Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

Open Peer Review on Qeios

Tweeting Al: A Machine Learning Approach for Bird Species
Detection and Classification

Ayonabh Chakraborty', Pushan Kumar Dutta'

1 Amity University Kolkata

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

Abstract

The rapid decline in global bird populations has generated an urgent need for efficient and accurate monitoring of avian
species. In this study, we propose a novel machine learning approach, Tweeting Al, for the automated recognition of
bird species based on their images. To solve this problem, we have used Convolutional Neural Network (CNN). This
model is the best regarded in image prediction. In this study, we have used CNN to classify the bird species in which
we use a dataset for training and predicting. This system allows us to easily identify the species of any bird that we
want to know, and segregate the endangered species to preserve, care and take every possible action for their

survival.
** A study, analysis, and usage of Machine Learning for the identification of Endangered Species
Ayonabh Chakraborty

Amity School of Engineering and Technology Kolkata Amity University, Kolkata, India

Email: ayoncchakraborty7@gmail.com

PK Dutta

Amity School of Engineering and Technology Kolkata Amity University, Kolkata, India
Email: pkdutta@kol.amity.edu

Keywords: Convolution Neural Networks, bird species detection, avian conservation, environmental monitoring, machine

learning, deep learning, model-training.

I. Introduction

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 1/35

https://www.qeios.com/read/6HRP4L#reviews
https://www.qeios.com/profile/35404
https://www.qeios.com/profile/35186
mailto:ayoncchakraborty7@gmail.com
mailto:pkdutta@kol.amity.edu

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

Bird species recognition has become a significant issue in today’s date. As birds are part of nature and rapidly adapt to
ecological changes, for the common man and for the people involved in this field of study it has become essential to
identify birds that we encounter in our day-to-day life. Birds play a crucial role as an element of nature. They help in plant
pollination; they eat up a large percentage of insects that come into the way of farming. This way they help in controlling
the pests that hamper agricultural production. These are a few of the cost benefits that can be helpful for humans if we
protect the birds. The aim of our model is to discover more birds and to identify those that are endangered. The advent of
machine learning techniques has opened up new possibilities for detecting bird species more efficiently than ever before.
Specifically, by using convolutional neural networks (CNNs), which are capable of identifying patterns within large data
sets leading towards improved outcomes over time. This innovative approach that leverages Al-powered technology could
significantly improve our understanding of avian ecology while enabling researchers to collect data on birds’ behaviors
more accurately thereby enhancing overall productivity levels benefiting both individuals/teams involved and the
organization as a whole, ultimately resulting in better outcomes achieved faster than expected otherwise. Objectives and

Contributions:
The main objectives as proposed are as follows:

1. To develop a machine learning-based approach for detecting bird species based on their vocalizations captured via
audio recordings coupled with image analysis capabilities provided by CNN models.

2. To evaluate the effectiveness of this approach in accurately classifying various bird species from audiovisual data
while ensuring ethical considerations around responsible deployment practices being followed leading towards long-
term sustainability goals at the workplace

3. To provide real-time insights into how avian populations are changing over time by monitoring their behaviors using
advanced Al-powered tools thereby enhancing overall productivity levels benefiting both individuals/teams involved

and the organization as a whole, ultimately resulting in better outcomes achieved faster than expected otherwise.
Our proposed research will make several contributions to the field of ecology and conservation biology, including:

1. Developing a new method for collecting comprehensive data on birds’ behaviors that is more efficient than traditional
survey methods.

2. Enabling researchers to monitor changes in bird populations over time more effectively through real-time insights
generated via integrated Al-powered technologies from diverse sources such as acoustic signals, images/videos, etc.

3. Providing an innovative tool that can be used to assess the impact of environmental factors like climate change or
habitat loss on avian biodiversity thereby providing advance warning signs enabling proactive measures taken

addressing issues raised by stakeholders involved.

Overall, our proposed study has significant potential in helping us better understand avian ecology while driving innovation
forward across multiple domains like environment, health, etc., leading towards better ROl over time. In this paper, we
provide a comprehensive study of a machine-learning approach for bird species detection and classification using a CNN

algorithm on images. We begin with a brief introduction

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 2/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

to the problem and its significance in the context of bird conservation. We then review the related work in the field,

including traditional methods and machine learning-based techniques, with a focus on CNNs for image recognition.

Next, we outline the methodology employed in our study, detailing the data collection and pre-processing steps, the
architecture of the CNN, and the model training and validation procedures. We also discuss the performance evaluation

metrics used, including accuracy, precision, recall, and F1-score, as well as the confusion matrix.

[l. Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is a type of artificial neural network inspired by the visual cortex of the human
brain. It consists of multiple layers, including convolutional layers, pooling layers, and fully connected layers. CNNs are
specifically designed to efficiently analyze visual data by extracting features hierarchically. Convolutional layers, the core
component of CNNs, perform convolution operations on the input image with learnable filters, allowing the network to
learn meaningful features and patterns. Pooling layers downsample the spatial dimensions of the feature maps, reducing
computational complexity and improving robustness. Fully connected layers connect the extracted features to the final
output layer for classification or regression. CNNs incorporate various essential components. Activation functions, such as
ReLU (Rectified Linear Unit), introduce non-linearity into the network, enabling better modeling of complex relationships.
Batch normalization normalizes the outputs of previous layers, improving the stability and speed of training. Dropout
regularizes the network by randomly dropping out units during training, reducing over-fitting. Training a CNN involves two
key steps: forward propagation and back propagation. In forward propagation, the network processes the input data
through its layers, extracting and transforming features. The final output is compared with the ground truth labels to
compute the loss. In back propagation, the gradients of the loss with respect to the network parameters are computed and
used to update the weights and biases through optimization algorithms like stochastic gradient descent (SGD). CNNs
have had a significant impact on various fields. In computer vision, they excel in tasks like object recognition, image
classification, object detection, and segmentation. They enable advancements in autonomous vehicles, facial recognition
systems, medical image analysis, and more. CNNs have also found applications in natural language processing, speech

recognition, and recommendation systems, demonstrating their versatility beyond image analysis.

[1l. Literature Review

Bird species detection plays a crucial role in biodiversity monitoring, ecological research, and conservation efforts. With
advancements in machine learning, automated methods for bird species detection have gained significant attention. This

literature review aims to provide an overview of

the current state of research in bird species detection using machine learning techniques, including the datasets,
methodologies, and performance metrics employed in various studies. Several datasets have been utilized for bird
species detection, enabling researchers to train and evaluate machine learning models effectively. The most commonly

used dataset is the Cornell Lab of Ornithology’s eBird dataset, which provides extensive bird sighting records and

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 3/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

associated metadata. Other datasets, such as the XenoCanto dataset, BirdCLEF dataset, and BirdNET dataset, have also
been employed, each offering unique bird species recordings and annotations. A wide range of machine learning
algorithms and methodologies have been explored for bird species detection. Among the popular approaches are
convolutional neural networks (CNNs), which have shown remarkable performance in image-based classification tasks.
CNN-based architectures, such as ResNet, VGG, and Inception, have been adapted and fine-tuned for bird species
detection. Other techniques, such as support vector machines (SVMs), random forests, and hidden Markov models
(HMMs), have also been utilized for audio-based classification and bird sound analysis. Feature extraction and
representation are critical in capturing relevant information from bird species data. For image-based approaches, features
like local binary patterns (LBPs), color histograms, and spectrogram representations have been employed to capture the
visual characteristics of birds. In audio-based approaches, Melfrequency cepstral coefficients (MFCCs), mel-
spectrograms, and wavelet transform features have been used to extract relevant acoustic information. Hybrid approaches
that combine visual and acoustic features have also been explored to improve the accuracy of bird species detection.
Evaluation of bird species detection models involves the use of various performance metrics. Accuracy, precision, recall,
and F1-score are commonly used to measure the overall performance of the classification models. In addition, confusion
matrices and receiver operating characteristic (ROC) curves provide insights into the model’s ability to distinguish

between different bird species. Some studies have also focused on evaluating the transferability of models across different

geographical regions and seasons.

