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The recent advancement of foundation models (FMs) has increased the demand for �ne-tuning these

models on large-scale cross-domain datasets. To address this, federated �ne-tuning has emerged as a

solution, allowing FMs to be �ne-tuned on distributed datasets across multiple devices while ensuring

data privacy. However, the substantial parameter size of FMs and the multi-round communication

required by federated �ne-tuning algorithms result in prohibitively high communication costs,

challenging the practicality of federated �ne-tuning. In this paper, we are the �rst to reveal, both

theoretically and empirically, that the traditional multi-round aggregation algorithms may not be

necessary for federated �ne-tuning large FMs. Our experiments reveal that a single round of

aggregation (i.e., one-shot federated �ne-tuning) yields a global model performance comparable to

that achieved through multiple rounds of aggregation. Through rigorous mathematical and empirical

analyses, we demonstrate that large FMs, due to their extensive parameter sizes and pre-training on

general tasks, achieve signi�cantly lower training loss in one-shot federated �ne-tuning compared to

smaller models. Our extensive experiments show that one-shot federated �ne-tuning not only reduces

communication costs but also enables asynchronous aggregation, enhances privacy, and maintains

performance consistency with multi-round federated �ne-tuning on both text generation and text-to-

image generation tasks. Our �ndings have the potential to revolutionize federated �ne-tuning in

practice, enhancing e�ciency, reducing costs, and expanding and accessibility for FMs.

1. Introduction

Cutting-edge foundation models (FMs) demonstrate remarkable versatility across various domains.

Notably, large language models (LLMs) like GPT-4[1], Gemma[2], and Llama[3]  excel in tasks such as

translation, question answering (QA), chat assistant, and math. Similarly, stable di�usion models can
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generate diverse images based on textual descriptions. Achieving such versatility requires �ne-tuning

these FMs on cross-domain datasets. However, this process faces signi�cant challenges in real-world

scenarios due to the valuable datasets residing on devices owned by organizations or individuals, raising

privacy concerns. To address these privacy issues, researchers have proposed using federated learning

(FL)[4]  for distributed �ne-tuning of FMs, a process known as federated �ne-tuning. Federated �ne-

tuning allows distributed clients to collaboratively �ne-tune a global FM on speci�c tasks without

disclosing their private data.

Traditional FL requires multiple communication rounds between clients and the server to ensure the global

model convergence[5]. However, the substantial parameter size of FMs (typically in billions) results in

signi�cant communication overhead. Many devices lack the capability to repeatedly communicate model

parameters of this scale. While previous works adopt parameter-e�cient �ne-tuning (PEFT) methods

such as low-rank adaptation (LoRA)[6] to reduce the number of trainable and communicated parameters,

the high communication requirements of federated �ne-tuning remain a practical limitation.

Unexpectedly, our recent experiments have discovered an emergent capability of FMs that could

fundamentally shift the approach to federated �ne-tuning. We �nd that with su�cient local �ne-tuning

epochs, a single communication round is all it needs to e�ectively �ne-tune FMs, which is called one-

shot federated �ne-tuning. Figure 1 highlights the performance comparisons between one-shot FL and

traditional multi-round FL, maintaining the same total number of local epochs. While one-shot FL

underperforms multi-round FL for smaller models (e.g., ResNet-18 and LSTM), it achieves comparable

performance for larger FMs (e.g., GPT-2, Llama, etc). This unique discovery challenges the conventional

belief that multiple communication rounds are essential for the federated �ne-tuning of FMs. Instead, we

demonstrate that FMs can achieve convergence with just a single aggregation of well-�ne-tuned local

models. This paper explores this innovative �nding, providing rigorous theoretical analysis and

compelling empirical evidence to validate the e�ectiveness of one-shot FL for federated �ne-tuning FMs.
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Figure 1. The distinct performances of one-shot federated learning between small models

and large FMs. The horizontal axis represents multi-round FL accuracy, while the vertical

axis represents one-shot FL accuracy. The ResNet-18 and LSTM are trained and tested on

CIFAR-10 and Shakespeare respectively. Other models are �ne-tuned on Wizard dataset

and tested on ARC Easy. The closer points are to the dashed line means the closer accuracy

between one-shot and multi-round FL.

