L
1, February 2025, Preprint v - CC-BY 4.0 Qelos PREPRINT

Review Article

Machine Learning of Slow Collective
Variables and Enhanced Sampling via
Spatial Techniques

Tugce Gokdemir?, Jakub Rydzewski®

1. Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland

Understanding the long-time dynamics of complex physical processes depends on our ability to
recognize patterns. To simplify the description of these processes, we often introduce a set of
reaction coordinates, customarily referred to as collective variables (CVs). The quality of these CVs
heavily impacts our comprehension of the dynamics, often influencing the estimates of
thermodynamics and kinetics from atomistic simulations. Consequently, identifying CVs poses a
fundamental challenge in chemical physics. Recently, significant progress was made by leveraging
the predictive ability of unsupervised machine learning techniques to determine CVs. Many of these
techniques require temporal information to learn slow CVs that correspond to the long timescale
behavior of the studied process. Here, however, we specifically focus on techniques that can identify
CVs corresponding to the slowest transitions between states without needing temporal trajectories
as input, instead using the spatial characteristics of the data. We discuss the latest developments in
this category of techniques and briefly discuss potential directions for thermodynamics-informed

spatial learning of slow CVs.

I. Introduction

Complex systems in chemical physics often exhibit dynamics with multiple temporal scales,
characterized by infrequent transitions between long-lived metastable states that occur on timescales
orders of magnitude slower than fast molecular motionsl23]  This significant disparity in
timescales is known as timescale separation. Understanding such physical processes depends on our
ability to recognize patterns in molecular dynamics (MD) simulations. We typically simplify the

dynamics by introducing a set of reaction coordinates, customarily referred to as order parameters or
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collective variables (CVs)L‘*l, which are meant to describe it on the macroscopic level. Then, we can

estimate a free-energy landscape in CV space, which, to a large extent, is responsible for the

thermodynamics and kinetics of physical processes[allell71(81[9]101[11][12](13]

However, the determination of CVs has proved challenging even for simpler systems[141131161 The
most interesting properties of complex processes are often hidden in slow dynamics to which fast
variables are adiabatically constrained. Therefore, CVs should describe transitions between states that
occur when crossing free-energy barriers significantly higher than thermal energy (>> kpT'). This
picture is based on the transition state theory and Kramers’ theory for reaction dynamics, where the
reactant and product states are separated by the energy barrier locating the transition statel271,
Processes such as protein folding[ﬂﬂ‘?—l, crystallization@l, nucleation@l, glass transitionsfz—zﬂ—zﬂ,
aqueous systemsfi‘d, catalysisféil, or molecular recognitionﬁﬂlﬂlﬁl@l1 are only a few examples
where these characteristics are present and that have frequently profited from such a reduced

description.

Due to the rapid development of machine learning (ML) libraries[301[31] using neural networks has
become relatively straightforward and readily available for applications in chemical physics and MD.

Interestingly, a fundamental challenge in ML is to develop simple and interpretable representations

for complex datal321[331341(351(361(37] which closely resembles the task of developing CVs for
dynamical systems. Consequently, ML methods have been employed to extract meaningful
information from simulations due to their ability to recognize statistical patterns[381(32] These
techniques can be harnessed to devise algorithms for learning CVs hidden in data to explain the

dynamics on the macroscopic scale. A variety of such data-driven methods has been developed at the

intersection of statistical physics, MD, and ML. Many of them were recently reviewed[#2ll411(421[431[44]

[451146104711481141(491(501[511[52]

Nonetheless, learning slow CVs remains a challenging task, presenting several difficulties. One key
issue is that the quality of CVs is often significantly hampered by the inability to effectively capture
longer timescales during standard simulations within a reasonable computing time. This is commonly
known as the sampling problem in MD. As such, the construction of training datasets for ML
techniques can be problematic as it cannot be known if every state is sufficiently sampled.
Additionally, the scarcity of observations between states makes the representation of transition states

in reduced space problematic. Enhanced sampling methods can partly alleviate the problem of poor
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statistics. However, they require correct data reweighting to obtain equilibrium characteristics, often
tailored to a particular class of ML algorithms. These problems cause a circular dependency between

sampling and learning that poses a major obstacle in developing these techniques.

