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Loop closure detection in large-scale and long-term missions can be computationally demanding due to the need to

identify, verify, and process numerous candidate pairs to establish edge connections for the pose graph optimization.

Keyframe sampling mitigates this by reducing the number of frames stored and processed in the back-end system. In this

article, we address the gap in optimized keyframe sampling for the combined problem of pose graph optimization and

loop closure detection. Our Minimal Subset Approach (MSA) employs an optimization strategy with two key factors,

redundancy minimization and information preservation, within a sliding window framework to e�ciently reduce

redundant keyframes, while preserving essential information. This method delivers comparable performance to baseline

approaches, while enhancing scalability and reducing computational overhead. Finally, we evaluate MSA on relevant

publicly available datasets, showcasing that it consistently performs across a wide range of environments, without

requiring any manual parameter tuning.
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1. Introduction

Simultaneous Localization and Mapping (SLAM) in large-scale and long-term missions presents signi�cant challenges,

particularly in maintaining accuracy and e�ciency as the environment grows over time. A key component of SLAM is Pose

Graph Optimization (PGO), which ensures consistent mapping by optimizing the global trajectory. However, this process

relies heavily on loop closure detection, to reduce accumulated drift, which is computationally expensive, especially in

large-scale environments, due to the vast number of candidate pairs that need to be identi�ed, veri�ed, and processed to

establish node connections in the pose graph. As the mission progresses, the number of loop closure candidates grows

rapidly, leading to signi�cant delays in processing times, with some datasets generating over 150,000 candidates, requiring

four and a half hours to process, exceeding that of the mission time[1]. This complexity is further compounded by the

computational intensity of data association and sequence matching during map optimization, where the processing time

can range from seconds to several minutes, depending on the size of the data[2][3].

Due to these computational challenges, many SLAM systems in large-scale environments have opted to either avoid or

minimize loop closure detection to reduce the burden on limited computational resources. Some approaches, particularly in

expansive environments, forego loop closures entirely, as the growing number of candidates becomes increasingly di�cult

to handle in real-time applications, as highlighted recently in[4]. While loop closure detection is critical for correcting drift
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and ensuring map consistency, the computational complexity can overwhelm systems if not managed e�ectively, often

leading to false positives that degrade the overall quality of the map[5].

A. Related Work

E�cient implementations of pose graph optimization, such as GTSAM[6], g2o[7] and iSAM2[8] have signi�cantly enhanced

its scalability by leveraging factor graphs and incremental optimization techniques. Additionally, sparsi�cation methods[9]

[10][11] and hierarchical approaches[12][13] have further improved computational e�ciency by reducing the number of active

nodes in the optimization process. However, despite these advances, loop closure detection remains a major bottleneck due

to the large number of candidate pairs that must be checked and processed to add meaningful constraints to the pose graph.

Keyframe sampling helps reduce the computational demands of loop closure detection by limiting the number of frames

stored and processed in SLAM systems. In LiDAR-(Inertial) Odometry, systems such as LIO-SAM[14][15][16]  or back-end

global optimization systems like LAMP[17][18], use �xed Euclidean distance intervals (1–2 meters) for keyframe generation

to maintain local maps and optimize global poses. Although e�ective, these methods lack adaptability in dynamic

environments with varying densities of loop closure candidates. Recent advancements have introduced adaptive keyframe

sampling techniques, adjusting intervals based on environmental spaciousness[19][20], although manual threshold

adjustment is still required. Entropy-based methods, like the one proposed by[21], use information theory to select

keyframes, but face similar adaptability issues. Other approaches, such as[22], focus on displacement vector similarity to

balance computational cost and map completeness while managing keyframes in a sliding window.

In this article, we address the gap in optimized keyframe sampling for pose graph optimization and loop closure detection

by streamlining keyframe extraction. Our Minimal Subset Approach uses two key criteria, redundancy minimization and

information preservation, within a sliding window framework to e�ciently reduce redundant keyframes while maintaining

essential information. This method enhances adaptability across various environments and eliminates the need for manual

threshold tuning, with an example of its performance illustrated on Fig. 1.
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Figure 1. An example on KITTI 06. Comparison of two sampled trajectories: one using an entropy-based

approach and the other using the proposed Minimal Subset Approach (MSA). The MSA-sampled

trajectory achieves a lower Relative Pose Error (RPE) after the pose graph optimization.