IV. Methodology

To deal with numerous datasets involving different kinds of bird species, we have made use of the deep neural network
known as Convolutional Neural Network to get accurate outputs. A Convolutional Neural Network is a type of neural
network that specializes in processing data that has topology in the format of grids. As such, a simple example of a grid-
like topology would be that of an image. To define an image in layman’s terms, an image is basically the binary
representation of visual data that we can perceive with our eyes or can be captured using devices like a camera, a video
recorder, etc. An image consists of pixels arranged in a grid-type format that contains pixel values to denote how bright

and what color each pixel should be. Our minds, or to be more scientifically accurate,

the human brain can understand, interpret, and classify a large amount of information when we lay our eyes on any object
or image. From grasping simple things like shape or color to forming distinctions between similar-looking objects based on
unique properties, the human brain acts like a machine, where each neuron has its own receptive field that it works on and
then passes on the data or information gathered by it to the other neurons that are connected to it, leading to the
coverage of the entire visual field. Convolutional Neural Network works in a similar manner. In fact, it is so similar to the
human brain that just as a biological neuron responds to any signals in the restrictive region of the visual field, each
neuron in CNN can process the data limited to its own receptive field. Now based on the requirement of training the
model, the CNN layers may consist of many different things like shape, size, color, lines, curves, objects, faces, sceneries,

etc. In a certain sense, with the proper usage of Convolutional Neural Networks, we are basically providing computers the

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 4/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

ability to perceive using sight. The Convolutional Neural Network model is built to work on data in the form of images. The
data can be one-dimensional, two-dimensional, or sometimes while dealing with more features, it can be three-
dimensional too. There are various applications of Convolutional Neural Networks including image classification, object
detection, medical image analysis, natural language processing, live detection of objects in motion, and filtering out
necessary information from junk data. Finally, in the various forms of computer vision projects. The Convolutional Network
works in two parts, i.e., Feature Extraction and Classification, where feature extraction is the feature mapping of the
dataset based on the application of the activation function on the dataset, which is followed by the pooling of the classes
(as per the number of classes present in the dataset), which leads to the classification phase consisting of the final

pooling layer before leading it to the output. The convolutional neural network consists of four layers: -

A. Convolutional Layer

This is the major layer that is put to use in convolutional neural networks. Convolution is the basic function of applying a
filter on input that results in activation. When we repeatedly apply the same filter to an input, it results in a series of
activations known as a feature map. This helps us in finding the locations and the strengths of an identified feature in
input, such as an image. The main aim of convolutional neural networks is to automatically learn about a large number of
filters based on a training dataset, where the learning, or as we term it “training” can finally be used to identify any type of
image that is being provided as an input to test the functioning of the machine learning model. The filters can be
handcrafted, namely line detectors or as we see in this case, the labels that have been used to help in identifying any
image that is used to test the model in the future. The learnable filters are also sometimes referred to as kernels, and
these kernels have a width and a length and are mostly squares in nature. For the inputs that we take in CNN, the depth is

essentially the number of channels in the image, for example, while working

with RGB images, the depth is 3 as it’s 1 for each channel. For any existing volumes present deeper in the network, the

resulting depth will be the number of filters applied in the previous layer.

B. Activision Layer

After each filter application layer in CNN, we apply an activation function such as ReLU, ELU, etc. We denote the
activation layers with the correct terminologies such as RELU for ReLU, thus making it clear that an activation state is
being applied inside the architecture of any said network. The purpose of the activation function is to make the output as
nonlinear in nature as possible. The neurons in a neural network work with the weight, the bias, and the activation function
that they are in correspondence with. As per the process, we update the weight and the bias of each individual neuron in
a neural network. This is done based on the error that may occur at the output. This method is known as
Backpropagation, which is the essence of our neural network training. It basically updates the weights and the bias of a
neuron (say neuron number b) based on the rate of the error that is found in the previous epoch of neuron (say neuron
number a), or the iteration of the model training before the previously mentioned neuron(b). This is done to finely tune the

weights to minimize error rates, thus making the machine-learning model more accurate.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 5/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

C. Pooling Layer

It is done to reduce the volume of the input to make the process of machine learning more tuned. The primary function of
this layer is to minimize the spatial size of the input, thus reducing the number of parameters and computations present
inside the network. Pooling also helps us to control overfitting, i.e., when the accuracy of the dataset used to train the
model (training dataset) is greater than the accuracy of the dataset used for testing the model (testing dataset) which
results in lower error rates in the training dataset and higher error outputs in the testing dataset essentially showing the
signs of a flawed model. Pooling layers operate on all the depth slices of an input using the max function or the average
function. Max pooling is the type of pooling that is typically done in the middle of the architecture of the convolutional
neural network. Although we wish to avoid fully connected layers altogether, which is being researched with the

introduction of the exotic micro-architectures in this field.

D. Fully Connected Layers

These layers are connected to all the activations that have taken place in the previous epoch, which is the standard for all

feed-forward neural networks. These are placed at the end of the network.

E. Batch Normalization

This layer of the convolutional neural network is done to normalize the activations of an input volume before passing it to

the next layer of the Neural Network. At testing time,

the mini-batches are replaced by the average that is computed during the training process. This helps us ensure the
passage of images seamlessly through our network and yet obtain very accurate results without retaining any biases from
the final mini-batch passed through the neural network during the training phase. Batch Normalization has been shown to
be extremely effective at reducing the number of epochs iterating during the training of the neural network. It also helps in
stabilizing the training, by focusing on a larger variety of learning rates and strengths of regularization. It doesn’t help us in
tuning the working of the neural network, although making the learning rates and regularization strengths less volatile, it

makes the entire process pretty straightforward. This layer hasn’t been used in our project.

F. Dropout

This is the last layer of the neural network. It is basically just a form of regularization that helps prevent instances of
overfitting while increasing testing accuracy, sometimes at the expense of the cost of the training process. Dropouts

randomly disconnect input layers from the previous layer to the upcoming layer in the neural network.

V. Selection and Usage of Yolov4 to get Hands-on Experience of How Image Detection

Works and Using the YolovS CNN Model to Train our Dataset

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 6/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

Our project began with the simple steps of understanding the basics of Neural networks, which consisted of learning to
train custom data using the Yolov4 CNN model on regular images and obtaining results. This gave us a direction to
proceed with the You-Only-Look-Once algorithm version 5 to train the datasets and thus get much more accurate results
on unique data. Yolo is an algorithm that detects and recognizes patterns from various objects in a picture in real-standard
time. Object-based image detection is done as a regression problem that provides the probabilities of the classes of the
detected images. By employing convolutional neural networks to detect objects in real time, the algorithm works based on
a single forward propagation approach through a neural network to detect objects based on the dataset of the images
provided to it. There are currently many versions of the YOLO algorithm like tiny YOLO, YOLOvS3, YOLOv4, YOLOV5,
YOLOVS, etc. The most recent version of YOLO is YOLONAS, an extremely efficient object-detecting model.

A. Importance

Out of many algorithms present that can work on our datasets, we singled out the YOLO algorithm primarily because of its
speed. It improves the speed of object detection after every epoch as it predicts objects in real time. Accuracy is one of the
main factors we chose for this model: being an extremely efficient prediction technique that minimizes background errors.

A trained model is of no use if it can’t perform its basic functions with the optimal desired accuracy

and thus can result in a huge waste of time, resources, and energy. Our main goal was to build a highly accurate model
that runs seamlessly with the correct format of data being provided to it, and we have achieved so using the You-
OnlyLook-Once algorithm. Adding to the feathers in its hat, YOLO is a state-of-the-art machine learning model that is

extremely efficient in learning each individual representation of an object and applying them in real-time object detection.

B. The Working Process of the YOLO Algorithm:

The YOLO algorithm works using three techniques, which are forming Residual Blocks which are then put through
Bounding Box Regression and finally, the Intersection over Union technique is applied. 1. Residual Blocks: Firstly, the
images are divided into various grids of dimension (NxN). In the below image, there are various grid cells of equal
dimensions. Every grid is then used to detect any objects that might be present inside of them. Say if a particular object is
detected in a single grid cell of an entire image during the training phase, then that grid will be responsible for detecting
the object during the testing phase. 2. Bounding Box Regression: A bounding box is an outline that is applied to an object
in an image to basically mark it as unique for future detection purposes. Every bounding box consists of Width, Height,
Class, and the bounding box center. YOLO uses a single bounding box regression technique to predict the height, width,
center, and class of the various objects. In the image below, it represents the probability of any object that may appear in
the bounding box. 3. Intersection over Union: Finally, we make use of the IOU phenomenon in object detection that
describes how the boxes overlap. YOLO basically makes use of the Intersection over Union phenomenon to provide an
output box that surrounds the object perfectly. Every grid cell is used to predict the bounding boxes and helps in
calculating the confidence scores. If the value of IOU is 1, it means that the predicted bounding box is the same as the

real box, thus meaning that the algorithm has essentially eliminated the boxes that are not like the real box. In the image

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 7/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

given below, there are two bounding boxes present: the green bounding box is used as the predicted box and the blue
bounding box represents the real box. The YOLO algorithm ensures that the two bounding boxes are always equal in all
manners. Thus, YOLO divides the images into grid cells. Then each grid cell forecasts bounding boxes and provides their

confidence scores. Finally, the cells predict the class probabilities to find out the class of each object efficiently.

VI. The Working Process: Experimentation, Data Collection, Code, and Output

We began our experiment by deciding to first try, experiment and understand how YOLOv4 works. So, we initially used
the darknet repository. Google Colab was our choice of software, which turned out quite a nice platform to easily access

our required files to kickstart our project. So the first thing we did

was to go on Google Colab, open a new notebook, and load the darknet repository. However, it is not recommended at all

to load the Colab book without connecting the GPU units for the usage of our choice of Machine Learning Model.

CC £ UntitledO.ipynb 7%
File Edit View Insert Runtime Tools Help Allchanges saved
— + Code + Text Run all Ctri+F9
= Run before Ctrl+F8
Q, ° Run the focused cell Ctri+Enter
Run selection Ctri+Shift+Enter
{x} Run after Ctri+F10
o}
Disconnect and delete runtime
Change runtime type
Manage sessions
View resources
<>
=
>}

Fig. 1. Setting up Google Colaboratory

Then we select the type of processor for the machine learning model training. For better efficiency, we switch to Google’s

GPU for faster epochs or batch iterations.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 8/35

Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

Notebook settings

Hardware accelerator
(GPU vl @

GPU type
T4 v

Want access to premium GPUs? Purchase additional compute units

() omit code cell output when saving this notebook

Cancel Save

Fig. 2. Changing the Run-time settings

Then we click on the connect button to set up the notebook to begin our operations.