The introduction of one-shot FL brings transformative bene�ts. First, it dramatically reduces

communication costs. One-Shot FL slashes communication overhead by a factor of  , where 

 represents the number of communication rounds in traditional federated �ne-tuning. This reduction is

a game-changer for devices with limited bandwidth. Second, one-shot FL enables seamless

asynchronous training. This �exibility removes the bottleneck of server waiting times, ensuring

uninterrupted training regardless of client connectivity or resource limitations. The process becomes far

more robust and e�cient. Third, one-shot FL o�ers enhanced security against prevalent client-side

federated learning attacks. Attacks like client-side model inversion and gradient inversion, which depend

on multiple global model updates, are rendered ine�ective. This signi�cantly bolsters the integrity of the

training process.

Our key contributions are listed as follows:

Novel Discovery: To the best of our knowledge, we are the �rst to discover that one-round aggregation

is su�cient for federated �ne-tuning large FMs.

1
T

T
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Theoretical Analysis: We theoretically demonstrate the relationship between the error of one-shot

federated �ne-tuning and model smoothness, �ne-tuning model update, number of �ne-tuning

rounds, and the second norm of original model parameters. Our analysis, supported by experiments,

reveals that large FMs are smoother, exhibit smaller model updates, and require fewer �ne-tuning

epochs than smaller models, resulting in signi�cantly lower one-shot federated �ne-tuning error.

Experimental Validation: We conduct extensive experiments on six FMs and three tasks,

demonstrating that one-shot federated �ne-tuning achieves performance comparable to multi-round

federated �ne-tuning, particularly for models with over 1 billion parameters. Experimental results also

surprisingly show that LoRA outperforms full �ne-tuning in the context of one-shot federated �ne-

tuning.

2. Preliminary

Federated Learning Paradigm of Small Models.

In FL, the primary objective is to optimize a global objective function  , which is weighted average of

the local objective functions from   clients[7]:

where   represents the model parameters and   is the scaling factor for averaging. To protect the data

privacy of each client, the server cannot access the local dataset. Thus, the local objective function 

 remains unknown to the server. FedAvg[5] algorithm provides a distributed training algorithm to

facilitate privacy-conscious training. It allows multiple clients to train the model on their local datasets

and aggregates locally trained models on the server at the end of each communication round. In  -th

communication round, the global model update rule of FedAvg is:

where    is the model weights in  -th communication round and 0-th local epoch, which represents

the global model in  -th round.   is the total number of communication rounds,   is the global learning

rate, and    is the local model update in  -th round.    is the accumulative model update of    local

stochastic gradient descent (SGD) steps:
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where   is the stochastic gradient over a local mini-batch and   is the local learning rate. Note

that   here represents a mini-batch, and   is the total number of mini-batches per client.

Local datasets in FL are typically heterogeneous, leading to di�erences in local objectives. Therefore, FL

usually converges more slowly than centralized machine learning. This slow convergence necessitates a

large number of global communication rounds and local epochs to achieve satisfactory performance. For

example, experiment results in[8]  show that the ResNet-18 model requires more than 2000 and 4000

communication rounds to converge on CIFAR-10[9] and CIFAR-100 respectively. Even for simple natural

language processing tasks such as Shakespeare, an RNN model needs more than 50 rounds to converge.

The requirement for multi-round communication rounds introduces several signi�cant drawbacks. First,

clients must frequently exchange model parameters with the server, which can be prohibitively expensive

in certain constrained scenarios or on devices with limited resources. Second, repeated invocation of

computational resources for training increases the overall computational overhead. Additionally, the

multi-round communication approach leads to excessive energy consumption, synchronization

di�culties, and challenges in maintaining privacy protection. Thus, optimizing FL algorithms to

minimize the number of communication rounds is an essential research direction in FL.

Federated Fine-Tuning Foundation Models

Foundation models (FMs)[10]  refer to pre-trained deep learning models with a vast number of

parameters, typically in the order of billions. These FMs are trained on broad data at scale and are

adaptable to a wide range of downstream tasks when �ne-tuned on domain-speci�c datasets[11]. Since

domain-speci�c datasets are often distributed across multiple devices, FL o�ers an important paradigm

for �ne-tuning FMs while preserving data privacy.