In this brief review, we will focus on a specific type of ML methods for building slow CVs. Unlike other
reviews that cover techniques using trajectories and their time-delayed versions as input to calculate
kinetic quantities, such as correlation functions directly, our priority will be on unsupervised
techniques that do not rely on temporal characteristics; instead, they estimate kinetics indirectly by
analyzing the thermodynamic properties of MD data. These methods aim to learn the reduced space of
CVs by capturing spatial characteristics of simulation data encoded in configuration or reduced space,
such as the proximity between samples, density estimates, and weights derived from enhanced
sampling simulations. We will explore various techniques, including spectral methods such as
diffusion maps and their extensions and recently developed algorithms that leverage deep neural
networks to learn slow CVs. Lastly, we will discuss potential avenues for future advancements in this

field.
I1. Background

A. Collective Variables

In statistical mechanics, we consider a system described by the microscopic coordinates
x = (¢1,...,o,) whose dynamics at temperature T' evolves according to a potential energy function

U(x). This dynamics can be described by the following overdamped Langevin equation:
dx = —VU(x)dt + /28 ‘dw, (1)

where 8 = 1/kgT is the inverse temperature, kg is the Boltzmann constant, and dw is the Brownian
motion. The time-evolution of the system results in a canonical equilibrium distribution given by the

Boltzmann density:

plx) = —e ), )

where Z = [ dxe PV is the partition function of the system!53]. We reduce the representation of the
system by mapping it into reduced space defined by a set of d functions of the microscopic

coordinates, commonly referred to as CVs:

z = f(x) = {fi®)}_ (3)
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where d < n. The dynamics of the system in reduced space samples a marginal equilibrium density:

p(z) = / dxp(x)3(z — f(x)) (4)

that is defined by weighting each slice through configuration space x, denoted by the delta function
&(-), with the Boltzmann factors p(x) o< e V), The marginal probability p(z) contains information

about the free-energy landscape:

— _Liogp(z
F(z) = ﬂlgp() (5)

Even for simple systems, the free-energy landscape contains many stable states that are separated by

barriers much larger than thermal energy, leading to significant timescale disparities in the dynamics.

As summarized in a review by Petersta4l a general requirement for optimal CVs is to preserve
dynamical self-consistency: The dynamics projected onto the free-energy landscape should remain
consistent with trajectories sampling configuration space. Taking this apart, we can list more specific

characteristics that define optimal CVs:

a. CVs must accurately recognize metastability; that is, distinguish between long-lived metastable
states and identify transition statesl23l. Accurate metastability recognition is often difficult to
achieve due to the sampling probleml31(10].

b.CVs need to model reduced dynamics as primarily corresponding to transitions on longer
timescales, with the dynamics of fast variables being negligiblel3%l. Slow and fast variables
should be unmixed in such a way that they induce a significant separation of timescales.
Moreover, CVs should not be degenerate; each should describe a different slow mode.

c. CVs need to, preferably, be Markovian for the ability to describe slow dynamics as evolution in
the free-energy landscape with configuration-dependent diffusion coefficients[371[38159],

d.CVs must be applicable in CV-based enhanced sampling methods (i.e., smooth and
differentiable), such as umbrella samplingfﬂmﬂ, metadynamics&‘*ﬂﬁwﬂ, or
variationally enhanced samplingl081l62l[701  to improve sampling in MD and drive it toward

long-timescale processes.

B. Timescale Separation

To illustrate the problem of timescale separation, let us focus on the spectral theory of dynamical

systems and reversible Markov processest’l. Consider the forward Fokker—Planck equation for time-
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propagation of a probability distribution p(x,t): 9p/8t = —Lp, where L is the generator of a Markov
process. Through a change of variables, the Fokker—Planck equation can be solvedl72l, The solution to
this equation can be written in closed form as an eigenfunction expansionuﬂ:
00
p(x,t) = po(x) + ) ave ™ pi(x), (6)
k=1
where a;, are coefficients and ¢ is a time variable. For time ¢ — 0o, the solution of the forward equation

converges to the equilibrium Boltzmann distribution p(x).