RAM
2 Disk

e B &L=

v N\

Fig. 3. Confirming the Internet Connectivity Status

A. Experimenting with the Darknet Repositories

We clone the darknet repositories using the following commands.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 9/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

v [2] lgit clone hitps://github. con/AlexeyAB/darknet. git
8

Cloning into ‘darknet'...

renote: Enumerating objects: 15521, done.

renote: Counting objects: 100k (7/7), done.

renote: Compressing objects: 108% (7/7), done,

renote: Total 15520 (delta 0), reused 5 (delta 0), pack-reused 15514
Receiving objects: 100% (15521/15520), 14,19 MiB | 20.30 MiB/s, done.
Resolving deltas: 106% (10412/10412), done.

Fig. 4. Cloning the Darknet Repositories

We check the NVIDIA systems of our machine and see if everything is at par for the upcoming activities.

B/ [3] !nvidia-smi
s

Sun May 21 16:45:39 2023

T T LT TP EEEPR PP PR PP PERERE P +
| WIDIA-SMIGEESSSEE Driver Version: QuuW® CUDA Version: 12.6 |
[<-mmm e frmmmm e frmmmm e +
GPU Name persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Puwr:Usage/Cap] Memory-Usage	GPU-Util Compute M.	
\	MIG M.	
: =		
e Tesla T4 Off	0oPEReRe:e0:04.0 OFF	0
n/A 53¢ P8 120/ TeM	oMiB / 15366MiB	0% Default
\	N/A	
e eaee fommmmmmmm e frmmmmmmmmeemeeaaaae +		
B T T +		
Processes:		
6PU 61 (I PID Type Process name GPU Memory		
ID 1D Usage		

No running processes found |

Fig. 5. Checking the Nvidia Systems

We run a simple command to check the contents of the darknet file that we loaded in our laboratory.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 10/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

¢] s foterfre

rdparty darknet video.py net cam vA.sh

build ata READNE .nd

build.pst inage yolo3.sh— results

(fg inage yolovd.sh — seripts

(rake include ke

(HakeLists. txt Json mjpeg streans.sh vepkg, json
DarknetConfig.cmake.in LICENSE Vepkg. json. openc23
darknet inages.py Makefile video yolov3. sh
darknet. py net_can V3.5 video yolovs,sh

Fig. 6. Checking the Darknet Repositories

Now we make use of the make automation tool to ease out our task. The make tool requires a file, termed as Makefile to

fulfill a set of requirements by running the needed tasks.

o [7] !cat Makefile

ifeq ($(ZED_CAMERA), 1)

CFLAGS+= -DZED_STEREQ -I/usr/local/zed/include

ifeq ($(ZED CAMERA v2 8), 1)

LDFLAGS+= -L/usr/local/zed/lib -1sl_core -1lsl_input -lsl_zed
#-1stdca+ -D_GLIBCXX_USE_CXX11_ABI=0

else

LDFLAGS+= -L/usr/local/zed/lib -1sl_zed

#-1stdc++ -D_GLIBCXX USE_CXX11 ABI=0

endif

endif

0BJ=image_opencv.o http_stream.o gemm.o utils.o dark_cuda.o convolutional_ layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_L
ifeq ($(GPU), 1)

LDFLAGS+= -1stde++

0BJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.c
endif

0835 = $(addprefix $(OBIDIR), $(0BJ))
DEPS = $(wildcard src/*.h) makefile include/darknet.h

all: $(0BIDIR) backup results setchmod $(EXEC) $(LIBNAMESO) $(APPNAMESO)

ifeq ($(LIBSO), 1)
CFLAGS+= -fPIC

$(LIBNAMESO): $(0BIDIR) $(0BIS) include/yolo v2 class.hpp src/yolo v2 _class.cpp
$(CPP) -shared -std=c++11 -fvisibility=hidden -DLIB_EXPORTS $(COMMON) $(CFLAGS) $(0BJS) src/yolo v2_class.cpp -o $@ $(LDFLAGS)

Fig. 7. Making use of the Make Automation Tool

In the above make file, there exist four important parameters whose values need to be updated manually. We do so for

the build to use the CUDA (Compute Unified Device Architecture) on our GPUs. CUDA has several benefits as it provides

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 11/35

Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

us with parallel hardware to run code, with the drivers most suitable for the process of carrying out the executions. It is
essentially a software development kit that has libraries, debuggers, compiling tools, etc. These are used to invoke
CPUbased programming into GPU-based programming. The main point of CUDA is to be able to write code and be able
to run on compatible multiple parallel architectures, which includes non-GPU hardware too. This massively parallel
hardware can be used to run a large number of operations much faster as compared to the CPU, yielding improvements
in performance by almost a half. Along with that, the values of cuDNN, OpenCV, and tensor cores are also changed to 1
(from 0). Tensor cores are only applicable when Google Colab allocates GPUs like Titan V. The following commands are

used to update the values:

|l Mt
5 -5 UM ML ke
0 4) el
6 5 0 o kel

Fig. 8. Updating the values manually

Once the necessary updating for the GPU compilation in the Makefile has been completed, we can proceed on with our

builds. It can be done so by simply invoking the “make” command.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 12/35

Q

v (8] Imake

s

gec

-Tinclude/ -

gec -Iinclude/ -

gec
gec
gee
gec
gec

-Iinclude/ -
-Tinclude/ -
-Iinclude/ -
-Iinclude/ -
-Tinclude/ -

gee -Iinclude/ -

gee
gec
gec
gec
gec
gee
gec

-Tinclude/ -
-Tinclude/ -
-Iinclude/ -
-Tinclude/ -
-Iinclude/ -
-Iinclude/ -
-Tinclude/ -

Drdparty/stb/include
I3rdparty/stb/include
D3rdparty/stb/include
Drdparty/stb/include
I3rdparty/stb/include
D3rdparty/stb/include
D3rdparty/stb/include
I3rdparty/stb/include
I3rdparty/stb/include
I3rdparty/stb/include
I3rdparty/stb/include
I3rdparty/stb/include
I3rdparty/stb/include
I3rdparty/stb/include
D3rdparty/stb/include

-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall
-Wall

-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -
-Wfatal-errors -

Jsrefyolo layer.c: In function ‘process batch’:
JJsrefyolo_layer,ci426:25: warning: variable ‘best match_t’ set but not used [-Wunused-but-set-variable

426 |

]

int best match_t = @;

Aosnsnansnnsunrunn

Jfsrcfyolo_layer.c: In function “forward_yolo_layer’:
JJsrc/yolo layer.c:767:11: warning: unused variable ‘avg anyobj’ [-Wunused-variable]

707 |

1

float avg_anyobj = @;

Ansmnnmnmn

Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -
Wno-unused-result -

Wno-unknoun-pragmas
Lino-unknown-pragmas
lino-unknown-pragmas
Wno-unknown-pragnas
Lno-unknown-pragmas
Lno-unknown-pragmas
Wno-unknown-pragmas
Lino-unknown-pragmas
Wno-unknown-pragmas
kno-unknown-pragmas
Wno-unknown-praguas
Wno-unknown-pragmas
Wno-unknown-pragmas
Lno-unknown-pragmas
Wno-unknown-pragmas

Jsrefyolo layer.c:706:11: warning: unused variable ‘avg obj’ [-Wunused-variable]

706 |

|

float avg obj = 8;

Anmeuninsns

Fig. 9. Invoking the Make Command

-fPIC
-fPIC
-fPIC
-fPIC
-fPIC
-fPIC
-fPIC
-fPIC
-fPIC
-fPIC
-fPIC
-fRIC
-TPIC
-fPIC
-fPIC

Qeios, CC-BY 4.0

-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic
-rdynamic

-Ofast -
-0fast -
-Ofast -
-0fast -
-0fast -
-Ofast -
-0fast -
-0fast -
-0fast -
-0fast -
-0fast -
-0fast -
-Ofast -
-0fast -
-Ofast -

J[src/rn_vid.c -ca
Jfsrefernn_layer.c
Jfsrcfdemo.c -0 of
JJsreftag.c -0 ob
Jsrefcifare -0
JJsre/go.c -0 obj,
Jfsrefbatchnorn_Li
Jfsrefart.c -0 ob
.fsre/region_layer
.[src/reorg_layer
.Jsre/reorg old Li
./src/super.c -0 ¢
J[srefvoxel.c -0
JJsreftree.c -0 of
./srcfyolo_layer.

- Article, July 4, 2023

Now to test the workings of the YOLOv4 model, we downloaded some pre-trained weights. This is done after the darknet

framework has been completely in tune with the machine learning algorithm.