B. Contributions

Based on the aforementioned, the contributions of this article can be summarized as follows: (a) We propose a Minimal

Subset Approach (MSA) that e�ciently addresses the problem of loop closure detection and pose graph optimization by

leveraging a subset of keyframes. This method achieves comparable results to baseline approaches but with improved

scalability and e�ciency, reducing computational demands. (b) The proposed approach is environment agnostic, avoiding

manual parameter tuning and o�ering consistent performance across diverse environments. This is achieved through a

sliding window optimization in the hyper-dimensional descriptor space, eliminating the need for threshold adjustments.

(c) The MSA addresses the combined problem of pose graph optimization and loop closure detection. Unlike many existing

methods that focus solely on extracting keyframes for scan matching and pose graph optimization, MSA takes into account

how sampling intervals impact loop closure detection performance through place recognition, providing a more integrated

solution to these interrelated challenges.

II. Problem Formulation

A. Pose Graph Optimization

The objective of PGO is to �nd the most likely con�guration of a robot’s trajectory by minimizing the error in a graph-based

representation of the poses. The pose graph is represented as a set of nodes and edges, where each node represents a robot

pose and each edge encodes a spatial constraint between two poses[23]. Let   be the set of   robot poses,

where,  ,    be the observed spatial constraint between a pair of poses    and    be the

predicted value of that constraint. The error   quanti�es the di�erence between the observed relative transformation

and the predicted transformation between poses   and   and is denoted as:

X = { , … , }x1 xN N

x ∈ SE(3) = h( , )zij xi xj ⟨i, j⟩ ( , )ẑij xi xj

∈eij R6

xi xj
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We can then de�ne the set of edges  , that contains all the pairs in which a relative constraint exists. The

goal of pose graph optimization is to �nd the optimal con�guration of poses   that minimizes the overall error function 

, denoted as:

where   is the information matrix that re�ects the certainty of the relative pose measurement for each pair.

B. Odometry and Loop Closure Edges

Pose graph optimization is widely used as a global optimization method to mitigate accumulated pose drift during large-

scale and long-term missions. This would not be possible without loop closures. Relying solely on pose-to-pose odometry

constraints is insu�cient to maintain global consistency, hence, loop closures are essential. Given this, it is reasonable to

assume that the set of edges    in the pose graph can be partitioned into two distinct subsets. The �rst subset,  ,

consists of odometry edges, which represent consecutive movements of the robot based on local motion estimates, while the

second subset,  , consists of loop closure edges, which correspond to observations of previously visited locations. Thus,

the overall error function can be decomposed into two components:

where the edge sets satisfy the following two relationships:   and  .

C. Loop Closure Detection

Detecting loop closures is challenging, particularly in large-scale missions, where accumulated drift can cause traditional

radius-based searches to fail by missing nearby candidates. A common solution is place recognition, which compares current

sensory data (e.g., images or LiDAR scans) against a database of past observations to identify matches. To formalize this, we

de�ne a keyframe set  , where   is the pose of keyframe  ,   represents its

descriptor which encodes distinct features[24][25], and    is the set of associated measurements. The goal is to �nd loop

closure candidates   by comparing descriptors:

where   is a similarity function (e.g., cosine similarity, Euclidean distance) and   is a threshold for considering two

keyframes representing the same place. This approach generalizes to various scenarios, such as comparing a current

keyframe with the   nearest past keyframes in single-robot detection or comparing keyframes across multiple robots.