Federated �ne-tuning adopts the same FedAvg algorithm in Eq. 1 and Eq. 2 to aggregate the local model

updates. The key di�erence lies in the model parameter size. The parameter size of large FMs is usually

hundreds of times greater than that of small models, resulting in a signi�cant increase in the computation

resources and communication overhead required for federated �ne-tuning. Given the network

communication capabilities of commonly used devices, performing multi-round synchronized

communication of large model parameters between servers and clients is virtually impossible. Although

parameter-e�cient �ne-tuning algorithms like LoRA[6]  have been adopted, the communication

overhead remains excessively high, hindering practical application.
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One-Shot Federated Learning

To reduce communication overhead in FL, recent works have focused on one-shot FL[12][13][14][15][16][17],

which uses a single communication round to obtain the global model. These algorithms often employ

knowledge distillation or neuron-matching methods to optimize the global model. However, these

approaches require additional data or computation. Knowledge distillation often necessitates auxiliary

public datasets or external generative models, and neuron matching requires additional computation on

both clients and the server. Despite these additional resource requirements, the performance of one-shot

FL has historically been inferior to standard multi-round FL. For instance, experiments in[12] show that

one-shot FL achieves only 50% accuracy on the CIFAR-10 dataset, which is 20% lower than the accuracy

achieved with 5-round FL.

However, our recent experiments have uncovered greater potential for one-shot federated �ne-tuning

large FMs. As shown in Figure 1, one-shot FL for large models does not show a signi�cant performance

gap compared to multi-round FL, which is commonly observed with smaller models. In fact, when the

total number of local epochs is the same, the performance of large models �ne-tuned by one-shot FL is

comparable to that of multi-round FL. Additionally, in �ne-tuning larger models such as Llama-13b,

one-shot FL even performed slightly better than multi-round FL. These results, along with the

experiment results in Section 4, suggest that traditional multi-round FL algorithms may no longer be

necessary for federated �ne-tuning large FMs. Large FMs can e�ectively learn downstream tasks from

distributed clients with just a single communication round, opening up new possibilities for federated

�ne-tuning applications.

Although we have observed consistently good performance with one-shot federated �ne-tuning, the

reasons for the divergent results between one-shot FL in �ne-tuning large models and training small

models remain unexplored. In the next section, we will delve into this phenomenon through theoretical

analysis.

3. Theoretical Analysis of One-Shot Federated Fine-Tuning

For a multi-round FL algorithm, if the total number of communication rounds is    and the number of

local epochs for each round is  , according to Eq. 2 the global model parameters after FL satisfy:

where   is de�ned by Eq. 3. For a speci�c client  , the accumulated local model update   is:
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In contrast, for one-shot FL with  , the accumulated local model update is:

Here we set the number of epochs per client to   since we are trying to match the total number of epochs

with the multi-round FL. The reason why the one-shot FL performs worse than the multi-round FL in

small models lies in the di�erence between the local model updates in Eq. 5 and Eq. 6. In Eq. 5, after the  -

th communication round, the local training starts from the updated global model parameter   sent by

the server, which is aggregated from all the local model updates in  -th round and contains richer local

knowledge. Therefore, the client can compute a more accurate gradient    based on the updated

model. On the contrary, in one-shot FL (Eq. 6), even with the same total local epochs, clients can only

continuously train the local models without global information. The poor performance of one-shot FL is

due to the gradients calculated on the local models being less accurate than those calculated on the

aggregated global model. This local error can be expressed in mathematical form:

where  ,   means ceiling. Consider that   and   are the gradients computed on

the same mini-batch, the error    here is only attribute to the di�erent training start points    and 

. Since the global model is aggregated by local models, the global error can then be bounded by the

sum of local errors, which is:

The global error can be further simpli�ed by the following assumptions.

Assumption 1 (Model Smoothness)

The objective function of the pre-trained large FM is Lipschitz smooth with an    value, that is 

, where   is the model gradient.
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Theorem 1 (The one-shot FL error is related to  ,  , epoch numbers  , and number of

clients  ).

Under Assumptions 1 and 2, ignoring the di�erence of learning rates in one-shot and multi-round FL and

the di�erence of client numbers (i.e., set client number   to 1), the error of one-shot FL   can be bounded

as follows:

This equation indicates that with lower values of  ,  ,  ,  , and  , the model update of one-shot FL will

be closer to that of multi-round FL. Conversely, if a neural network has a highly complex loss landscape,

large training dynamics, or requires a large number of rounds to converge, the error    will be large,

leading to poor performance of one-shot FL. Since our experiments have shown that LLMs exhibit

signi�cant advantages over small models in one-shot learning, we conduct experiments on the factors in

Equation 9 to provide a detailed explanation of this phenomenon.

Foundation Models are Extremely Smooth ( ).