Y (9] lwget: https:/github con/AlexeyA8/ darknet el eases/ domnloaddarknet yolo 3 optinal/yolovd.veigts

--203-05-21 16:46:43-- https:/[github. con/AlexeyAB/darknet /releases /dounload/darknet yolo v3 optinal /yolovd.seights
Resolving github.con (github.con)... 146.82.121.4

Comnecting to github. con (github. con) |140.82,121,4]:483.... comnected,
HTTP request sent, auaiting response... 302 Found

Location: https://objects.githubusercontent. con/github-production-release-asset-de6She/ 75388965/ badbe380-839c -1 1ea-0751-F994F5061796X-Anz -Algor]
--0003-05-21 16:46:43-- https:/objects githubusercontent. com/github-production-release-asset-de6She/ 75388965 /hadte389-889¢- 11ea-9751- 99415961

Resolving objects.githubusercontent,com (objects. githubusercontent.con).., 185.199.108.133, 185,199.109,133, 185.199.110.133, ...
Comnecting to objects. githubusercontent, con (objects. githubusercontent., con) |185.199,108.133) 443, connected,
HTTP request sent, auaiting response... 260 OK

Length: 257717640 (246M) [application/octet-strean]
Saving to: ‘yolovd.ueights’

Jolov,weights

lﬁg%[e]

)] 25 T8H 63,598/s

in 3.9

203-05-21 16:46:47 (63,1 18s) - ‘yolovd.veights’ saved [257717646/257717640]

Qeios ID: 6HRP4L -

https://doi.org/10.32388/6HRP4L

13/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

Fig. 10. Downloading the pre-trained weights

To display the images being taken as input and the output that is being produced, we have written a simple function.

def showinege(patn):
matplotLib inline
inpart natplotLib.pyplot as plt
1mp0rt natplotib. inage a5 ming
109 = wping, e path)
olt ax1s(" ff')
01 = plt rcharaus| Figure.pi |
hﬂght width, e dph ing,Shape
figsize = width / float(dpi), height / float(dpi)
figsize = width | flost(dp), height / float(dpi)
oLt Figure(Figsize-figsize)
plt, inshoi ing)

Fig. 11. Display Function

We have made use of our custom input in the machine learning process to check the accuracy of the model, and it was

satisfactory.

é [14] showimage("/content/cityL. jpg')

Fig. 12. Command to display the custom image

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 14/35

Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

100

200

300

400

500

0 200 400 600 800

Fig. 13. Custom Image

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 15/35

Q

Qeios, CC-BY 4.0

;; [15] !./darknet detector test ./cfg/coco.data ./cfg/yolova.cfg yolova.weights /content/cityl.jpg -dont_show

[volo] params: iou loss:
nms_kind: greedynms (1),

140
141
142
143
144
145
146
147
148
149
150

route 136
conv 256
route 141 126
conv 256
conv 512
conv 256
conv 512
conv 256
conv 512
conv 255
yolo

3

oW R W W
oK X X X X X

[yolo] params: iou loss:
nms_kind: greedynms (1),

151
152
153
154
155
156
157
158
159
160
161

route 147
conv 512
route 152 116
conv 512
conv 1624
conv 512
conv 1924
conv 512
conv 1024
conv 255
yolo

3

B oWwRwWRe W
E S A

[yolo] params: iou loss:
nms_kind: greedynms (1),
Total BFLOPS 128.459

avg outputs =

1068395

Article, July 4, 2023

ciou (4), iou norm: ©.87, obj norm: 1.8@, cls norm: 1.80, delta norm: 1.00, scale x y: 1.28

beta
x 3/ 2

1/
3/
1/
3/
1/ 1
3/ 1
i i

[e

ciou (4), iou_

beta =
x 3/ 2

1/ 1
3/ 1
1/ 1
3/ 1
11
3/ 1
1/ 1

ciou (4), iou

beta =

Loadine weiehts from volov4.weishts...

= 9.600000

76 X 76
38 x 38
38 x 38
38 x 38
38 x 38
38 x 38
38 x 38
38 x 38

norm:

0.600000

38 x 38
19 o 9
19 2 19
19 x 19
19 ¥ 19
19 x 19
19 x 19
19 % 219

norm:

0.600000

x 128

512
256
512
256
512
256
512

b I - - -

0.07,

X 256

xl@24
x 512
x1024
X 512
x1024
X 512
x1024

0.07,

Fig. 14. Running the Darknet Detector on our custom image

3“ [13] Showinage(' cortent darknet predictions. jpg’)

Fig. 15. Command to display the predicted output

Qeios ID: 6HRP4L

https://doi.org/10.32388/6HRP4L

->
->
-»
-»
-»
>
>
->
->

->

X
X
X
X
X
X
X
X
X

76 x 76 x 128
256 ©.852 BF

38
38
38
38
38
38
38
38
38

X

X
X
X
X
X
X
X
X

obj_norm: 1.0@,

->
b d
->
->
o]
-2
-
-3
-3

19
19
19
19
19
19
19
19
19

'
%

HKoX X XK XK X XK XX

19
19
19
19
19
19
19
19
19

38

X

X

512
256
512
256
512
256
512
255

cls_|

0.379
3.407
9.379
3.407
@.379
3.407
Q.377

BF
BF
BF
BF
BF
BF
BF

norm: 1.8, delta_norm: 1.00, scale x_y: 1.10

X 38 x 256
512 9.852 BF
x1024

512

x1024

X

512

%1024

X

512

x1024

X

255

@.379
3.407
@.379
3.407
9.379
3.407
@.189

BF
BF
BF
BF
BF
BF
BF

obj_norm: 1.0@, cls norm: 1.e@, delta norm: 1.88, scale x y: 1.85

16/35

Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

100

200

300

400

300

0 200 400 600 800

Fig. 16. Displaying the predicted output

B. Data Collection

After we got hands-on experience with how YOLO works, we started to collect data for our machine-learning model, which
consisted of birds of different species. In the following machine-learning model training and output version, we have made
use of some birds by using numerous images of each one of them and labelling all the images manually. All of the
labelling happened manually, so it indeed turned out to be a very tedious task. At first, we downloaded the labellmg file
from the terminal and then we proceeded to create a virtual environment in Anaconda Command Shell. We proceed to
access the folder in which the labellmg resources have been downloaded and by running the necessary commands, we

activate the labellmg image labelling software.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 17/35

Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

(base) C:\Users\ayonc>conda env list

conda environments:

#

base * (:\Users\ayonc\anaconda3

(base) C:\Users\ayonc>conda activate base

(base) C:\Users\ayonc>conda install pyqt=5
Retrieving notices: ...working... done

Collecting package metadata (current_repodata.json): done
Solving environment: done

All requested packages already installed.
(base) C:\Users\ayonc>dir
Volume in drive C is Windows

Volume Serial Number is D87D-3DAA

Directory of C:\Users\ayonc

Fig. 17. Activating the Anaconda Virtual Environment

(ase) C:\lser\ayoncoed LabeIng

\isensayonLbelagppyecs = L/ esounces y espunees. e

(ase) C:\lenstayon el agppthon LabelTn. py

Fig. 18. Accessing the labellmg files

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 18/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

Fig. 19. Starting up the labeling software

Fig. 20. Opening the folder containing the images

Qeios ID: 6HRP4L - https:/doi.org/10.32388/6HRP4L 19/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

" 8 tabefimg C\Usershaponc\OreDirve Deskoy bdata| mages!raiet Areus Fakean (g [£620] - 0 X
Fle [t View Help
. o Lave's
v Ao Live
= " afca
"4
=1 vse cufedt el
: o [-
v
Changs S v
’ B Ao fisleon.
Vot o
e e
vty Irage
e
Ll
Yoo
L)
e Recsion
s fie i ==
i Cllisers\ayonc|OneDsive Destoshbrodata
Q Consas ayonc' CneDrive’ Destaog birddats
i Cikiers\ayorc CneDrve' Desoop) birddata
aoe | CiUsersiayonciOneDrve\Destosibrddata
n% —_ CiUsersiayonciCreDrive! Desisochbradata
a Cusars ayone Ona D’ Destsos hirodata
Zoom DM C4jusersieyonc'One Deve’ Desito brddata
c. Chiserrieyonc'OneDrive’ Destaop birdcees
e Wrdow

[
o

Fig. 21. Labeling each image manually as per their respective class

Finally, we have to delete all the incompatible image files that cannot be used for the model-training process. Since this

task has to be done manually, hence it can be tedious sometimes.

C. Code

Thus, by forming a dataset after collecting and labelling over 600 images, we begin to train our model based on the said
dataset. We make use of Google Colaboratory again, and this time we load the YOLOV5 files that are needed for the

training of our model.

rvofd
° lgit clone https://github.com/ultralytics/yolovs
%cd yolovs
%pip install -gr requirements.txt

import torch
fmport utils
display = utils.notebook_init()

YOLOVS & v7.8-169-geef637c Python-3.10.11 torch-2.8.1+cull8 CUDA:@ (Tesla T4, 15102Mi8)
Setup complete (2 CPUs, 12.7 GB RAM, 23.3/78.2 GB disk)

¢ [2] !unzip -q /content/birddata.zip -d ../

Fig. 22. (Above) Loading the Yolov5 files (Below) Unzipping the uploaded dataset containing labeled data

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 20/35

Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

After uploading a zipped folder of our dataset onto Google Colab, we run some commands to unzip it for the training of
our model to begin. But before we can proceed to do so, there is a very important task, and that is to form a YAML file that
would contain the locations of the training images and the validation images and contains the total number of classes

taken into consideration while forming the dataset. Here, we term the YAML file as ‘yx.yaml’.

Fig. 23. Making the YAML file that contains the classes

After we have formed the YAML file and uploaded it on Colab, we begin the training process by iterating the dataset

through 300 epochs to get an efficient and accurate object prediction model using image data.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 21/35

Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

Ipython train.py --img 640 --batch 3 --epochs 300 --data yx.yaml --weights yolovsx.pt --cache

e AutoAnchor: 3.18 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs/train/exp/labels.jpg...
Image sizes 649 train, 640 val
Using 2 dataloader workers
Logging results to runs/train/exp
Starting training for 300 epochs...