D. Reducing Search Space in Place Recognition

The detection and veri�cation of loop closure edges    is computationally demanding due to the large number of

potential keyframe pairs, which scales quadratically as  , where    is the number of keyframes. While using

descriptors and methods like k-nearest neighbor (k-NN) search[26]  can accelerate the process, additional steps are still

required to remove outliers, mitigate false positives, or prioritize certain nodes[1], while extracting the relative pose

transformation between loop closure nodes also involves computationally intensive techniques such as General Iterative

= e( , ) = − ( , )eij xi xj zij ẑij xi xj (1)

E = {⟨i, j⟩ ∣ ∃ }zij

X
∗

E(X)

= e( , e( , ),X
∗ arg min

X

∑
⟨i,j⟩∈E

xi xj )⊤
Ωij xi xj (2)

∈Ωij R6×6

E ⊆ EEo

⊆ EEl

E(X) = + ,∑
⟨i,j⟩∈Eo

e⊤
ij Ωijeij ∑

⟨i,j⟩∈El

e⊤
ij Ωijeij (3)

E = ∪Eo El ∩ = ∅Eo El

K = {( , , ) ∣ i = 1, … , N}xi di zi ∈ SE(3)xi i ∈di RM

zi

L

L = {⟨i, j⟩ ∣ f( , ) > τ, ∀⟨ , ⟩ ∈ K × K, ≠ } ,di dj ki kj ki kj (4)

f( , )di dj τ

k

≜ LEl

O( )n2 n = |K|
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Closest Point (GICP)[27] or Sample Consensus Initial Alignment (SAC-IA)[28]. This pipeline does not scale well for extensive

missions, often resulting in processing times of 3–4 hours or more[4][17][18], and the challenge becomes even greater in

multi-robot systems[2][3].

To address this computational complexity, we propose a sampling strategy to reduce the number of keyframes considered for

matching, while maintaining minimal impact on the loop closure set  . Let    represent a subset of keyframes

selected through a sampling process    such that  . Our objective is to reduce the search space by

con�ning the loop closure detection process to only the selected keyframes in  . The goal is to identify a reduced set 

 that minimizes redundant keyframes while preserving the set of loop closures  , a process denoted as:

In this approach, the overall pose graph optimization is reformulated as follows:

where    represents the poses corresponding to the optimally sampled keyframe set  , and    denote the

odometry and loop closure edge pairs between the sampled keyframe poses  , respectively.

E. Underlying Challenges

Addressing the combined problem of pose graph optimization and loop closure detection through place recognition

presents several underlying challenges that a�ect both the e�ciency and accuracy of the solution.

1. Impact of Sampling

While the sampling strategy   aims to preserve key loop closure candidates, in practice it must retain a subset   that

still ensures an e�ective solution for pose graph optimization. Redundant loop closure edges can lead to issues, such as

over�tting, increased computational burden, and numerical instability in the optimization process. Moreover, because the

sampling process reduces the set of poses, the odometry edge set    is also reduced, which can a�ect the overall

accuracy of the optimization[29], with an example illustrated on Fig. 2.

L ⊂ KKS

S : K → KS | | ≪ |K|KS

KS

K
∗
S L

= (| |) , subject to  = L,  where K
∗
S argmin

⊆KKS

KS L
∗ (5)

= {⟨i, j⟩ ∣ f( , ) > τ, ∀⟨ , ⟩ ∈ × } ,L
∗

di dj ki kj K
∗
S K

∗
S (6)

= + ,X
∗
S argmin

XS

∑
⟨i,j⟩∈E∗

o

e⊤
ij Ωijeij ∑

⟨i,j⟩∈E∗
l

e⊤
ij Ωijeij (7)

XS K
∗
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∗
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∗
l L

∗

XS
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⊂E
∗
o Eo
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Figure 2. Redundant Keyframes E�ect. Example of removing redundant keyframes (light blue). The

updated odometry edge set,  , in�uences the pose graph optimization, while the sparsi�ed loop closure

edges,  , can further reduce the computational complexity.

2. Combined Problem

Combining loop closure detection through place recognition with pose graph optimization presents challenges due to their

di�ering characteristics. Loop closure detection relies on matching high-dimensional feature descriptors, which is

computationally expensive and sensitive to environmental factors. Conversely, pose graph optimization relies on geometric

consistency and is a�ected by noise and outliers in loop closures. Balancing these require careful consideration of both

feature reliability and constraint robustness to prevent false positives and reduced e�ciency from degrading optimization

performance.