Under general conditions, the generator of the diffusion process L has a discrete eigenspectrum of
eigenvalues u;, and the corresponding eigenfunctions ¢g(x). The zeroth eigenfunction is the
equilibrium density @ (x) oc e #U*) with the eigenvalue py = 0. The eigenvalues are non-negative

and sorted in increasing order:

po =0 <pn <pp <+or < oo (7)
The dominant eigenvalues of the Markov generator decay exponentially and are linked to the slowest
relaxation timescales in the system. Each eigenvalue can be matched with an effective timescale
tr = 1/ . In systems with timescale separation, only a few slow processes related to rare transitions
between metastable states remain. As a result, the eigenspectrum of L has a spectral gap, i.e., the
largest difference between eigenvalues ur1 and pg. This implies that the eigenvalues much lower
than g1 can be neglected as they correspond with rapid fluctuations within states and decay much

faster, leading effectively to k slow processes (Fig. 1).
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Figure 1. Model potential with two metastable states whose long-time behavior
can effectively be described by the slow variable z,, with the fast variable

x s responsible only for fluctuations within the states. The corresponding
eigenspectrum of the diffusion generator \;, = e #+ shows timescale
separation, which is indicated by the spectral gap A\,_1 — A, where k = 2 is the

number of states.

The spectral properties of reversible Markov processes can be related to the concept of
metastability[ﬂd. Although this relation can be understood intuitively, Gaveau and SchulmanlZ31[761
drawing on the extensive work of DaviesZZ1[781[791  developed a spectral definition of metastability.
They formally showed that dominant and nearly degenerate eigenvalues are related to metastable
timescales. This concept relies on the presence of the spectral gap. If an eigenvalue is nearly
degenerate, the equilibrium distribution separates into metastable states with infrequent transitions
between them. Conversely, eigenvalue degeneracy exists if the equilibrium density breaks into

metastable states separated by a free-energy barrier much larger than thermal energy. The
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eigenfunctions related to the dominant eigenvalues are linked to distributions that remain stable
longer than transient processes. Furthermore, sign changes in these eigenfunctions indicate
transitions between metastable states. The theory is summarized in a monograph by Bovier and Den

Hollander[89l,

C. Enhanced Sampling

Acquiring an informative training dataset from unbiased MD trajectories is a crucial challenge. These
trajectories need to spontaneously and repeatedly cross over all significant free-energy barriers in the
system. However, the metastability leads to kinetic entrapment in a single state, making transitions
between metastable states rare. To alleviate this issue, enhanced sampling methods can be used to

improve sampling efficiencyl&/[7)[8](9](10](11]

Enhanced sampling methods that require CVs to improve sampling are based on employing a
nonphysical bias potential. To such methods, we can include umbrella sampling introduced by Torrie
and Valeau[@], adiabatic biasing force[&l, adiabatic free-energy dynamics‘[ﬁ]‘, metadynamics
proposed by Laio and Parrinellot®4) and improved to the well-tempered variant by Barducci et al.lesl
mean-force dynamics‘[§3]-, or variationally enhanced sampling[ﬁl-. Biasing the system can cause the
probability distribution of collective variables (CVs) to significantly deviate from equilibrium,

resulting in sampling according to a biased distribution:
pv(z,t) o e AFEHVE] (8)

where V(z,t) is a time-dependent bias potential. To calculate equilibrium properties, such as free-
energy landscapes, the bias must be reverted during postprocessing. This is customarily done by
reweighting, where each sample is associated with a statistical weight to counter the effect of biasing.
In general, the weights are given by the likelihood ratio between the equilibrium and the biased

probability distributions (Eq. 8):

~ p(z)
wiet) = pv(z,t) ©)

For methods using a quasi-stationary bias potentiall69ll681(84] (e ¢ umbrella sampling), or when the

simulation is converged and the bias does not change significantly, the weights are given as:

¢~ BF(2)

_ e v
A V@] C (10)

w(z)
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In contrast, in metadynamicst®3l, the bias potential changes over time and requires accounting for a
time-dependent offset[83l. Thus, the functional form of weights may vary depending on an enhanced
sampling method and a reweighting algorithm@l@ﬂ@d@. A summary of such methods was

recently published by Kamenik et all8al

To efficiently sample and drive complex physical processes, high-quality CVs are required for biasing.
However, learning CVs demands using exhaustively sampled data. This problem creates a challenging
circular dependency, which is referred to as the “chicken-and-egg” problem{43l Advances in the
determination of CVs help address this problem and contribute to the development and

implementation of enhanced sampling methods.