Epoch GPU_mem box_loss obj_loss cls loss Instances Size
0/299 3.886 0.06344 0.02899 0.04094 7 640: 100% 161/161 [00:43<00:00, 3.73it/s)
(lass Images Instances P R MAPS@ mAPS@-95: 100% 25/25 [00:05¢00:00, 4.42it/s]
all 149 148 0.281 0,495 0.218 0.104
Epoch GPU_mem box_loss obj_loss cls loss Instances Size
1/299 4,056 0.0453 0.02164 0.03533 4 640: 100% 161/161 [00:37<00:00, 4.34it/s]
Class Images Instances P R MAPSO MAP5@-95: 108% 25/25 [00:03<00:00, 7.21it/s]
all 149 143 0.581 0.336 0.304 0.129
Epoch GPU_mem box_loss obj loss cls loss Instances Size
2/299 4,856 0.e4516 0.01818 @.03249 7 640: 100% 161/161 [00:37<00:00, 4.29it/s]
Class Images Instances p R mMAPSO mAPS0-95: 100% 25/25 [00:03<00:00, 7.21it/s]
all 149 148 0.416 0.344 0.277 6.0984
Epoch GPU_mem box_loss obj_loss cls loss Instances Size
3/299 4,056 0.0455 0.01611 0.02885 6 640: 100% 161/161 [00:37<00:00, 4.26it/s]
Class Images Instances p R MAPSO MAP50-95: 100% 25/25 [00:03<00:00, 7.09it/s]
all 149 148 0.448 0.447 0.364 0.209
v 0s completed at 9:46PM |

Fig. 24. Model-Training Process (start)

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 22/35

Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

12/299 4,066 0.02874 0.01335 0.01266 6 640: 100% 161/161 [00:37¢00:00, 4.31it/s]
Class Images Instances P R mAPS® mAPS@-95: 10@% 25/25 [00:03<00:00, 6.431t/s]
all 149 148 0.681 0.717 0.693 .38
Epoch GPU_mem box loss obj _loss cls loss Instances Size
13/299 4,066 0.02888 0.0145 0.01252 10 640: 100% 161/161 [00:37¢00:00, 4.29it/s]
Class Images Instances P R mAPS® mAPS@-95: 10@% 25/25 [00:03<00:00, 6.58it/s]
all 149 148 0.76 0,701 0.731 0.377
Epoch GPU mem box loss obj loss cls loss Instances Size
14/299 4,066 0.62999 0.01422 0.01234 9 640: 100% 161/161 [00:37¢<00:00, 4.29it/s]
Class Images Instances P R MAPS® MAPS@-95: 10@% 25/25 [00:03<00:00, 7.07it/s]
ell 149 148 0.539 0.5% 0,602 0,295
Epoch ~ GPU_mem box_loss obj_loss cls loss Instances Size
15/299 4,066 0.0274 0.01366 0.01088 7 640: 100% 161/161 [00:38¢<00:00, 4.23it/s]
Class Images Instances P R mAP5® mAPS@-95: 10@% 25/25 [00:03<00:00, 6.731t/s]
all 149 148 0.764 0.632 0,735 0,391
Epoch ~ GPU mem box_loss obj loss cls loss Instances Size
16/299 4,066 0.02852 0.01379 0.01231 10 640: 100% 161/161 [00:37<00:00, 4.28it/s]
Class Images Instances P R MAPSO MAPS@-95: 10@% 25/25 [00:03<00:00, 7.16it/s]
ell 149 148 0.678 0.702 0.744 0.418
Epoch ~ GPU mem box loss obj loss cls_loss Instances Size
17/299 4,066 0.62952 0.01428 0.01264 9 640: 100% 161/161 [00:37¢<00:00, 4.27it/s]
Class Images Instances p R MAPSO mAPS@-95: 100% 25/25 [00:03<00:00, 6.61it/s]
all 149 148 n.649 0.673 0.714 0.4

Fig. 25. Model-Training Process (continuation)

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 23/35

Q Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

Ciuss amuges s . " WASU WU J0h AVUR 20 6d [UIRINVIUYY Veal a)
all 149 148 0.776 0,763 0.826 0.479
Epach GPU_mem box loss obj loss cls loss Instances Size
60/299 4,006 0,02246 0.01122 0,005249 10 640: 100% 161/161 [00:37¢00:00, 4.24it/s]
(lass Images Instances P R MAPS@ mAPS@-95: 100% 25/25 [00:03¢00:00, 6.59it/s]
all 149 148 0.797 0.79 0,836 0.499
Epoch ~ GPU_mem box_loss obj loss cls loss Instances Size
61/299 4,066 0.0225 0.01213 0.006766 8 640: 100% 161/161 [00:37<00:00, 4.271t/s]
(lass Images Instances P R MAPSO mAPS@-95: 10@% 25/25 [00:03<0:09, 7.18it/s]
all 149 148 0.852 0,78 0,851 0.514
Epoch ~ GPU_mem box_loss obj loss cls_loss Instances Size
62/299 4,066 0,02171 0.0121 0,005687 7 640: 100% 161/161 [00:37<00:00, 4.271t/s]
Class Images Instances P R MAPSO MAPS@-95: 106% 25/25 [00:03<0:09, 7.19it/s]
all 149 148 0.776 0.758 0.842 9.528
Epoch GPU_mem box_loss obj loss cls loss Instances Size
63/299 4,066 0.02179 0.01191 0.006062 6 640: 100% 161/161 [00:37<00:00, 4.271t/s]
Class Images Instances P R MAPSO MAPS@-95: 10@% 25/25 [00:03<00:09, 7.22it/s]
all 149 148 0.772 0,799 0.847 0.5604
Epoch GPU_mem box loss obj loss cls loss Instances Size
64/299 4,066 0.02108 0.01184 0.004925 10 640: 100% 161/161 [00:37¢00:00, 4.27it/s]
(lass Images Instances P R MAPSO mAPS@-95: 108% 25/25 [00:03¢00:00, 7.27it/s]
all 149 148 0.787 0,874 0,884 0,559

Crarh ol mam hav Tare ahs Tare rle lare Tnekancar Cian

Fig. 26. Model-Training Process (continuation)

° Epoch GPU_mem box_loss obj_loss cls_loss Instances size T Ve
148/299 4,866 ©.01551 ©.009138 0.002682 3 640: 100% 161/161 [@0:38<00:00, 4.23it/s]
e Class Images Instances P R mMAP50 mAPS@-95: 10@% 25/25 [00:83<00:00, 7.26it/s]
all 149 148 0.783 0.799 0.834 0.53
Epoch GPU_mem box_loss obj loss cls loss Instances size
149/299 4.866 0.01439 ©.009054 0.002612 5 640: 100% 161/161 [00:37<00:00, 4.28it/s]
Class Images Instances P R mMAP58® mAP5@-95: 10@% 25/25 [00:83<00:00, 6.66it/s]
all 149 148 0.798 0.764 0.838 9.52
Epoch GPU_mem box_loss obj loss c¢ls loss Instances Size
150/299 4,066 ©,01642 0.809437 0.00285 5 640: 100% 161/161 [00:37<00:00, 4.25it/s]
Class Images Instances P R mAPS® mAPS@-95: 100% 25/25 [00:03<00:00, 7.28it/s]
all 149 148 0.867 0.693 0.81 9.52
Epoch GPU_mem box_loss obj_loss cls_loss Instances size
151/299 4,066 ©.01506 ©.008818 0.003213 6 640: 100% 161/161 [00:37¢00:00, 4.29it/s]
Class Images Instances P R mMAPS@ mAPS@-95: 100% 25/25 [@0:03<ee:e@, 6.50it/s]
all 149 148 9.799 0.76 0.828 8.517
Epoch GPU_mem box_loss obj_loss cls loss Instances Size
152/299 4.0866 ©.01567 ©.009637 0.002879 8 640: 100% 161/161 [00:37<00:00, 4.25it/s]
Class Images Instances P R mAP5@ mAP5@-95: 10k 25/25 [00:03<ee:e@, 7.22it/s]
all 149 148 0.905 9.752 0.84 ©.543
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
153/299 4,066 0.01466 ©.609094 ©.002574 6 640: 100% 161/161 [00:38<00:00, 4.21it/s]
Class Images Instances P R mAPS® mAPS9-95: 100% 25/25 [00:03<00:00, 7.26it/s]
all 149 148 0.858 9.793 0.85 ©.536
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
154/299 4.96G 28.91516 0.00877 9.0036 10 640: 100% 161/161 [00:37<00:00, 4.26it/s]
Class Images Instances P R mAPS@ mAPS@-95: 100% 25/25 [@0:03<ee:e@, 7.23it/s]
all 149 148 0.83 0.816 0.869 0.547

Fig. 27. Model-Training Process (continuation)

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 24/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

VaLideting runs/trai/evp/weignts et t...
Fsng Layers...

Hodel sumary: 312 Lajers, GGL0T059 praneters, 0 gradients, 20,9 GFLORS
(s Iigs Istaces P R olPS0 wS0-99: 100k 25105 [0:th, 5,030t
1 O R R X A 3
Wrflon W B 0% 40 M 0%
Wlibgle W 0 W6 AW 088 0
W B WM 0% 0% 0.6
Glnbgle 19 5 W 04 045 05
Get D bsts 19 91 0M5 085 0D
Woger S 19 0 0 0T 08 03D
Ress sved o muns/trein e

Fig. 28. Model-Training Process (end)

After the training gets completed, it shows the destination folder of the best.pt and the last.pt that contains the activated
kernels of the birds present inside of the images. The overall result of the machine learning process is given in the data

mentioned below, and a score of mMAP50 nearer to 1 means a more recognized class among any particular set of classes.