In Equation 9, the factor   represents the smoothness of the model, with smaller   implying a smoother

model. We argue that pre-trained large FMs are much smoother than small models and thus have much

smaller   values. Large FMs are pre-trained on large-scale datasets to obtain general capabilities. During

this pre-training process, the parameters of FMs are optimized from the ridges to the basins in the loss

landscape. Additionally, as observed in a previous work[18], wider models have more �attened basins in

the loss landscapes. With these pieces of prior knowledge, we hold the contention that the loss landscape

in large FM �ne-tuning is much �atter and smoother than that in training small models from scratch,

resulting in much smaller   values. To verify this argument, we estimate   by  . We

randomly sample a mini-batch of data in the training datasets and compute the gradient on   and 

 to get   and  . Then we visualize the value of   in Figure

2(a). According to Figure 2(a), FMs (i.e., models to the right of the red dash line) have much smaller 

 values than small models, which is consistent with our conjecture.

Foundation Models Have Much Smaller Model Updates in Fine-Tuning ( )

Another crucial distinction in our analysis lies in the di�erent tasks in FL: �ne-tuning and training from

scratch. Since the �ne-tuning task updates the model parameters to adapt to downstream tasks without

compromising its performance on the general task, it only slightly updates the model parameters.
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Therefore, the model parameter updates in the �ne-tuning process are much smaller than the pre-

trained model parameters, i.e.,  . In this case, the federated �ne-tuning task

would have a very small   in Equation 9. To verify this, we conduct experiments to estimate the   values

by  , where    represents the model update after the entire �ne-tuning process on the

training datasets. We visualize the estimated   values of di�erent models in Figure 2(b), which illustrates

that the   values in FMs are much smaller than those in small models.

Large Foundation Models Require Less Fine-Tuning Epochs ( )

Di�erent from training a small model from scratch, �ne-tuning a large model typically doesn’t require a

large number of total training steps to ensure convergence. This is mainly because the pre-trained models

will be over�tting on the �ne-tuning data with too many epochs, which will destroy the model’s ability on

the general tasks. As a result, the    values of large FMs are also smaller than those in small models.

Table. 4 in the Appendix displays the   and   numbers adopted by our experiments.

We also visualize   in Figure 2(c). Although the   value of the small model is relatively small,

it does not exhibit a clear trend positively correlated with model size (e.g., TinyLlama has a similar 

  value with BERT, but has 10 times more parameters than BERT, Gemma-2b has much larger 

 value than Llama-13b).

Figure 2. Experiment on  ,  , and   in di�erent models. We use CIFAR-10 to compute the gradient on

ResNet18[19]. We use the Wizard dataset on all the language models. Models to the left of the red dashed line

are small models, while those to the right are foundation models (FMs). The �gures indicate that FMs have

signi�cantly smaller   and   values compared to small models. Additionally,   does not increase

proportionally with the model size. Thus, the value of   signi�cantly decreases as the model size

increases.
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Large Foundation Models Have Smaller One-Shot Federated Fine-tuning Error 

Based on the discussion before regarding the  ,  ,  , and   values of the model with various sizes,

we conclude that large FMs have smaller  ,  , and   values, while   is not strongly related to the

model size. We �nally visualize the   values of di�erent models in Figure 3. The results in

Figure 3 clearly demonstrate that large FMs (GPT-2 and all models to its right) have signi�cantly lower 

  values than the small models, with larger FMs having lower values. According to Eq. 9, smaller 

  means a smaller di�erence between one-shot and multi-round FL. Consequently, FMs have much

better one-shot FL performance than small models. The larger FM has lower errors in one-shot federated

�ne-tuning.

Figure 3. The estimated   in di�erent models calculated by 

.

In summary, there are three main reasons why FMs have smaller errors in one-shot federated �ne-

tuning. First, the pre-trained FMs have extremely smooth loss landscapes in �ne-tuning, i.e.,  .

Second, the �ne-tuning model updates are particularly small compared to the pre-trained parameters, i.e., 

. Third, FM �ne-tuning requires far fewer epochs than training small models from scratch, i.e., 

. These three factors lead to much smaller error   in one-shot federated �ne-tuning of FMs.
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4. Experiment

4.1. Experimental Setups

Models and Datasets

To demonstrate the performance of FMs in di�erent sizes, we selected multiple models ranging in

parameter size from 1b to 13b for experiments. The language FMs we experimented with range in

parameter size from smallest to largest as follows: TinyLlama (1.1b) [20], Gemma-2b [2], Llama-7b, and

Llama-13b  [21]. We use the MMLU  [22]  training dataset and Wizard  [23]  dataset to federated �ne-tune

these models. For evaluation, we leverage MMLU and ARC Challenge [24] in Eval-Harness [25] to evaluate

the model ability of QA tasks, and the GPT-4 evaluation in MT-bench [26] for the chat assistant task.