I11. Spatial Learning

Due to recent extensive advancements in data-driven temporal methods[201[221[921691(931[941[95]
there are numerous reviews summarizing this topicmw. In this work, however, we
consider techniques that are “spatial,” i.e., algorithms for learning slow CVs that do not need to
exploit temporal information in MD simulations. We can describe spatial techniques as those that rely
on pairwise relations between samples in the dataset (usually through a distance metric) instead of
counting transitions within a specified lag time. The development of such techniques can be traced
back to the work of Shi and Malik[2¢] on image segmentation and the classic Laplacian eigenmaps
introduced by Belkin and Niyogil27l[981[991100]. and js closely related to graph spectral
theory[ﬂ1 based on graphs, kernels, and random walks[10211031[104]

The primary difference between spatial and temporal techniques lies in how Kkinetics is estimated.
Spatial techniques estimate kinetics indirectly by analyzing the thermodynamic characteristics of MD
data, such as equilibrium probabilities, in contrast to temporal techniques. Additionally, in spatial
techniques, we assume that MD data closely approximates overdamped Langevin dynamics (see

Sec. II.A). For these reasons, we can refer to these methods as thermodynamics-informed learning.

A. Anisotropic Kernels

The core of most spatial learning methods involves establishing similarity between samples, typically
through a distance metric and a kernel193l. For example, Laplacian eigenmaps construct a Gaussian

kernel to model relations between N samples in a dataset X = {x; }¥  [971[981[99](100],
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Ge (xk,%1) = exp(—|xe —x?/%), (11)
where ¢ > 0 is a scale parameter. This kernel is then used to define a Laplacian matrix and parametrize
reduced space using its eigenvectors. However, methods that use a Gaussian kernel, such as Laplacian
eigenmaps, cannot be used to compute slow CVs as their construction implicitly assumes that data is
distributed uniformly. As the equilibrium density is often far from uniform, Laplacian eigenmaps have
not seen many applications for analyzing trajectories. However, they are often used as a baseline for

developing more advanced techniques.

Based on Laplacian eigenmaps, Coifman et al.[106l developed the diffusion map algorithm that is
especially suited for learning the reduced space of slow CVs. Diffusion maps use a density-preserving
kernel for data sampled from any underlying probability distribution. For this, an anisotropic kernel is

constructed on the dataset X[1071:

. GE (xkaxl)
K = e )’ (12)

where ¢ is a scale parameter, p(x;) = Y, G- (x%,%;) is a density estimate that allows us to include
information about non-uniformly sampled data into the kernel, and « € [0,1] is the anisotropic

diffusion constant. Next, a Markov transition matrix is constructed by row-normalizing K:

K(Xk 5 xl)
M(xg, %) = ———— (13)
> K (k%)
to build a discrete Markov chain on the data:
my = Pr(xit1 = X | x; = xz) (14)

that expresses a transition probability between x;, and x;. Note that this construction does not depend
on the physical time. The local scale parameter ¢ plays an important role in determining the quality of
slow CVs, as it defines the scale within which the relation between two samples contributes to the

Markov transition matrix.

Depending on the anisotropic diffusion constant «, several kernel normalizations are available, which
can change the long-time convergence of the Markov chain to a particular operator. This group of
constructions is known as anisotropic diffusion mapsH061[10811091[1071[110] " For example, with
a = 1/2, the Markov chain approaches the time asymptotics of the system by describing the dynamics
by the Fokker—Planck anisotropic diffusion with the potential U(x). As such, this normalization is

commonly used to extract information from MD trajectories. Two other frequently considered values
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are a = 0 and 1. The former results in the classical normalized graph Laplacian, while the latter yields

the Laplace-Beltrami operator with a uniform probability density[1061[1081[109][107](110]