D. Output

Now, for the final step in our bird recognition training, we supply the model with different test data of birds which it was

able to predict with near efficiency almost every time.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 25/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

bl - 0

ﬁ M python detect.py --weights /content/yolovs/runs/train/exp/weights/last.pt --img 640 --conf 0.25 --source /content/baldeagle.n

video 1/1 (30/277
video 1/1 (31/277
video 1/1 (32/277
video 1/1 (33/277
video 1/1 (34/277
video 1/1 (35/277
video 1/1 (36/277
video 1/1 (37/277
video 1/1 (38/277
video 1/1 (39/277

) [content/baldeagle.mpd: 384x640 1 Bald Eagle, 32.7ms
)
)
)
)
)
)
)
)
)
video 1/1 (40/277)
)
)
)
)
)
)
)
)
)

/

[content/baldeagle.mp4: 384x640 1 Bald Eagle, 32.7ms
[content/baldeagle.mpd: 384x640 1 Bald Eagle, 32.2ms
[content/baldeagle.mpd: 384x648 1 Bald Eagle, 32.1ms
[content/baldeagle.mpd: 384x648 1 Bald Eagle, 32.5ms
[content/baldeagle.mp4: 384x640 1 Bald Eagle, 32,9ms
[content/baldeagle.mpd: 384x649 1 Bald Eagle, 32.0ms
[content/baldeagle.mpd: 384x648 1 Bald Eagle, 31.3ms
[content/baldeagle.mpd: 384x640 1 Bald Eagle, 30.6ms
[content/baldeagle.mpd: 384x649 1 Bald Eagle, 31.0ms
[content/baldeagle.mpd: 384x640 1 Bald Eagle, 31.1ms
[content/baldeagle.mpd: 384x640 1 Bald Eagle, 31.7ms
[content/baldeagle.mpd: 384x640 1 Bald Eagle, 32.2ms
[content/baldeagle.mp4: 384x640 1 Bald Eagle, 32.6ms
[content/baldeagle.mpd: 384x640 1 Bald Eagle, 32.5ms
[content/baldeagle.mpd: 384x648 1 Bald Eagle, 33.1ms
[content/baldeagle.mpd: 384x648 1 Bald Eagle, 32.0ms
video 1/1 (47/277) /content/baldeagle.mpd: 384x640 1 Bald Eagle, 30.9ms
video 1/1 (48/277) [content/baldeagle.mpd: 384x640 1 Bald Eagle, 30.8ms
video 1/1 (49/277) /content/baldeagle.mpd: 384x640 1 Bald Eagle, 30.9ms
video 1/1 (50/277) [content/baldeagle.mpd: 384x640 1 Bald Eegle, 31.5ms

video 1/1 (41/277
video 1/1 (42/277
video 1/1 (43/277
video 1/1 (44/277
video 1/1 (45/277
video 1/1 (46/277

Executing (10s) <cell line: 1> > system() > _system_compat() > _run_command() > _monitor_process() » _poll_process{)

Fig. 29. Model detecting for '‘Bald Eagle’

Bald Eagle 0.81

ad
£

\ .‘é"is:""'\’.

baldeagle (2)

Fig. 30. Model predicting the presence of ‘Bald Eagle’

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 26/35

- Article, July 4, 2023

Qeios, CC-BY 4.0

TR W !

27/35

o oython detect,py -~ueights contentyoLov/runstrain/exp/vedghts/Las pt -~Ing 640 --conf 0.5 ~~surce JcontentooperSuand

Q

o s
= s s s e s =
= o s s = = =2 = = =

- = = = = =7 - - f==—1 — -
- —w == oy =0 o -~ ~J
- - - - = = = e o o= ey

e _— — e — — — — —

— e e e —
e - — _ —_ —_
s — —_ — — = f— e — =
— | — — — — =] s _— s =] =1
=1 == =1 == = = = = = = =
— 3 = = = o L o L e L)
— S D o o
e - -— - - - <
s j— - —_— — as s s = s =
_ s s s s e =T —a = e =
(=" R e — — == — —
= = =1 = = = = = =

=2 =2 =2 = = = = = = =
= =K = ==
— - - -l S R | L |

—_— e e e S
e -~ R e — e S — S — S — S o
= e — S — S — S — T — B — R W R R =Y —1
I R — Y Y — R — S — - S I
>= > S e e o w=f o= 2 =f = = =t

= s e e e

= =y = =y =f £33 . = . 2. =

= = = = = -

- - - - I — e — | — — |
— e = = = — — =— =— — —
=— — = — = =1 == == = ==1 ==1
==} = = = [==] = = = = = =
= = = = = — — e — — —
= T — s — - — - — _— —
i = = - = = ==] == < == =) =]
[==] s =] (=] =] = £ =2 £ = ==
= — et — e — e~ e I — e —
= — — — —) g = 1 1 4
= = = = o= S e e = = =—_
—_— T S S T e e e et e gh
—_ 4= = 4 — — — — — —
— — =— — =— == == < == < ==
— — — — — — — — — — =1
— — — — — — — — — — —
f—r fary > fary S — — — — — —
e e e

—_—— e — e —— ———

—_—— — — —— T == —f]

— =4 = = = L Ly L Ly L Ly
™ Ly Ly L Ly o~ c~d c~d 2 <~d ©—~1 <4
el Ceel el i el e T Tee L AU TS e e S

o e == = = = == o =1 =1
= D= — =0 = — — — p=y
o e i e e T o it i S g

—_— = = = =i = = = = = =
e e e e e A e e e e
= w1 =4 w1 w4 =1 =4 =1 ~—1 =1 -~

e — — e - e — e p— e e
=) L= =) (=) L= L= L= =¥ L= =¥ (="
e e — B — e — e — e — e — e — e — B — e —
e 3 A A s A A A4 e A e -
= = = = = = = e = = =

Fig. 31. Model detecting for 'Wooper Swan’

-
=
ol
&=
2
wv
4
@D
(=N
[=]
S

- https://doi.org/10.32388/6HRP4L

Fig. 32. Model predicting the presence of "Wooper Swan’

Qeios ID: 6HRP4L

Q

Qeios, CC-BY 4.0 - Atrticle, July 4, 2023

T v @ 8 K B

" Ipython detect.py --weights /content/yolovs/runs/train/exp/weights/last.pt --img 640 --conf 0.25 --source /content/WooperSwan2.mpd

V1aeo
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video

widan

1/1 (153/b4Y) [CONTENT/WOOpErsWans.mpa:
1/1 (154/649) /content/WooperSwan2,mpd:
1/1 (155/649) [content/WooperSwan2.mp4:
1/1 (156/649) /content/WooperSwan2,mpd:
1/1 (157/649) [content/WooperSwan2.mps:
1/1 (158/649) /content/WooperSwan2.,mpd:
1/1 (159/649) [content/WooperSwan2.mps:
1/1 (160/649) /content/WoopersSwan2.mpd:
1/1 (161/649) [content/WooperSwan2.mp4:
1/1 (162/649) /content/WooperSwan2.mpd:
1/1 (163/649) [content/WooperSwan2.mps:
1/1 (164/649) /content/WooperSwan.mpa:
1/1 (165/649) [content/WooperSwan2.mps:
1/1 (166/649) /content/WooperSwan2.mps:
1/1 (167/649) [content/WooperSwan2.mp4:
1/1 (168/649) /content/WooperSwan2.mpd:
1/1 (169/649) [content/WooperSwan2.mps:
1/1 (170/649) /content/WooperSwan2.mpd:
1/1 (171/649) [content/WooperSwan2.mps:
1/1 (172/649) /content/WooperSwan2.mpd:
1/1 (173/649) [content/WooperSwan2.mp4:
1/1 (174/649) /content/WooperSwan2.mpd:
1/1 (175/649) [content/WooperSwan2.mps:
1/1 (176/649) /content/WooperSwan2.mpd:
1/1 (177/649) [content/WooperSwan2.mps:
1/1 (178/649) /content/WooperSwan2.mps:
1/1 (179/649) [content/WooperSwan2.mp4:
1/1 (180/649) /content/WooperSwan2.mpd:

141 f101ican) Frantant llanrarCunnd mnd s

Fig. 33. Model detecting for 'Wooper Swan’

WooperSwani (1)

384Xbay
384x649
384x640
384x640
384648
384x640
384x640
384x640
384x640
384x640
384649
384x640
384x640
384x640
384640
384x640
384x%640
384x640
384640
384x640
384x640
384x640
384x%640
384x640
384640
384x640
384x640
384x640

20AvEAR

1 wooper swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,
1 Wooper Swan,

frn datnrtianch

Fig. 34. Model predicting the presence of 'Wooper Swan’

Qeios ID: 6HRP4L

https://doi.org/10.32388/6HRP4L

30,9MmS
32.5ms
30.1ms
29.8ms
29.5ms
30.5ms
30.5ms
32.0ms
31.2ms
29.8ms
30.3ms
30.4ms
30.8ms
29.3ms
30.1ms
29.6ms
32.8ms
31.2ms
32.6ms
33.0ms
32.7ms
32.7ms
32.9ms
32.7ms
33.8ms
32.2ms
32.3ms
32.4ms