Federated Fine-Tuning Settings

For federated �ne-tuning on a single MMLU or Wizard dataset, we randomly split the dataset into 10

clients. We also have a strongly non-iid setting, which assigns the MMLU dataset to 10 clients and the

Wizard dataset to another 10 clients, and lets the 20 clients �ne-tune the FM. For the baseline, we use a

multi-round FedAvg algorithm on both LoRA and full �ne-tuning. For our one-shot federated �ne-

tuning, we only perform a single communication round. To ensure fairness, we keep the total number of

local epochs the same between multi-round and one-shot federated �ne-tuning. e.g., if the setting in

multi-round federated �ne-tuning is 3 communication rounds, 1 local epoch in each round, the setting in

one-shot should be 1 communication round, 3 local epoch in that round.

4.2. Main Results

One-Shot Federated Fine-Tuning in QA Tasks

We �rst evaluate the performance of one-shot federated �ne-tuning in QA tasks and display the results in

Table 1. The columns with titles MMLU, Wizard, and M-W represent the model �ne-tuned by MMLU,

Wizard, and the mixture of MMLU and Wizard datasets respectively. The rows with the title MMLU and

ARC represent the model accuracy evaluated by the MMLU test set and ARC Challenge. The Methods

columns mean the �ne-tuning is performed by LoRA or full �ne-tuning, while the rows with a star (*)

represent one-shot federated �ne-tuning. According to Table 1, the performance of one-shot federated

�ne-tuning is generally comparable to that of multi-round federated �ne-tuning. In some settings, one-
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shot �ne-tuning achieves higher accuracy. For example, the Llama-13b one-shot �ne-tuned by LoRA on

the Wizard dataset achieves 47.93% accuracy on MMLU and 58.11% on ARC Challenge, which is higher

than the 46.83% and 55.72% accuracy of multi-round �ne-tuning. In full �ne-tuning, multi-round �ne-

tuning performs better in some settings. For instance, the Llama-13b multi-round full �ne-tuned on the

Wizard dataset outperforms one-shot �ne-tuning on both MMLU and ARC Challenge. These observations

align with our previous theoretical analysis. Full �ne-tuning involves greater parameter updates

compared to LoRA, resulting in a larger   value, and thus a larger   value. Consequently, the performance

of one-shot full �ne-tuning may sometimes be inferior to LoRA �ne-tuning. However, this does not

a�ect our overall conclusion: for FMs, one-shot federated �ne-tuning can e�ectively replace multi-

round federated �ne-tuning. One-shot �ne-tuning provides comparable performance to multi-round

�ne-tuning while signi�cantly reducing communication costs.

Tasks Methods

TinyLlama Gemma-2b Llama-7b Llama-13b

MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W

MMLU

LoRA 25.08 25.07 24.98 38.43 37.75 37.69 36.16 35.07 35.37 47.22 46.83 46.82

LoRA* 25.01 25.04 25.03 38.24 36.55 35.14 35.86 35.91 34.84 48.40 47.93 47.43

Full FT 27.30 24.84 25.46 42.02 34.60 28.36 45.61 30.52 28.81 50.24 42.12 32.91

Full FT* 26.39 24.87 24.99 40.93 33.86 28.71 44.20 33.97 29.05 48.30 39.62 29.76

ARC

LoRA 35.49 37.28 36.69 43.09 43.26 42.06 50.43 50.94 51.19 55.72 55.72 55.63

LoRA* 36.86 36.77 36.26 40.61 42.49 42.15 50.85 51.88 52.13 56.40 58.11 56.74

Full FT 32.76 37.03 33.02 41.04 45.48 37.46 43.26 40.24 37.15 42.41 47.57 42.75

Full FT* 33.19 36.26 33.87 39.85 45.92 34.47 41.72 43.52 37.03 44.62 45.05 40.21

Table 1. Performance of one-shot federated �ne-tuning in Q&A tasks. The rows with star (*) are the results of

one-shot federated �ne-tuning.

One-Shot Federated Fine-Tuning in Chat Assistant Tasks

We evaluate the performance of FMs in chat assistant tasks, where models generate answers to several

questions and are scored by GPT-4. The score from MT-bench is the average score across all questions.

Table 2 shows the scores of multi-round and one-shot federated �ne-tuned models. The averaging scores

τ ε
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of three �ne-tuning datasets indicate that larger FMs perform better in one-shot federated �ne-tuning.