The advancements of the diffusion map algorithm and anisotropic Markovian kernels often involve

using a kernel that captures more aspects of the data. For instance, self-tuning local kernels were
introduced by Zelnik-Manor and Peronaltill, Following this works by Rohrdanz et al.12l anq Zhang et
al[13114] demonstrated that estimating the scale parameter as configuration-dependent e(x; )e(x;),
where each term can be calculated as the distance between x and its n-th nearest neighbor, improves

the overall quality of slow CVsl42l. A more general method for computing the local scale parameters

was later proposed by Berry et al.[1131[116]

In works by Dsilva et al. 11711181 3 Singer et al.l122l it was proposed to use a heterogeneous Gaussian
kernel to improve properties of the resulting CVs. Instead of using the Euclidean distance, this kernel
introduces a Mahalanobis-like distance, which incorporates a covariance matrix. The implication of
this is that the Mahalanobis kernel, by including the correlations in the dataset, can be used to remove

the effect of observing the underlying space through a complex nonlinear function[11211171[118].
Gz (xk,x) = exp(—d3(xx,x1)/e?), (15)
where the squared Mahalanobis distance is:
d2(x, %) = (xx — )" (g + 2) (i — x)- (16)
The local covariance matrix ¥, can be estimated as a sample covariance matrix at configuration x;, in

its immediate neighborhoodfm}lﬂﬂ[ﬂl1 and t denotes a pseudo-inverse (as X can be rank-deficient).

Subsequently, Berry and Sauerl22ll developed a generalization of diffusion maps to local kernels by
introducing diffusion and drift terms in the distance metric, which should be additionally computed
from the datal2221123] 1t was shown by Berry et al. 124l that it is possible to improve anisotropic
kernels by including Taken’s delay coordinates in datasets, especially when observations are scarce.

Diffusion map was also embedded in a framework for coarse-graining and clustering[123l,

B. Reweighted Transitions

The concept of reweighting transition probabilities is crucial when using enhanced sampling
algorithms to build the Markov transition matrix and, thus, CVs. A Markov chain constructed from

biased data does not converge to the equilibrium density given by the Boltzmann distribution[12611127]
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This bias affects the Markov chain and leads to incorrect density and geometric relations between
samples, which can result in reduced space that does not accurately represent the characteristics of
the data. Reweighting pairwise probabilities counters the bias from the Markov matrix, yielding the
unbiased Markov. While learning biased CVs can still be used to analyze, speed up, and drive the
sampling of rare events 113112811291 the necessity of a reweighting algorithm becomes apparent when
we seek to restore the equilibrium properties of the system and compute slow CVs.

The initial approach to learning unbiased CVs from enhanced sampling simulations with the diffusion
map algorithm was proposed by Ferguson et al.l139l in which each configuration is weighted based on
its importance in umbrella sampling simulations. A symmetric weighted Gaussian kernel was used by
Zhang et al.[124] to learn CVs from multiple metadynamics simulations. Building on the local kernels
introduced by Berry and Sauer2ll Banisch et al. and Trstanova et al. devised a general approach to
reweighting transition probabilities based on target measure reweightingﬂmﬁl This approach was
later employed in works by Evans et al., where diffusion map with the Mahalanobis distance is

constructed in z spacel13111132]

Zhang and Chenl!33l derived an alternative technique for reweighting, which Rydzewski et al. 127l Jater
generalized to multiple algorithms employing Markov transition kernels. They demonstrated that the

anisotropic diffusion kernel as can be unbiased as:

G (%1, %)

) () ()

K(Xkaxl) =Tk

where a transition reweighting factor ry; = wjw; incorporates importance weights from enhanced

sampling simulations and p are reweighted density estimates:

P(Xk;) = Zmee(xk;Xm)- (18)

A detailed derivation with possible approximations is given by Rydzewski et al.127] A5 explained in

Sec. II.C, the form of weight depends on the employed enhanced sampling and reweighting
techniques[&l@ﬂ@lﬂi{d@ﬂ‘

