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1. Introduction

In the last decades there has been an increasing interest in non-Hermitian operators because they are

relevant for the discussion of a great number of physical problems (photonics, mechanics, electrical

circuits, acoustics, active matter, unidirectional invisibility, enhanced sensitivity, topological energy

transfer, coherent perfect absorption, single-mode lasing, robust biological transport, etc.)[1][2][3]  (and

references there). The treatment of non-Hermitian eigenvalue equations requires special mathematical

tools like, for example, biorthogonal basis sets[3][4]. A particular feature of non-Hermitian equations is

the occurrence of exceptional points[3][5][6][7][8][9] that have been the subject of a number of pedagogical

papers[10][11][12][13][14].

Normal operators[15]  are a particular class of non-Hermitian operators that do not require the use of

biorthogonal basis sets. Some non-Hermitian operators exhibit antiunitary symmetry[16] and may have

real eigenvalues when this antiunitary symmetry is not broken.
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The purpose of this paper is the discussion of all the features of non-Hermitian operators just mentioned

by means of an extremely simple example. In section  2 we outline some mathematical aspects of

biorthogonal basis sets. In section  3 we briefly address the particular classes of normal operators and

non-Hermitian operators with antiunitary symmetry. In section  4 we show that a simple    non-

Hermitian matrix exhibits all the features of non-Hermitian operators mentioned above. Finally, in

section 5 we summarize the main results of the paper and draw conclusions.

2. Biorthogonal basis sets

In this section we outline some of the results put forward by Brody[4]  some time ago about the

eigenvalues and eigenvectors of a non-Hermitian operator   and its adjoint  :

For simplicity, we assume that both sets of eigenvectors   and   are complete.

It follows from

where the asterisk denotes complex conjugation, that

Since    cannot be orthogonal to all the eigenvectors    (unless  ) then    for some

value of  . We arrange the vectors’ labels so that  . In that case  .

If we expand an arbitrary vector   as

then we have   and

from which we can formally conclude that

where   is the identity operator.

By means of exactly the same argument we can also prove that

2 × 2

H H †

H | ⟩ = | ⟩, | ⟩ = | ⟩, i = 1, 2, ….ui Ei ui H † vi Wi vi (1)

{| ⟩}ui {| ⟩}vi

⟨ |H| ⟩ = ⟨ | ⟩ = = = ⟨ | ⟩,vi uj Ej vi uj ⟨ ⟩uj∣∣H
† ∣∣vi

∗
⟨ | | ⟩uj Wi vi

∗
W ∗

i vi uj (2)

( − ) ⟨ | ⟩ = 0.Ej W ∗
i vi uj (3)

| ⟩vi | ⟩uj | ⟩ = 0vi ⟨ | ⟩ ≠ 0vi uj

j ⟨ | ⟩ = ⟨ | ⟩vi uj vi ui δij =Ei W ∗
i

|ψ⟩

|ψ⟩ = | ⟩,∑
j

cj uj (4)

⟨ |ψ⟩ = ⟨ | ⟩vi ci vi ui

|ψ⟩ = ,∑
j

| ⟩ ⟨ |ψ⟩uj vj

⟨ | ⟩vj uj
(5)

= ,∑
j

| ⟩ ⟨ |uj vj

⟨ | ⟩vj uj
1̂ (6)

1̂
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In general, the basis sets   and   are not orthogonal and for this reason it is convenient to resort

to a biorthogonal set of states as discussed by Brody[4].

3. Particular cases

There are two classes of non-Hermitian operators that are of particular interest which will be discussed

in what follows.

3.1. Normal operators

If   then   is said to be a normal operator. In this case,   as follows from[15]

The result mentioned above is a direct consequence of the fact that   if an only if  .

It follows from

that   if  [15].

3.2. Antiunitary symmetry

An antiunitary operator   satisfies[16]

and can be written as  , where    is a unitary operator and    is the complex conjugation

operator. If    (or  ) we say that    exhibits an antiunitary symmetry. It follows

from these expressions that,

If   then   and equation (11) leads to  . In this case we say that

the antiunitary symmetry is unbroken; otherwise, we say that it is broken.