3. Dynamic Keyframe Selection

To minimize the keyframe set size in real-time, we must consider the entire set  ; however, this is impractical for

maintaining computational feasibility in loop closure detection. The challenge is to determine the contribution of each

keyframe, which requires anticipating future keyframes and introduces a lack of casualty. Moreover, �nding the optimal

subset    is an NP-hard problem, involving an exhaustive search of all keyframe combinations, which becomes

computationally infeasible for sets larger than 15–20 keyframes.

The goal of this research is to show that reducing the number of keyframes through an informed sampling strategy can

signi�cantly decrease the search space for loop closure detection, improving computational e�ciency by reducing memory

usage and query time without compromising SLAM accuracy. The proposed approach seeks to balance computational

complexity and optimization precision, ensuring scalability and robustness.

E
∗
o

= ∖⟨5, 7⟩L
¯ ¯¯̄

El

K

K
∗
S
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III. Minimal Subset Approach

To address these challenges, we propose a Minimal Subset Approach (MSA) to approximate a solution to the problems in

Eq.  (5)-(6). The proposed MSA identi�es and eliminates redundancy within a keyframe set while preserving crucial

information. Designed for real-time implementation, it employs a sliding window combinatorial optimization with two

distinct objectives, balancing information preservation and redundancy minimization.

A. Redundancy in Keyframes

The frequency of a sensor, the platform’s speed, and the environmental characteristics can cause keyframe samples to

capture redundant information if they are too closely spaced, with more details available on [30]. To address this, we de�ne

redundancy within a keyframe set and propose a metric to quantify it based on the descriptor space. A keyframe    is

redundant within a set   if its removal does not a�ect the loop closure edge set   and does not create discontinuities in the

map representation:

where  . The spatial constraint in Eq. (8) ensures comprehensive map coverage and that consecutive odometry

edges can be computed safely. The lower and upper pose distances,    and  , usually range from 1 to 5 meters[24]. We

quantify redundancy in a keyframe set using a metric that captures the similarity between consecutive keyframes, utilizing

any similarity function  , provided by the corresponding descriptor extraction framework:

where   and   is the number of keyframes in  . Higher values indicate greater redundancy.

B. Information Preservation in Keyframes

Let  , represent the descriptor extraction function, either learning-based[24][31] or handcrafted[25][32], which

maps each observation from 3D space to an  -dimensional representation. This function depends on the input observation

(e.g. LiDAR scan), but it is understood that   implies that each observation depends on the viewpoint and pose. To

understand how the descriptors are sensitive to pose changes, we compute the Jacobian    of    with respect to poses  .

Explicitly deriving the Jacobian can be impractical because of the intricate nature of functions like deep neural networks[30].

Consequently, we employ numerical approximations to estimate the rate of change, as shown in Fig.  3. Moreover, since

poses are encompassed within  , we reduce the dimensional complexity by using the Euclidean norm for distance

measurement instead of individual axis derivatives. It is essential to use yaw-invariant descriptors, as suggested in[24][25]

[33], to ensure the Jacobian calculations are meaningful by preventing orientation changes. Considering the descriptors 

 as random variables and poses   as samples, the product   estimates the covariance matrix:

k

K L

≡ L = {⟨i, j⟩ ∣ f( , ) > τ, ∀⟨ , ⟩ ∈ × } ,L
¯ ¯̄̄

di dj ki kj K
¯ ¯¯̄¯

K
¯ ¯¯̄¯

subject to  ≤ ∥ − ≤ , ∀x ∈ X,δl xi xi+1∥2 δu (8)

= K∖{k}K
¯ ¯¯̄¯

δl δu

fσ

(K) = ( , ),ρτ
1

N − 1
∑
i=1

N−1

fσ ki ki+1 (9)

0 < (K) ≤ 1ρτ N K

F : →R3 RM

M

∝ f( )zt xt
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SE(3)
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F JF

= ( ) = VΛ ,J
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where    is the diagonal matrix of eigenvalues and    is the matrix of eigenvectors from the decomposition. The

eigenvectors represent the principal directions of variation, and the eigenvalues represent their magnitudes. The

descriptors are transformed using the eigenvectors and scaled by the square root of the eigenvalues,  ,

aligning them with the main directions of variability. Therefore, we can de�ne the information preservation term for a

keyframe set as:

where  ,    is the distance function between descriptors, and    are the transformed descriptors.