Speci�cally, multi-round �ne-tuning outperforms one-shot �ne-tuning in both LoRA and full �ne-

tuning on the Tinyllama model, which is the smallest model in our experiments. On the contrary, for

larger models, such as Gemma-7b and Llama-13b, one-shot �ne-tuning performs better than multi-

round �ne-tuning. This observation aligns with our previous theoretical analysis that larger models have

smaller one-shot �ne-tuning errors. The superior performance of one-shot �ne-tuning in larger models

might be attributed to the larger number of local epochs per round, which leads to a slower local learning

rate decay. The chat assistant’s capabilities may bene�t from this smoother learning rate decay process.
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Models Methods MMLU Wizard M-W AVG. Base

TinyLlama

LoRA 3.59 3.44 3.65 3.56

3.47

LoRA* 3.33 3.45 3.74 3.51

Full FT 2.02 3.76 2.97 2.92

Full FT* 1.91 4.21 2.38 2.83

Gemma-2b

LoRA 3.36 3.48 3.46 3.43

3.60

LoRA* 3.23 3.77 3.66 3.55

Full FT 2.16 4.36 2.75 3.09

Full FT* 1.92 4.27 2.50 2.90

Llama-7b

LoRA 3.01 3.27 2.99 3.09

2.86
LoRA* 2.69 3.90 3.54 3.38

Full FT 1.85 4.18 2.31 2.78

Full FT* 1.56 4.79 2.21 2.85

Llama-13b

LoRA 2.58 2.68 2.86 2.71

2.69

LoRA* 3.02 4.27 3.26 3.52

Full FT 2.43 4.63 3.05 3.37

Full FT* 1.81 4.74 2.62 3.06

Table 2. Performance of one-shot federated �ne-tuning on chat assistant tasks. Wizard has better

performance than MMLU on MT-bench. We use AVG. column to show the averaging performance of speci�c

methods.
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Figure 4. "A photo of a dog in a bucket" generated by LoRA �ne-tuned stable di�usion

models.

One-Shot Federated Fine-Tuning in Text-To-Image Generation Tasks

In addition to testing LLMs, we also evaluated the e�ectiveness of one-shot federated �ne-tuning in the

text-to-image generation tasks. We use LoRA to �ne-tune a stable-di�usion-v1-5[27]  on the

Dreambooth[28] dataset with 5 distributed clients. In the multi-round setting, we have 5 global rounds,

with 5 local epochs in each round. In the one-shot setting, we have 1 global round with 25 local epochs.

After �ne-tuning, we evaluated the models by the CLIP[29] score with ViT-B-32[30] to assess the quality

of generated images. Figure 5 shows the images generated with the prompt "A photo of a dog in a bucket"

The right column displays the result of multi-round federated �ne-tuning, while the left column shows

the result from the one-shot setting. The numbers to the right of the images represent the CLIP scores.

The qualities of the images generated by both methods are essentially the same. The average CLIP score in

the one-shot setting is 0.3343, while the score in the multi-round setting is 0.3341. These results indicate

that the e�ectiveness of one-shot federated �ne-tuning extends to �ne-tuning stable di�usion models.

qeios.com doi.org/10.32388/6KI6IZ 15

https://www.qeios.com/
https://doi.org/10.32388/6KI6IZ


Figure 5. The MT-bench score of the global model merged by a varied number of clients.

5. Discussion

One-Shot Federated Fine-Tuning Saves Communication Cost.

In FL, the server sends the model parameters to all the selected clients and receive the clients’ model

updates in each communication round. Thus, the total number of communicated parameters in multi-

round should be  , where   is the model size. In one-shot federated �ne-tuning, the server and the

clients only perform one-round communication, so the number of communicated parameters is only 

. This reduction in communication overhead is signi�cant, especially when �ne-tuning large FMs.

For instance, the Llama-13b model has approximately 50GB parameters, i.e.,  . In our

experiments, the 3-round federated �ne-tuning on Llama-13b needs to communicate 3000GB data

between the server and the clients, which may be una�ordable in scenarios with tight communication

budgets. However, one-shot federated �ne-tuning reduces this amount to 1000GB. This substantial

reduction in communication makes federated �ne-tuning of large FMs more practical and a�ordable in

real-life scenarios.

2mT S S

2mS

S = 50GB
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One-Shot Federated Fine-Tuning Supports Asynchronous Global Aggregation

In traditional multi-round FL, clients need to train local models synchronously. The server can only

perform the aggregation and send the new global model to clients after receiving all local model updates.