Several approximate transition reweighting factors can be obtained depending on the scaling of the
long-time asymptotics of the kernel with the constant o127, This kind of transition reweighting can
be used for diffusion maps227] and deep learning[2331112611127] yye refer to the review by Rydzewski et

alL3 for a detailed discussion.
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This idea was recently explored by Rydzewskill3l who demonstrated that this form of transition
reweighting in diffusion maps can be employed as a feature selection pipeline for further
dimensionality reduction. This is done by leveraging the idea that the partial selection of variables
should have a similar eigenspectrum to configuration space. This extension can provide an
interpretable and explainable description by selecting physically important CVs for the given

process[1341,

For a more general approach to dynamical transition reweighting, not limited to unbiasing transition
probabilities in spatial techniques, see reviews by Chen and Chipot32l which discusses many
reweighting methods for temporal techniques and Keller and Bolhuis[!33l, where reweighting is

examined from the perspective of Markov state models.

Features Hidden Layers CVs
Spectral Map
— Q (Zk, zl)
z = f,(X) e smax Ady,_; ,(Q)

X1

Spectral Gap
o) 1

id Reweighted SE
X, ¢e———min KL (M||Q)
Kullback-Leibler Div.
const M (X, X;)

Figure 2. Learning CVs with spatial techniques. Diagram of a neural network showing the difference
between reweighted stochastic embedding (RSE) and spectral map. RSE estimates transition matrices
M(xy,x;) and Q(z, z) in both x and z spaces, respectively (as x space can consist of variables different
than the microscopic coordinates, we denote it as features). Then, it uses the Kullback—Leibler (KL)
divergence as a loss function to minimize differences between pairs of transition probabilities in x and

z spaces. In contrast, spectral map constructs a transition matrix only in z space. Next, it performs an
eigendecomposition of @) to calculate the spectral gap between neighboring eigenvalues (A\,,_; ,, where
m is the number of states in z space) and maximizes it to improve timescale separation between slow and

fast variables.
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C. Eigendecomposition

In learning algorithms that use a few eigenvectors of the Markov transition matrix to span z space, a

mapping into z space is obtained by solving an eigendecomposition problem:
My, = Mty (19)

where \;, and v, are the eigenvalues and corresponding eigenvectors of the Markov transition matrix
M, respectively. As explained in Sec. IL.B, as a result of the existence of the spectral gap between

neighboring eigenvalues ), slow CVs can be approximated by the following truncated mapping:

z = (>‘1¢13 . '7)\d7;bd)’ (20)

where d is the dimension of z space. The eigenvalues of the Markov transition matrix M are (sorted in

non-ascending order):

A =1>A-2> Ay, (21)
where the eigenvalue Ay corresponds to the equilibrium distribution of the Markov chain given by the
eigenvector 1. The dominant eigenvalues related to the slowest relaxation timescales in the
systeml74] and the fast eigenvalues have a negligible contribution to slow CVs. In the case of

anisotropic diffusion maps, the eigenvalues ) are related to the eigenvalues of the Fokker—Planck

generator yuy, by the relation A, = e #&.

Several techniques use the mapping provided by diffusion maps as an initial guess to improve slow
CVs iteratively. For instance, the eigenvectors of the Markov transition matrix M can serve as a basis

to approximate kinetic quantities such as the transfer operator. This approach was exploited in works
by Boninsegna et all13¢l Noe and Clementil23711381 and more recently by Thiede et al. using a

Galerkin approximation[132l,

Algorithms that use an eigendecomposition to construct z space require an out-of-sample extension
to map samples outside of the dataset. Specifically, for diffusion maps the Nystrom extensionl421[1411
Laplacian pyramids7Z and geometric harmonics2421143] interpolators were used. A detailed

analysis of out-of-sample algorithms was published by Bengio et alllésl

D. Reweighted Stochastic Embedding

Reweighted stochastic embedding (RSE) is a recent framework for the parametric learning of slow

CVs, introduced by Rydzewski et al.l227]] which employs algorithms to construct unbiased Markov
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transition matrices with transition reweighting (Sec. II1.2), allowing for the estimation of CVs from

data collected in enhanced sampling simulations. Building on the work of van Maaten, Hinton, and

Roweis[1431[14611471[148] ' RSE optimizes a loss function to learn the mapping to reduced space.
Specifically, it projects samples into z space using a neural network, while ensuring that the statistical
distance between transition matrices estimated in both configuration space and z space is minimized
(Fig. 2).