23 Ame

28/35

Q

Qeios, CC-BY 4.0

- Atrticle, July 4, 2023

T V¥V W MR

@ M python detect.py --ueights /content/yolovs/runs/train/exp/weights/last.pt --img 640 --conf 0.25 --source {content/Amurralconvideo.mps

video 1/1 (48/351
video 1/1 (49/351
video 1/1 (56/351
video 1/1 (51/351
video 1/1 (52/351
video 1/1 (53/351
video 1/1 (54/351
video 1/1 (55/351
video 1/1 (56/351
video 1/1 (57/351

video 1/1 (59/351
video 1/1 (66/351
video 1/1 (61/351
video 1/1 (62/351
video 1/1 (63/351
video 1/1 (64/351
video 1/1 (85/351
video 1/1 (66/351
video 1/1 (67/351
video 1/1 (68/351

Fig. 35. Model detecting for ’Amur Falcon’

) /content/AmurFalconvideo.mpd:
) [content/AmurFalconvideo.mpd:
) /content/AnurFalconvideo. mpd:
) [content/AmurFalconvideo, mpd:
) /content/AnurFalconvideo.mpd:
) [content/AnurfalconVideo.mpd:
) [content/AmurFalconvideo,mpd:
) fcontent/Amurfalconvideo.mpd:
) [content/AmurFalconvideo.mpd:
) /content/AmurFalconvideo.mpd:
video 1/1 (58/351) /content/murFalconvideo.mpa:
) [content/murFalconvideo.mpd:
) [content/AnurFalconvideo.mpd:
) [content/AnurFalconvideo.mpd:
) [content/AmurFalconvideo.mpd:
) [content/Anurfalconvideo.mpd:
) /content/AmurFalconvideo. mpd:
) fcontent/Amurfalconvideo.mpd:
) [content/AmurFalconvideo.mpd:
) /content/AmurFalconvideo.mpd:
) [content/AmurFalconvideo.mpd:

3524640 1 Amur Falcon, 30.2ms
352%640 1 Amur Falcon, 28.5ms
352x640 1 Amur Falcon, 27.3ms
352%640 1 Amur Falcon, 27.4nms
352%640 1 Anur Falcon, 27.2ms
352x640 1 Amur Falcon, 28.1ms
3524640 1 Amur Falcon, 27.1nms
3524640 1 Amur Falcon, 28.0ms
352x640 1 Amur Falcon, 28.7ms
352%640 1 Anur Falcon, 28.8ms
352%640 1 Amur Falcon, 3@.3ms
352x640 1 Anur Falcon, 29.7ms
352%640 1 Anur Falcon, 28.6ms
352%640 1 Anur Falcon, 28.2ms
352x640 1 Amur Falcon, 28.5ms
352x640 1 Amur Falcon, 28.0ms
352x640 1 Anur Falcon, 28.8ms
352x640 1 Anur Falcon, 29.8ms
352%640 1 Amur Falcon, 29.0ms
352%640 1 Anur Falcon, 30.4ms
352%649 1 Amur Falcon, 29.1ms

Amur Falcon 0.67

Fig. 36. Model predicting the presence of ’Amur Falcon’

Qeios ID: 6HRP4L -

https://doi.org/10.32388/6HRP4L

29/35

Q

VAULY L[| ATL]SVE][LVIIRLIL] LI AW UL T

video 1/1 (173/367) /content,/Enuvideol . mpd:
video 1/1 (174/367) /content,/Enuvideol.mpd:
video 1/1 (175/367) /content/Enuvideol.mpd:
video 1/1 (176/367) /content/Enuvideol.mpd:
video 1/1 (177/367) [content/EmVideol,npd:
video 1/1 (178/367) /content,/Enuvideol.mpd:
79/367) /content,/EnuVideolmpd:
80/367) /content/Enuvideol,mpd:
Jcontent/EmVideol mpd:
Jcontent/Enuvideol .mpd:
/ /
[content/
[content/
[content/
/ /
/ /
/ /

video 1/1
video 1/1

—_ —

video 1/1 (183/367) /content,/Enuvideol.npd:
video 1/1 (184/367) /content,/Emuvideol . mpd:

video 1/1

video 1/1

[1 (1747367)
1 (175/367)
[(176/367)
(177/3¢7)
(L78/367)
(179/3¢7)
/1 (18/367)
video 1/1 (181/361)
/1 (182/367)
(183/367)
(184/3¢67)
(185/3¢7)
(186/367)
(187/3¢7)
(188/367)
(189/3¢7)

/
/
/
/
/
/
/
/
video 1/1 (182/367
/
/
/
/
/
/
/

Fig. 37. Model detecting for 'Emu’

by

“

y.c

Emu 0. 85 ’f

EmuVideo2 (1)

5/367) [content/Enuvideol,npd:
6/367) [content/EnuVideod,mpd:
video 1/1 (187/367) /content,/Enuvideol.mpd:
video 1/1 (188/367) /content/Enuvideod . mpd:
video 1/1 (189/367) /content,/EmiVideod.mpd:

SUTAVTY |1V MLRRL LAV) SV T

384640 1 Emu, 30.9ms
384%640 1 Emu, 32,3ms
384%640 1 Emu, 29,9ms
384%640 1 Emu, 29,4ms
384%640 1 Emu, 29,3ms
384%640 1 Emu, 29.4ms
384%640 1 Emu, 29,8ms
384%640 1 Emu, 29,4ms
384%640 1 Emu, 29.1ms
384%640 2 Emus, 29.1ns
384%640 1 Emu, 29,8ms
384640 1 Emu, 30.0ms
384%648 2 Emus, 31.4ms
384%640 2 Emus, 30.6ns
384%640 2 Emus, 29.8ns
384%640 2 Emus, 30.6ns
IBAx640 2 Emus, 29.1ms

Fig. 38. Model predicting the presence of 'Emu’

Qeios ID: 6HRP4L -

https://doi.org/10.32388/6HRP4L

Qeios, CC-BY 4.0

(’ Ipython detect.py --weights /content/yolovs/runs/train/exp/weights/ last . pt --ing 648 --conf 0,25 --source fcontent/EmuVideol.mpd

- Article, July 4, 2023

[

30/35

Q

Qeios, CC-BY 4.0

v o A

" Ipython detect.py --weights /content/yolovs/runs/train/exp/weights/last.pt --img 648 --conf 8.25 --source /content/Emuvideo2.mpd

video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video

1/1 (553/6@7) /content/Emuvideo2
1/1 (554/6@7) /content/Emuvideo2
1/1 (555/6@7) /content/Emuvideo2
1/1 (556/6@7) /content/Emuvideo2
1/1 (557/6@7) /content/Emuvideo2
1/1 (558/6@7) /content/Emuvideo2
1/1 (559/6@7) /content/Emuvideo2
1/1 (560/687) [content/Emuvideo2
1/1 (561/687) [content/Emuvideo?
1/1 (562/687) /content/EmuVideo2
1/1 (563/6@87) [fcontent/Emuvideo2
1/1 (564/687) /content/Emuvideo2
1/1 (565/607) /content/Emuvideo2
1/1 (566/687) /content/Emuvideo2
1/1 (567/687) /content/EmuVideo2
1/1 (568/687) /content/Emuvideo2
1/1 (569/687) /content/Emuvideo2
1/1 (570/6@7) /content/Emuvideo2
1/1 (571/687) /[content/Emuvideo2
1/1 (572/6@7) /content/Emuvideo2
1/1 (573/687) /[content/Emuvideo2
1/1 (574/6@7) /content/Emuvideo2
1/1 (575/607) /content/Emuvideo2
1/1 (576/6@7) /content/Emuvideo2
1/1 (577/6@7) /content/Emuvideo2
1/1 (578/607) /content/Emuvideo2
1/1 (579/6@7) /content/Emuvideo2
1/1 (580/6@7) /content/Emuvideo2
1/1 (581/6@7) /content/Emuvideo2
1/1 (582/6@7) /content/Emuvideo2
1/1 (583/6@7) /content/Emuvideo2

v 325

Fig. 39. Model detecting for 'Emu’

EmuVideol (1)

.mpa: 384x640
Jmpd: 384x640
mpd: 384X640
Jmpd: 384x640
mpd: 384X640
mpd: 384X640
Jmpd: 384x640
mpd: 384X640
Jmpd: 384x649
.mpd: 384x649
Jmpd: 384x640
.mpd: 384x640
Jmpd: 384X640
Jmpd: 384X640
Jmpd: 384x649
Jmpa; 384X640
Jmpd: 384640
.mpa: 384x640
.mpa: 384X640
.mpa: 384x640
.mpa: 384X640
Jpd: 384Ax649
mp4: 384X640
Jpdi 384x649
Jmpd: 384x649
mp4: 384X640
Jmpd: 384x649
Jmpd: 384x649
JMmp4: 384x640
Jmpd: 384x640
Jmpa: 384x640

1:
1
1
1
1
1
1
1
1
1
ik
1
1
1
ik
1
il
1
1
ik
1
1.
41
1
1k
il
1
1
1
1l
af

Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,
Emu,

completed at 9:25PM

Fig. 40. Model predicting the presence of 'Emu’

Qeios ID: 6HRP4L

https://doi.org/10.32388/6HRP4L

Cmu

3@.4ms
30.8ms
31.0ms
30.8ms
31.2ms
31.5ms
29.8ms
38.3ms
30.6ms
39.6ms
30.5ms
31.7ms
32.4ms
30.2ms
29.7ms
30.3ms
30.9ms
30.5ms
38.1ms
3@.4ms
29.7ms
31.9ms
31.3ms
31.8ms
29.7ms
30.ems
30.9ms
30.7ms
38.4ms
32.2ms
32.4ms

0.26

Article, July 4, 2023

31/35

Q

Qeios, CC-BY 4.0 - Article, July 4, 2023

IV"TW'l

oWWMMVMWWMMWWMMWMMMWMWwMﬁmmmmwmmmwmm
[

detet: veftse{contentolonrns e eghts Lt pt | source Contet et ndianBustandeic g Gtaedetacocol 2., nsi=(

005 V1 0-160-eefEaTc ython-3, 16,1 forch-L. cut) CUORD (TesLa T4, L5L6DKB)

Fsing Lajers...