In order to obtain   it is commonly convenient to resort to the obvious expression   or

= .∑
j

| ⟩ ⟨ |vj uj

⟨ | ⟩uj vj
1̂ (7)

{| ⟩}ui {| ⟩}vi

[H, ] = 0H † H | ⟩ = | ⟩H † uj E∗
j uj

⟨( − ) − ⟩H † E∗
j uj

∣
∣H

† E∗
j uj = ⟨ (H − )( − ) ⟩uj

∣
∣ Ej H † E∗

j
∣
∣uj

= ⟨ ( − ) (H − ) ⟩ = 0.uj
∣
∣ H † E∗

j Ej
∣
∣uj

(8)

⟨f|f⟩ = 0 |f⟩ = 0

⟨ |H| ⟩ = ⟨ | ⟩ = = = ⟨ | ⟩,ui uj Ej ui uj ⟨ ⟩uj∣∣H
† ∣∣ui

∗
⟨ ⟩uj∣∣E∗

i
∣∣ui

∗
Ei ui uj (9)

⟨ | ⟩ = 0ui uj ≠Ei Ej

A

A (a |f⟩ + b |g⟩)

⟨Af|A|g⟩

= A |f⟩ + A |g⟩,a∗ b∗

= ⟨g|f⟩ ,
(10)

A = UK U K

AH = HA−1 AH = HA H

AH | ⟩ = A | ⟩ = A | ⟩ = HA | ⟩.uj Ej uj E∗
j uj uj (11)

A | ⟩ = | ⟩uj aj uj HA | ⟩ = | ⟩uj ajEj uj =Ej E∗
j

U U = HH ∗U †
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3.3. Hellmann-Feynman theorem

Suppose that   depends on a parameter  . If we differentiate   with respect to   we have

If   then

from which it follows the Hellmann-Feynman theorem (HFT)[17][18] for a non-Hermitian operator[19]

4. Example

It is surprising that we can illustrate all the general concepts outlined in sections 2 and 3 by means of the

simple   matrix

where   is a real parameter.

4.1. Normal matrix

To begin with, note that   is normal for  :

For   we have

that agree with the general results of subsection 3.1.

U − HU = 0H ∗ (12)
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∣
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∣
∣
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∣
∣
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d

dλ

∣
∣
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∣
∣
∣
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∣
∣
∣ H † ∣

∣
∣
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∣
∣
∣
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∣
∣
∣
dH
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∣
∣
∣

∣
∣
∣
d
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∣
∣
∣
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dE

dλ

∣
∣
∣
d
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∣
∣
∣ (13)

= .
dE

dλ
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dH
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∣∣
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(14)

2 × 2
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β
(15)
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Since

we conclude that   is a unitary operator.

4.2. Antiunitary symmetry

The eigenvalues of the matrix (15)

are complex for   and real otherwise as illustrated in Figure 1.

Figure 1. Real and imaginary parts of the eigenvalues of the matrix (15)

H ⋅ = ⋅ H = ( ),H
†

H
† 2

0

0

2
(18)

H2−1/2

= ,E±

1 + β ± (1 + β) (β − 3)− −−−−−−−−−−−√

2
(19)

−1 < β < 3
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The occurrence of real eigenvalues suggests the existence of an antiunitary symmetry. It follows from

equation (12) that

Clearly, this antiunitary symmetry is broken for all  , where    and    are

exceptional points[5][6][7][8][9][10][11][12][13][14]. One can easily verify that there are no solutions to the

equations    for the vectors    in equation (22). In that case ( ) the antiunitary

symmetry is broken and the eigenvalues are complex.

As an example of unbroken antiunitary symmetry we choose   for which we have

and

By means of these expressions we verify that

It is worth noting that the complex numbers    and    are equivalent to    and  ,

respectively. On the other hand, the    matrices    and    are equivalent to    and 

, respectively. In addition to it, the scalar products    illustrate the fact

that the basis sets    and    are not orthogonal. All these results are in agreement with the

general ones shown in section 2. In this case, the eigenvalues are real because the antiunitary symmetry

is unbroken as shown by

U = ( ).
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0

1
(20)
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(21)
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4.3. Exceptional points

Finally, we analyze one of the exceptional points. For   we have

The matrices   and   are defective (non-diagonalizable) as shown by the fact that each one

has only one eigenvector. These unique eigenvectors are also eigenvectors of  :

On the other hand, the solutions for   are

and the matrix is also defective.

4.4. Hellmann-Feynman theorem

For   we have

which come from the arbitrary choice   and  . One can easily verify that

in agreement with equation (14).
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5. Conclusions

The purpose of this paper is a pedagogical discussion of mathematical concepts like biorthogonal basis

sets, normal operators, antiunitary symmetry and exceptional points. The main contribution is a

parameter-dependent    matrix that exhibits all the features just mentioned as the parameter is

varied. It is remarkable that such a simple model illustrates so many mathematical concepts associated to

non-Hermitian operators.
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