Higher values of    indicate that the poses better preserve the variability in the descriptor space. Eigenvectors   denote

directions of maximal variability, and the  -th eigenvalue   quanti�es the variance described by each eigenvector. Larger

eigenvalues indicate more signi�cant patterns of variability.

Figure 3. Descriptors across poses. An example showing the descriptors, the Jacobian, and the transformed descriptors for two

window keyframe sets. The Jacobian indicates how the features of the descriptors change between keyframes, while the

transformed descriptors demonstrate how these same features appear after transformation to the principal components of that

set.

In summary, while both   and   utilize a similarity or distance function, they di�er in objectives: the redundancy term

focuses on local redundancy within the keyframe set, while the information preservation term evaluates the preservation of

information structure with respect to pose changes. The distinct goals lead to di�erent interpretations of relationships

between descriptive vectors within the keyframe set.

Λ V

= ⋅ V ⋅ DD
′

Λ
−−√

(K) = − ( , ),πτ

1

N − 1
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i=1

N−1

fδ d
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i d
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C. Sliding Window Optimization

To manage the computational complexity of optimizing a large keyframe set and proactively selecting keyframes for future

queries, we introduce a sliding window optimization method. This approach continuously optimizes keyframe sets   over

the mission duration  , approximating the optimal keyframe set as:

where   is the minimal subset of   that retains maximum information. To compute this subset, we use the redundancy

and information preservation terms de�ned earlier.

The process begins by initializing a window keyframe set   containing   keyframes. The time step   advances once   new

keyframes are available, and the optimization converges to the optimal window keyframe set  . To �nd this optimum, we

generate all possible subsets of  , forming the power set   with cardinality  . To reduce computational

complexity, we apply constraints on the power set, retaining only subsets that satisfy minimum and maximum distances

between consecutive poses, as per Eq. (8), reducing the power set by 5–10 times. The constrained power set can be denoted

as:

where   and   are the lower and upper limits for the distance between poses. The window optimization problem can be

formulated as:

The minimization problem is solved through an exhaustive search, evaluating each subset’s information matrix   and

quantifying its e�ectiveness using the information preservation and redundancy terms, selecting the subset with the best

combined score.

IV. Experimental Setup and Results

We evaluate our approach using three datasets: KITTI Odometry[34], MulRan[35], and Apollo-SouthBay[36], which cover

diverse environments such as urban areas, rural landscapes, and complex structures like bridges and tunnels. Each dataset

provides 3D LiDAR scans and GNSS-based ground truth poses, with MulRan being particularly challenging due to obstructed

LiDAR views. For descriptor extraction, we use OverlapTransformer (OT)[24]  with a    feature vector. In[30], we

demonstrate the generalizability of our method to other descriptors, like Scan Context[25]. Comparisons are made with

constant intervals of 1, 2, and 3 meters[14][17][18][15][16], as well as with adaptive sampling based on LiDAR

spaciousness[19]  and entropy[21]. All experiments were conducted on a 14th Gen Intel Core i9-14900K with 128GB DDR5

RAM. The parameters of MSA are set to the defaults of    and  . The window optimization is solved, on

average, in 14.4ms, making it suitable for real-time sampling.
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A. Quantitative and Qualitative Analysis

For the batch experiments in Table  I, the following pipeline is used: keyframes are sampled for all methods, and a pose

graph is constructed using GTSAM[6] with odometry provided by KISS-ICP[37]. Potential loop closure matches are identi�ed

using OT descriptors, with a similarity threshold of 0.8. Ground truth data are used to classify candidates as true or false

positives, based on a 1-meter radius. True positives are passed to small_gicp[38]  for relative transformation estimation,

with matches being veri�ed if the registration residual is below 0.3 meters. Veri�ed loop closures are then added as edges to

the pose graph, which is optimized using the Levenberg-Marquardt algorithm.

