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A simple 2 x 2 parameter-dependent matrix is suitable for the illustration of several features of non-
Hermitian operators, like biorthogonal basis sets, normal operators, antiunitary symmetry and

exceptional points.
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1. Introduction

In the last decades there has been an increasing interest in non-Hermitian operators because they are
relevant for the discussion of a great number of physical problems (photonics, mechanics, electrical
circuits, acoustics, active matter, unidirectional invisibility, enhanced sensitivity, topological energy
transfer, coherent perfect absorption, single-mode lasing, robust biological transport, etc)12l3] @nd
references there). The treatment of non-Hermitian eigenvalue equations requires special mathematical
tools like, for example, biorthogonal basis setsBl4l A particular feature of non-Hermitian equations is

the occurrence of exceptional pointleE]lé]ﬂ]ﬁl@1 that have been the subject of a number of pedagogical

papers 10][11][12][13][14

Normal operators[El are a particular class of non-Hermitian operators that do not require the use of

biorthogonal basis sets. Some non-Hermitian operators exhibit antiunitary symmetry@l and may have

real eigenvalues when this antiunitary symmetry is not broken.
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The purpose of this paper is the discussion of all the features of non-Hermitian operators just mentioned
by means of an extremely simple example. In section 2 we outline some mathematical aspects of
biorthogonal basis sets. In section 3 we briefly address the particular classes of normal operators and
non-Hermitian operators with antiunitary symmetry. In section 4 we show that a simple 2 x 2 non-
Hermitian matrix exhibits all the features of non-Hermitian operators mentioned above. Finally, in

section 5 we summarize the main results of the paper and draw conclusions.

2. Biorthogonal basis sets

In this section we outline some of the results put forward by Brody[‘—’1 some time ago about the

eigenvalues and eigenvectors of a non-Hermitian operator H and its adjoint H:
H|u;) = E; |u), H' [v;) = W; |v3),5 = 1,2,.. .. (1)
For simplicity, we assume that both sets of eigenvectors {|u;)} and {|v;)} are complete.
It follows from
(vil Huy) = Bj (vilug) = (ug|H' |vi)" = (w;|Wi[vi)* = W7 (viluy), (2)
where the asterisk denotes complex conjugation, that
(Bj — W) (viluy) = 0. (3)
Since |v;) cannot be orthogonal to all the eigenvectors |u;) (unless |v;) = 0) then (v;|u;) # 0 for some

value of j. We arrange the vectors’ labels so that (v;|u;) = (v;|u;) ;;. In that case E; = W;*.

If we expand an arbitrary vector |¢)) as

%) = Y eilw), (4)
J
then we have (v;|Y) = ¢; (v;|u;) and
|uj) (v;l¥)
= 7 5
) Z]: o3lu) (5)
from which we can formally conclude that
|uj) (o] =
=1, 6
zj: (vjlus) ©)

where 1 is the identity operator.

By means of exactly the same argument we can also prove that
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5 |z:j> <u;| s -

= (ujlv;

In general, the basis sets {|u;) } and {|v;) } are not orthogonal and for this reason it is convenient to resort

to a biorthogonal set of states as discussed by Brody!4l.

3. Particular cases

There are two classes of non-Hermitian operators that are of particular interest which will be discussed

in what follows.

3.1. Normal operators
If [H, H'| = 0then H is said to be a normal operator. In this case, H' |u;) = E? |u;) as follows from{Z]

w)

((a" - By) uj’HT - Eju;) = <uj‘(H - B) (8" - By)

8
= (w|(H' - By) (H ~ B))|u;) 0. )
The result mentioned above is a direct consequence of the fact that (f|f) = Oifanonly if |f) = 0.
It follows from
(uil Hluj) = Ej (uilu;) = <uj‘HT‘Ui>* = (uj| Bt lw;)" = E; (uiluy), 9)
that (u;|u;) = 0 if E; # E;12L
3.2. Antiunitary symmetry
An antiunitary operator A satisfies{20!
A(alf) +blg)) = a’Alf) +b"Alg), (10)

(AflAlg) = (glf),

and can be written as A = UK, where U is a unitary operator and K is the complex conjugation
operator. If AHA™! = H (or AH = HA) we say that H exhibits an antiunitary symmetry. It follows

from these expressions that,
AH |uj) = AEj|u;) = E; Alu;) = HAlu;). (11)

If Alu;) = aj|u;) then HA |uj) = a;Ej |u;) and equation (11) leads to E; = E. In this case we say that

the antiunitary symmetry is unbroken; otherwise, we say that it is broken.

