1
i

qai+1
i −1

.

Proposition 6. [[7], Lemma 3.3 pp. 8]. Let x ≥ 11. For y > x, we have

loglogy
loglogx <

y
x .

This is the main insight.

Lemma 2. Let ∏k
i=1qai

i  be the representation of a superabundant number n > 5040 as the product of the first k

 consecutive primes q1 < … < qk with the natural numbers a1 ≥ a2 ≥ … ≥ ak ≥ 1 as exponents. Suppose that Robin(n)

 fails. Then,

αn <

(Nk)Yk

n ,

( )

√

√
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where Nk = ∏k
i=1qi is the primorial number of order k and αn = ∏k

i=1

qai+1
i

qai+1
i −1

.

Proof. When n > 5040 is a superabundant number and Robin(n) fails, then we have

αn <

loglog(Nk)Yk

loglogn

by Proposition 5. We assume that (Nk)Yk > n > 5040 > 11 since αn > 1. Consequently,

loglog(Nk)Yk

loglogn <

(Nk)Yk

n

 by Proposition 6. As result, we obtain that

αn <

(Nk)Yk

n

and thus, the proof is done. ◻

This is the main theorem.

Theorem 1. The Riemann hypothesis is true.

Proof. We know there are infinitely many superabundant numbers [[6], Theorem 9 pp. 454]. In number theory, the p-adic

 order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted νp(n).

Equivalently, νp(n) is the exponent to which p appears in the prime factorization of n. For every prime q, νq(n) goes to

infinity as long as n goes to infinity when n is superabundant [[7], Theorem 4.4 pp. 12], [[6], Theorem 7 pp. 454]. Let 

nk > 5040 be a large enough superabundant number such that qk is the largest prime factor of nk. Suppose that Robin(nk)

 fails. In the same way, let nk ′ be another superabundant number such that nk ′ ≫ nk, νqk
(nk ′) ≫ 2 and Robin(nk ′) fails too:

The symbol ≫  means “much greater than”. By Lemma 2, we have

αnk
<

(Nk)Yk

nk

and

αnk ′ <

(Nk ′)Yk ′

nk ′
.

Hence,

( )

√

√

√

√
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αnk ′ ⋅ αnk
<

(Nk ′)Yk ′

nk ′
⋅ αnk

.

 Consequently,

αnk ′ ⋅ αnk
<

(Nk ′)Yk ′

nk ′
⋅

(Nk)Yk

nk .

 So,

(αnk ′ ⋅ αnk
)2 <

(Nk ′)Yk ′

nk ′
⋅

(Nk)Yk

nk .

 However, we know that

(αnk ′ ⋅ αnk
)2 > 1.

 Moreover, we can see that

(Nk ′)Yk ′

nk ′
⋅

(Nk)Yk

nk < 1

 since all the following inequalities

Yk < Yk ⋅ 1 +

log(nk)
log(nk ′)

≤

log(nk ′ ⋅ nk)

log(
Yk

nk ′)
≤

log(nk ′ ⋅ nk)

log((Nk ′)

Yk′

Yk ⋅ Nk)

could simultaneously hold for some nk ′ ≫ nk and νqk
(nk ′) ≫ 2 such that log(

Yk

nk ′) ≥ log((Nk ′)

Yk′

Yk ⋅ Nk), because of 

Yk ′

Yk < 1

 and limk→∞Yk = 1. In this way, we obtain the contradiction 1 < 1 under the assumption that Robin(nk) fails. To sum up,

the study of this arbitrary large enough superabundant number nk > 5040 reveals that Robin(nk) holds on anyway.

Accordingly, Robin(n) holds for all large enough superabundant numbers n. This contradicts the fact that there are infinite

superabundant numbers n, such that Robin(n) fails when the Riemann hypothesis is false according to Lemma 1. By

reductio ad absurdum, we prove that the Riemann hypothesis is true. ◻

Conclusions

Practical uses of the Riemann hypothesis include many propositions that are known to be true under the Riemann

hypothesis and some that can be shown to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis is

closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the

√

√ √

( ) √

√
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Lindelöf hypothesis, the Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann hypothesis could spur

considerable advances in many mathematical areas, such as number theory and pure mathematics in general.
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