Hodel snmary: 300 Layers, G620T59 paraters, 0 gradints, 63,9 GHORS
mmﬂ/mmmmtMMmmumﬁmmlmﬂwmwmmﬂz
Spee .7us pre-process, 63,00 inferenc, 82.7us S e Inage at shape (L, 3, 40, &)
Results saved to uns/detet g

|

Fig. 41. Model detecting for 'Great Indian Bustard’

Great Indian Bustard 0.86

Fig. 42. Model predicting the presence of 'Great Indian Bustard’

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L

32/35

Q

Qeios, CC-BY 4.0

v o M [

" Ipython detect.py --weights /content/yolov5/runs/train/exp/weights/last.pt --img 640 --conf ©.25 --source /content/GoldenEaglevideo.mpd

video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
video
viden

1/1 (263/317) /content/GoldenEaglevideo.
1/1 (264/317) /content/Goldencaglevideo.
1/1 (265/317) [content/GoldenEaglevideo.
1/1 (266/317) /content/GoldenEaglevideo.
1/1 (267/317) /content/GoldenEaglevideo.
1/1 (268/317) [content/GoldenEaglevideo.
1/1 (269/317) /content/GoldenEaglevideo.
1/1 (270/317) [content/GoldenEaglevideo.
1/1 (271/317) /content/GoldenEaglevideo.
1/1 (272/317) [content/GoldenEaglevideo.
1/1 (273/317) /content/GoldenEaglevideo.
1/1 (274/317) /content/GoldenEaglevideo.
1/1 (275/317) /content/GoldenEaglevideo.
1/1 (276/317) /content/GoldenEaglevideo.
1/1 (277/317) /content/GoldenEaglevideo.
1/1 (278/317) /content/GoldenEaglevideo.
1/1 (279/317) /content/GoldenEaglevideo.
1/1 (280/317) /content/GoldenEaglevideo.
1/1 (281/317) /content/GoldenEaglevideo.
1/1 (282/317) /content/GoldenEaglevideo.
1/1 (283/317) /content/GoldenEaglevideo.
1/1 (284/317) /content/GoldenEaglevideo.
1/1 (285/317) /content/GoldenEaglevideo.
1/1 (286/317) [content/GoldenEaglevideo.
1/1 (287/317) [content/GoldenEaglevideo.
1/1 (288/317) /content/GoldenEaglevideo.
1/1 (289/317) /content/GoldenEaglevideo.
1/1 (29p/317) /rontent /Gl denFaslaviden

mpd:
mpd:
mpd:
mpd:
mpd:
mpd:
mpa:
mpd:
mpd:
mpd:
mpa:
mpd:
mpd:
mpd:
mp4d:
mp4:
mpd:
mpd:
mp4:
mpa:
mpd:
mpd:
mpd:
mpa:
mpd:
mpd:
mpd:

mnd:

384x640
384x640
384x640
384x640
384x640
384x640
384x640
384x640
384x640
384x640
384x0640
384x640
384x640
384x640
384x640
384640
384x640
384x640
384x640
384x640
384x640
384x640
384x640
384x%640
384x640
384x640
384x640
IRAxAAR

v 23s completed at 9:24PM

Fig. 43. Model detecting for 'Black Kite’

GoldenEagleVideo (1)

Fig. 44. Model predicting the presence of 'Black Kite’

VII. Conclusion and Future Works

Qeios ID: 6HRP4L

https://doi.org/10.32388/6HRP4L

e e e e e e e e e e e S e e e e e S e S T

Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Golden
Gnlden

Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,
Eagle,

Faele.

.ems
. 5ms
. Bms
Ams
Ams
4ms
ams
.2ms
dms
.ms
\6ms
. 8ms
.5ms
.3ms
Ams
.3ms
.6ms
.5ms
JAms
.5ms
. 7ms
dms
.oms
.7ms
.ems
.2ms
. 8ms
.Ims

Q00010

Article, July 4, 2023

33/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

We analyze the performance of our proposed approach and compare it with existing methods in the literature. We also
address the challenges and limitations encountered, such as variability in image quality and bird poses, and the limited

training data available for rare species. Finally, we suggest future work and potential improvements to the proposed

framework, including the incorporation of additional features, the use of transfer learning and pre-trained models, and
integration with citizen science platforms. The findings of this study indicate that the proposed CNN-based approach can
effectively detect and classify bird species from images, offering a valuable tool for conservationists and researchers
working to protect and monitor bird populations. The field of bird species detection using machine learning has witnessed
significant advancements, leveraging diverse datasets, methodologies, and performance metrics. These developments
have the potential to revolutionize avian biodiversity monitoring, ecological research, and conservation efforts. While
substantial progress has been made, there are still challenges to overcome and future directions to explore. Future
research should focus on addressing data limitations by collecting and annotating comprehensive data- sets, involving
collaborations between researchers and citizen scientists. The integration of multiple sensors and the development of
deep learning architectures tailored for audio-based classification hold promise for improving the accuracy and robustness
of bird species detection systems. Transfer learning, generalization, and model adaptation techniques should be
investigated to ensure the applicability of models across different geographical regions and environmental conditions.
Additionally, the development of real-time monitoring systems using lightweight models and 10T technologies can enable
timely detection and response to conservation challenges. Future research directions in bird species detection using
machine learning offer exciting avenues for advancements in the field. While significant progress has been made, several
challenges remain, and further exploration is needed to improve the accuracy, robustness, and applicability of bird

species detection systems. The following are key future directions that researchers can pursue:

A. Addressing Data Limitations

One of the main challenges in bird species detection is the scarcity of labeled data, especially for rare and endangered
species. Future research should focus on collecting and annotating more diverse and comprehensive datasets, covering
various geographical regions and seasons. Collaborative efforts between researchers, citizen scientists, and birding

communities can significantly contribute to the availability of labeled data.

B. Multi-Sensor Fusion

Integrating data from multiple sensors, such as images, audio recordings, and environmental variables, holds promise for
improving bird species detection accuracy. Future research should explore methods to effectively combine and fuse
information from different modalities. This would allow for a more comprehensive understanding of bird presence,
behavior, and habitat preferences.

C. Transfer Learning and Generalization

Assessing the transferability of models across different geographical regions, habitats, and recording conditions is an

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 34/35

Q Qeios, CC-BY 4.0 - Article, July 4, 2023

important aspect of bird species detection. Future research should focus on developing models that can generalize well to
unseen species and adapt to varying environmental factors. Transfer learning techniques, domain adaptation, and data

augmentation strategies can aid in improving the generalization capabilities of bird species detection models.

D. Real-time Monitoring Systems

The development of real-time bird species detection systems can significantly contribute to conservation efforts, allowing
for immediate detection and response to potential threats. Future research should explore lightweight and efficient models
suitable for deployment on edge devices or in remote monitoring stations. Integration with IoT (Internet of Things)

technologies and acoustic sensor networks can enable real-time monitoring of bird populations and their habitats.

VIII. Citations

e [Jmour et al., 2018] [Terven and Cordova-Esparza, 2023] [Bisong et al., 2019]

References

o [Bisong et al., 2019] Bisong, E. et al. (2019). Building machine learning and deep learning models on Google cloud
platform. Springer.

o [Jmour et al., 2018] Jmour, N., Zayen, S., and Abdelkrim, A. (2018). Convolutional neural networks for image
classification. In 2018 international conference on advanced systems and electric technologies (IC ASET), pages 397—
402. IEEE.

o [Terven and Cordova-Esparza, 2023] Terven, J. and Cordova-Esparza, D. (2023). A comprehensive review of yolo:

From yolov1 to yolov8 and beyond. arXiv preprint arXiv:2304.00501.

Qeios ID: 6HRP4L - https://doi.org/10.32388/6HRP4L 35/35

	Tweeting AI: A Machine Learning Approach for Bird Species Detection and Classification
	Abstract
	I. Introduction
	II. Convolutional Neural Network (CNN)
	III. Literature Review
	IV. Methodology
	A. Convolutional Layer
	B. Activision Layer
	C. Pooling Layer
	D. Fully Connected Layers
	E. Batch Normalization
	F. Dropout

	V. Selection and Usage of Yolov4 to get Hands-on Experience of How Image Detection Works and Using the Yolov5 CNN Model to Train our Dataset
	A. Importance
	B. The Working Process of the YOLO Algorithm:

	VI. The Working Process: Experimentation, Data Collection, Code, and Output
	A. Experimenting with the Darknet Repositories
	B. Data Collection
	C. Code
	D. Output

	VII. Conclusion and Future Works
	A. Addressing Data Limitations
	B. Multi-Sensor Fusion
	C. Transfer Learning and Generalization
	D. Real-time Monitoring Systems

	VIII. Citations
	References