This requirement poses challenges for federated learning applications. For example, if local computation

resources are occupied by other tasks or if the connection between the server and clients is unstable, the

training process will be halted. One-shot federated �ne-tuning e�ectively addresses this problem. The

server can update the global model with local updates as soon as they are received, allowing for real-time

model updates. Therefore, even if some clients fail to send model updates promptly due to various

reasons, the global model on the server can still be updated by most clients, resulting in a usable global

model. To further illustrate this point, we sequentially aggregated local model updates from client 1 to

client 10 in one-shot federated �ne-tuning of Llama-7b on the Wizard dataset. We tested the global

model’s performance on the MT-bench as we aggregated updates from 1, 2, 3, …, and up to 10 clients. The

results are displayed in Figure 5. The model score increases as more clients contribute their local updates

to the global model, indicating that each individual local model update provides an immediate

improvement in global model performance. The red dash line represents the model score in the

synchronous FL setting, which is equal to the score of aggregating ten clients in asynchronous FL.

One-Shot Federated Fine-Tuning Naturally Mitigates Client-Side Privacy Threatens

In traditional FL algorithms, clients repeatedly receive new global model parameters each round, which

could lead to client-side privacy issues. Malicious clients can exploit model inversion[31][32] and gradient

inversion attacks[33]  to recover private training samples or user inputs from other clients[34]. These

attacks heavily rely on access to the global model parameters and certain data distribution information.

However, in one-shot FL, the server can choose not to send back global parameters and only provide an

API of the �ne-tuned model. By doing this, it can eliminate the possibility of client-side privacy leakage.

6. Conclusion

In this paper, we tackle the critical issue of high communication costs that limit the practical application

of federated �ne-tuning. Through a series of experiments, we demonstrate that multi-round

communication is not necessary for �ne-tuning FMs, as one-shot federated �ne-tuning achieves

comparable performance. We then provide a theoretical analysis to explain why one-shot federated �ne-

tuning is e�ective for large FMs and validate our �ndings with empirical evidence. Our extensive

experiments show that one-shot federated �ne-tuning performs on par with multi-round federated �ne-
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tuning across 5 di�erent models and 3 diverse tasks. This method signi�cantly reduces communication

overhead, making federated �ne-tuning more feasible and e�cient, especially for large-scale models.

Moreover, one-shot federated �ne-tuning supports asynchronous local updates and enhances security by

minimizing data exposure during the training process. These �ndings make it possible to harness the

power of large FMs in environments with limited communication resources, thereby broadening the

accessibility and utility of advanced AI technologies.

Appendix A. Related Work

One-Shot Federated Learning.

One-shot federated learning refers to learning the parameters of the global model in a single round of

communication between clients and the server[13]. There are two main strategies for optimizing one-shot

FL, neuron matching and knowledge distillation. Neuron matching is based on the permutation symmetry

of neural networks[18], which means that client model parameters can be aligned according to a common

ordering and then be averaged. Previous works use algorithms such as the Fisher information

matrix[12]  and permutation matrix[35]  to match the local model parameters. The knowledge distillation

methods aim at distilling knowledge from well-trained local models through public data[14][15][36]. Some

works also use distilled data to transfer knowledge between clients and the server[16]. Recent works adopt

generative models to help generate substitute data for the local dataset on the server[17][37].

Federated Fine-Tuning.

Federated �ne-tuning[38][39]  aims to �ne-tune FMs by cross-domain on-device datasets while

preserving data privacy. Recent works use PEFT methods such as LoRA[6] in federated �ne-tuning[40] to

save communication and computation costs. Federated �ne-tuning also faces similar research problems

as FL. Current works have discussed the non-IID problem[41] and personalized federated �ne-tuning[42].

Appendix B. Additional Experimental Setups

Computer Resources

We used a 256GB AMD EPYC 7763 64-Core Processor on Linux v4.18.0 to run the experiments. For LoRA

�ne-tuning on all the models and full �ne-tuning on all the models except Llama-13b, we used 4 NVIDIA

RTX A6000 GPUs. For Llama-13b full �ne-tuning, we use 8 NVIDIA A100 GPUs.
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Hyperparameter Settings

For LoRA �ne-tuning across all the models and datasets, we set the local LoRA rank to 16, the local

learning rate to 3e-4, and the batch size to 64. For full �ne-tuning, we reduced the learning rate to 3e-5

and set the learning rate to 8. For multi-round settings, the numbers of global communication rounds and

local epochs in each round in di�erent models and datasets are listed in Table 3. The one-shot setting

satis�es   and   equals   in the multi-round setting. The number of rounds and epochs we selected

can ensure convergence and avoid over�tting. We show a simple example in Appendix C to demonstrate

this point.