Table  I summarizes the results for all datasets and methods, where bold values represent the best performing adaptive

method and underlined values indicate the best performing constant interval. The metrics include the Absolute Trajectory

Error (ATE) for both translation and rotation, presented as the percent improvement in the KISS-ICP trajectory after pose

graph optimization with each method. Additionally, the False Positive Ratio (FPR) for descriptor matching is provided, as

sampling a�ects place recognition performance[30]. The results show that the proposed MSA consistently achieves the best

performance, while constant intervals show varying results across di�erent algorithms. In Fig. 4, the data from Table I are

compiled into box plots, showing the deviation of each method’s ATE performance compared to using all samples, along

with variations in memory usage and total execution time of the whole pipeline. The proposed approach maintains overall

improvements with minimal performance loss in both translation and rotation, while signi�cantly reducing memory usage

and providing reasonable execution times. Although other methods reduce memory overhead and processing time, their

performance varies considerably, lacking robustness. Finally, Figs. 1 and 5 visually compares ground truth poses, raw KISS-

ICP poses, and the corrected trajectories for MSA and the entropy-based method after optimization. For all illustrated

trajectories, the proposed approach consistently achieves lower translation and rotation RPE than the other methods, while

the segments containing loop closures remain very close to the ground truth, demonstrating the approach’s ability to retain

crucial keyframes.

Datasets KITTI Odometry (Seq. 00 / 06) MulRan (DCC / KAIST) Apollo-SouthBay (SanJose / Columbia)

Metrics         t. ATE [%]    rot. ATE [%] FPR [%]        t. ATE [%]    rot. ATE [%] FPR [%]        t. ATE [%]       rot. ATE [%] FPR [%]       

All

Samples
06.9 / 78.6 -06.1 / 51.1 01.4 / 05.6 29.8 / 67.4 24.9 / 59.5 08.0 / 21.2 96.2 / 98.1 95.3 / 97.5 30.7 / 07.5

Const. 1m 12.2 / 78.7 12.3 / 55.3 02.8 / 07.0 59.3 / 87.1 56.4 / 71.0 20.2 / 23.8 85.8 / 97.1 84.1 / 97.2 25.1 / 04.1

Const. 2m 10.5 / 44.9 06.5 / 23.7 01.3 / 03.1 70.0 / 80.9 68.4 / 73.7 07.6 / 11.6 06.8 / 75.9 06.8 / 77.2 25.3 / 02.3

Const. 3m 05.1 / 22.6 -03.9 / 13.8 03.0 / 09.5 63.6 / 87.7 64.6 / 79.1 04.4 / 07.7 00.0 / 83.6 00.0 / 84.4 16.6 / 02.4

Entropy 09.6 / 24.1 -03.8 / 09.1 01.5 / 05.4 69.2 / 68.7 69.5 / 63.1 16.4 / 14.6 77.6 / 69.4 76.2 / 72.6 21.0 / 03.1

Spacious. 04.4 / 35.5 02.0 / 39.1 02.3 / 06.9 68.4 / 68.6 68.1 / 63.1 08.5 / 16.1 03.5 / 67.9 03.5 / 71.7 24.1 / 04.9

MSA (Ours) 11.1 / 78.8 09.7 / 55.5 01.1 / 04.9 70.1 / 91.4 69.7 / 77.8 08.2 / 11.4 88.7 / 84.0 88.3 / 85.1 21.5 / 01.6

Table I. Translational (t) and Rotational (rot) Absolute Trajectory Error Improvement after PGO and the False Positive Rate (FPR)
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Figure 4. Box plot comparisons. Translational (t) and Rotational (R) Absolute Trajectory Error (ATE)

di�erence of every method compared to the baseline of All Samples, as well as the Memory Allocation in

Gigabytes (GB) and the total Execution Time in seconds (s).

Figure 5. Trajectory comparisons. Comparison of the ground truth and KISS-ICP initial poses, and the

sampled poses after the pose graph optimization for the proposed Minimal Subset Approach (MSA) and

the entropy-based approach on the KAIST sequence of the MulRan dataset and the SanJoseDowntown

sequence of the Apollo-SouthBay dataset.