In order to obtain U it is commonly convenient to resort to the obvious expression UH*U' = H or
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UH* — HU =0 (12)
3.3. Hellmann-Feynman theorem

Suppose that H depends on a parameter \. If we differentiate H |u) = FE |u) with respect to A we have

dH d dE d
H—u) = — E—
|u) + o u) o |u) + Y |u)

If H |v) = E* |v) then

dH d dH d

il H— - il Hiol —
<” dax “> +<U dax “> <” 3\ “> +< Y “>
=(v d—H u)+E(v i U ),

3 dax

= %(v\m + E<v

w0, (13)

from which it follows the Hellmann-Feynman theorem (HFT)IZ08I for a non-Hermitian operator2l

dE <”’%’“>

ax (v|u) (14)

4. Example

It is surprising that we can illustrate all the general concepts outlined in sections 2 and 3 by means of the

simple 2 x 2 matrix

(2 1)

where S is a real parameter.

4.1. Normal matrix

To begin with, note that H is normal for 5 = 1:

(0 2% (8- 1)
(M. = <2i(1 —B) 0 ) (16)

For 8 = 1 we have

HILL = Eiuivi = 1727

. 1 1 (1
E12E5:1+1’u1:—_(1>,u2:—_( )7
vZ Al vZi-l
H'u, = Eru;, (17)

that agree with the general results of subsection 3.1.
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Since

H-HT—HT-H—(?) g) (18)

we conclude that 2-/2H is a unitary operator.

4.2. Antiunitary symmetry

The eigenvalues of the matrix (15)

_ 1+% JTFHBEI)
- : ,

+

are complex for —1 < 8 < 3 and real otherwise as illustrated in Figure 1.

ReE

]
, N

ImE

Figure 1. Real and imaginary parts of the eigenvalues of the matrix (15)
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The occurrence of real eigenvalues suggests the existence of an antiunitary symmetry. It follows from

equation (12) that

U= (_01 (1)) (20)

Clearly, this antiunitary symmetry is broken for all —1 < 8 < 3, where 8= —1 and 8= 3 are
exceptional pointswm. One can easily verify that there are no solutions to the
equations Au; = Uu] = au; for the vectors u; in equation (22). In that case (8 = 1) the antiunitary

symmetry is broken and the eigenvalues are complex.

As an example of unbroken antiunitary symmetry we choose 8 = 4 for which we have

E1'E£au1'( \/31 3 .>,
2 2 (T_E)Z
E2=g+‘/73,u2:(_<§1+%)i>, (21)
and
5 1
w5
W2=g+§,v2=<(§i%)i). (22)

By means of these expressions we verify that

U-1'V]; 112'V£ (1 0)
o - ’

A4 V;'UQ 01
i T
vi-u,  vp-u 1 0
= . 23
o T (0 1) (23)

u; - vy u, - Vo
It is worth noting that the complex numbers v:.r -w; and uI -v; are equivalent to (v;|u;) and (u;|v;),
respectively. On the other hand, the 2 x 2 matrices u; - vl and v; -uj are equivalent to |u;) (v;| and
|v;) (u;|, respectively. In addition to it, the scalar products u]; ‘U = vi - vy = 2 # 0 illustrate the fact
that the basis sets {|u;)} and {|v;)} are not orthogonal. All these results are in agreement with the
general ones shown in section 2. In this case, the eigenvalues are real because the antiunitary symmetry

is unbroken as shown by

Uu' = _ui,Uv;‘ =—v;,t=1,2. (24)

2
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4.3. Exceptional points

Finally, we analyze one of the exceptional points. For § = —1 we have
Hu; = <0) ,up = é(l)
0 V2 \1
HTV1: (0>,V1= L_( 1) (25)
0 V2 \—1

The matrices H(—1) and H'(—1) are defective (non-diagonalizable) as shown by the fact that each one

has only one eigenvector. These unique eigenvectors are also eigenvectors of A:
Uv] = —v1,Uv] = —vy. (26)

On the other hand, the solutions for § = 3 are

Hu1 = 2111,111 =

HTV1 = 2V1,V1 = 1), (27)

and the matrix is also defective.

4.4. Hellmann-Feynman theorem

For 8 = 2 we have

B =

1
EQZEf7u2:<\/§ i)’
22

|/‘/1 = Ei‘7v1 = ( i
- 3

], 28

+ g) (28)

which come from the arbitrary choice E;(8) = E_(8) and E»(8) = E, (8). One can easily verify that

|
|
ol
ol
VN.
(=1
iy
|
Y
|
.
|
~—

Wy = E,va = <£
2

f dH
. dE; Vi Tag Wi
lim = , (29)
B—2 df VT w;

in agreement with equation (14).
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5. Conclusions

The purpose of this paper is a pedagogical discussion of mathematical concepts like biorthogonal basis
sets, normal operators, antiunitary symmetry and exceptional points. The main contribution is a
parameter-dependent 2 x 2 matrix that exhibits all the features just mentioned as the parameter is
varied. It is remarkable that such a simple model illustrates so many mathematical concepts associated to

non-Hermitian operators.
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