Models TinyLlama Gemma-2b Llama-7b Llama-13b

  MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W MMLU Wizard M-W

T 3 3 3 3 3 3 3 3 3 3 3 3

k 1 2 1 1 2 1 2 1 1 1 1 1

Table 3. Global rounds and local epochs settings in multi-round experiments.

Appendix C. Additional Experimental Results

Zero-Shot Results

We test the zero-shot performance of models used in Table 1 for reference. The results are displayed in

Table 5.

  ResNet-18 BERT GPT-2 TinyLlama Gemma-2b Llama-7b Gemma-7b Llama-13b

T 50 50 5 3 3 3 3 3

k 7812 3906 5625 3750 1875 1875 1875 1875

Tk 390600 195300 28125 11250 5625 5625 5625 5625

Table 4.   settings in experiments.   is the number of global communication rounds.   is the total number

of local SGD steps, which is computed by (dataset length   epoch number   batch size).

T = 1 k T k

T k T k

× /
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Tasks TinyLlama Gemma-2b Llama-7b Llama-13b

MMLU 24.90 34.63 34.44 46.23

ARC 35.41 40.25 45.65 51.79

Table 5. Zero-Shot results of models on MMLU and ARC Challenge.

Standalone Results of Local Models

To further demonstrate the e�ectiveness of federated �ne-tuning, we performed the standalone

experiment to compare the performance of the global model and the local model only trained on local

datasets. We did the experiments on the llama-7b model and Wizard dataset and displayed the results in

Table 6. The results show that the accuracy of most local models is slightly lower than that of the global

model, with some local models outperforming the global model. This is reasonable in the context of the

federated �ne-tuning task because the models have already been pre-trained. Therefore, even though

clients have less training data, the performance of local models does not di�er signi�cantly from the

global model.

One-Shot 0 1 2 3 4 5 6 7 8 9

51.88 50.79 51.02 50.05 50.43 52.33 51.22 51.28 52.30 51.21 51.11

Table 6. Standalone results of 3-epochs federated �ne-tuning on Llama-7b with Wizard dataset. The numeric

header columns indicate the ARC Challenge accuracy of the local models only �ne-tuned on their local dataset

for 3 epochs.

More Global Round Settings

We also tested the model performance when we had more and fewer global rounds in a multi-round

setting. We evaluated the global model in 1, 2, 3, 4, and 5 global rounds when �ne-tuning the Llama-7b

model on Wizard dataset. The results are shown in Figure 6. In the �rst round, the MT-bench score

increases from the 2.86 in base model to around 3.80. Then, it slightly increases towards 3.90 in the 3rd

round and begins to decrease afterward. A similar phenomenon can be seen in other datasets and models
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that the model performance will increase in the initial 2-4 rounds and then gradually decline due to

over�tting. Thus, we use 3 global rounds in all of the multi-round experiments.

Figure 6. The MT-bench score of global model in 1-5 global rounds.

Appendix D. Proof of Theorem 1

According to Eq. 7 and Eq. 8, ignoring the learning rates, the di�erence of the global model can be

bounded by:

Considering Assumption 1, we have:

According to Assumption 2, we can deduce:

Thus we have:

ε ≤ [( ( ) − ( )],∑
i=1

m

∑
j=k+1

Tk

gi w
(0,j)
i gi w

(t,j−kt)
i (10)

ε ≤ Lm∥ − ∥,∑
j=k+1

Tk

w
(0,j)
i w

(t,j−kt)
i (11)

ε ≤ Lτm∥ ∥,∑
j=k+1

Tk

w
(0,0) (12)

ε ≤ LτT km∥ ∥,w
(0,0) (13)
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which is Theorem 1.

Appendix E. Limitation

This work has two main limitations. (1) The paper is limited in federated �ne-tuning tasks since we lack

the computation resources to conduct federated pre-training experiments. (2) Since common stable

di�usion models do not vary signi�cantly in parameter size, this work does not observe the performance

of di�erent-sized stable di�usion models in one-shot federated �ne-tuning. The impact of model

parameter size on one-shot federated �ne-tuning in text-to-image generation tasks still needs to be

explored.
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