B. Large-Scale Evaluation

For the second part, we conduct a more realistic online experiment using the SunnyvaleBigloop sequence from Apollo-

SouthBay, covering over 100 kilometers. Poses are processed sequentially, simulating real-time operation. Keyframes are

sampled online using the previously mentioned methods, appended to the pose graph, and optimized at each step with

iSAM2[8]. Simultaneously, descriptors are queried against past keyframes to detect potential loop closures, which are

veri�ed with small_gicp and integrated into the graph. This online approach provides insights into how well each sampling

method handles large-scale missions. Table II presents the translation and rotation ATE, FPR, total allocated memory, and

processing time. Notably, when using all samples, the system runs out of memory approximately 70% into the sequence, so

no metrics are provided. The remaining sampling methods reduce memory usage while o�ering excellent performance.

This is likely because the mission revisits the same locations multiple times, allowing frequent loop closure edges that
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prevent signi�cant accumulated drift. In Fig. 6, the optimized trajectory of the entropy-based method is compared to MSA,

with the color gradient indicating the translational RPE, showcasing the better performance while maintaining lower

memory allocation and false positive ratio. As a �nal step, Figs.  7 and  8 provide further insights into execution time and

memory allocation. Fig.  7 shows memory usage over time, illustrating how the sampling methods scale more e�ciently

compared to retaining all samples or using a constant 1-meter interval. Fig. 8 presents the moving average of loop closure

detection time (left) and incremental pose graph optimization time (right). The top �gures show constant interval methods,

while the bottom shows adaptive methods. The proposed approach scales similarly to other adaptive methods while o�ering

more robust performance, as demonstrated earlier. The shaded areas represent the minimum and maximum deviations,

with the moving average trend indicating the challenge of increasing processing time in large-scale missions. While query

time exceeds 1 second per new sample, and the incremental pose graph optimization reaches up to 0.15s for the constant 1-

meter sampling method, MSA retains query times of less than 0.5s and incremental optimization times of less than 25ms,

maintaining the real-time performance of the system throughout the large-scale mission.

Metrics t. ATE rot. ATE FPR MEM. TIME

All Samples nan nan nan > 128GB nan

Const. 1m 98.5% 98.4% 12% 90.9GB 7340s

Const. 2m 98.1% 97.3% 17% 47.2GB 2264s

Const. 3m 97.9% 97.0% 28% 35.4GB 1515s

Entropy 95.5% 93.4% 15% 51.0GB 4945s

Spacious. 94.9% 97.5% 24% 38.3GB 1752s

MSA (Ours) 98.3% 94.1% 12% 41.2GB 1951s

Table II. Results for the Large-Scale Evaluation
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Figure 6. Trajectory comparisons. Comparison of the ground truth and KISS-ICP initial poses, and the

sampled poses after the pose graph optimization for the proposed Minimal Subset Approach (MSA) and

the entropy-based approach on the SunnyvaleBigloop sequence of the Apollo-SouthBay dataset where

the color gradient denotes the RPE. A grid block corresponds to 0.5x0.5 km2

Figure 7. Memory allocation. Memory against mission time for the di�erent sampling methods.

Retaining all samples exceeds system memory of 128GB, demonstrating the need for e�cient and

scalable algorithms.
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Figure 8. Processing times. The top row shows constant interval methods, while the bottom row shows

adaptive methods. The left column represents loop closure detection time, and the right column

represents incremental pose graph optimization convergence time. All times in seconds (s).

V. Conclusions

In conclusion, as the robotics community advances towards larger-scale and long-term missions, addressing system

limitations with e�cient and scalable solutions becomes crucial. This article introduced the Minimal Subset Approach

(MSA) to address the combined challenges of loop closure detection and pose graph optimization by reducing redundant

samples while maintaining robust performance. Experimental evaluations across multiple datasets show that MSA

outperforms in terms of FPR, as well as achieving superior ATE and RPE after pose graph optimization. Unlike other

adaptive sampling methods, MSA requires minimal to no parameter tuning, while using a fraction of the system’s memory

and maintaining comparable computational times.

Data Availability

This paper is supported by code and demonstration �les, available at https://github.com/LTU-RAI/opt-key.git.
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