The first technique of this framework is stochastic kinetic embedding (StKE), which was proposed by
Zhang and Chenl133l StKE combines modeling a slow manifold with parametric dimensionality
reduction, building upon the reweighted anisotropic diffusion kernel. As such, StKE can learn slow CVs
from biased data sampled in enhanced sampling simulations. In addition, it uses an iterative
procedure incorporating temperate-accelerated MDL4I[150] 16 alleviate the circular dependencyl!33])
allowing the use of this algorithm on the fly in atomistic simulations1331[4Q1(12711151] gybsequently,
Rydzewski and Valsson introduced a RSE technique called multiscale reweighted stochastic
embedding (MRSE)[120] that shares similarities with StKEE271L31] The main difference between StKE
and MRSE is, as in many methods discussed in this review, boils down to using other kernels to
estimate Markov transition matrices. In MRSE, the process of constructing unbiased transition
probabilities from enhanced sampling simulations involves adaptively estimating a kernel in x space
based on information theory principles. In contrast, StKE employs a fixed anisotropic diffusion kernel,

as used in diffusion maps (see Sec. I11.2). This topic is discussed in detail in the review by Rydzewski et

allaLl,

RSE employs building transition matrices in both x and z spaces (Fig. 2). As with many neutral
network-based techniques for learning CVs, x space can comprise variables other than the
microscopic coordinates, which are called features or descriptors. The transition matrix
M constructed in x space remains constant throughout learning, while the matrix @ in z space is
adjusted depending on a neural network that performs dimensionality reduction, i.e., f,,(x) = z. Most
generally, in RSE, a weighted Gaussian mixture is used to construct the transition matrix in

x spacel126l:

) o) (22)

M(Xk,xz)CXZ

=~ " (x1)
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where the sum goes over scale parameters. In z space, the transition matrix can be given, for example,
by a t-distribution kernel1261:

-1

Q(zk,z1) < (1+ (21 — 1)) (23)

RSE minimizes the Kullback-Leibler divergencel132l to learn CVs, which can be interpreted as a
“distance” between probability distributions. Thus, after the training converges, the transition
probabilities in both spaces should be approximately equal. More details about these algorithms can

be found in Refs.[1271(126]

FiP35

i o
|

Figure 3. Free energy landscape of the FiP35 protein constructed from slow CVs learned with spectral map
(right). The slow CVs discriminate between the folded state (FS) and the unfolded state (US), which are
separated by the transition state (TS) near the free energy barrier. The most important physical
interactions in the FiP35 consisting of two S sheets identified by spectral map are shown in blue (left).
[Figure based on Rydzewski, “Spectral Map for Slow Collective Variables, Markovian Dynamics, and
Transition State Ensembles,” J. Chem. Theory Comput. (2024). Copyright 2024 Author, licensed under

Creative Commons Attribution 4.0.]

E. Spectral Map

The first technique devised to maximize timescale separation to find CVs in complex systems was

proposed by Tiwary and Bernel253) and subsequently expanded(254)(255)(156](157) Their technique,
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called spectral gap optimization of order parameters (SGOOP), is based on constructing a transition

matrix using the principles of the maximum caliber framework[1381 Ag opposed to the techniques

reviewed here, SGOOP explicitly uses time information to construct slow CVs.

A recent unsupervised statistical learning technique for learning slow CVs that is also based on
maximizing timescale separation is spectral map, developed by Rydzewskif—li‘)-l. It is modeled using an
overdamped Langevin diffusion in z Space@l. Spectral map proceeds by mapping the dynamics into
z space using a neural network and constructing a Markov transition matrix by row-normalizing the
anisotropic diffusion kernel (Eq. 12), however, from data in z space:

K(zk,zl)

Qe m) = S anam)

(24)

where z = f,,(x) given by the neural network with learnable parameters w. The transition matrix is
then spectrally decomposed to estimate the degree of timescale separation from the spectral gap in its
eigenspectrum. The spectral gap is used as a score function for the neural network and maximized
during learning:

AXn-1m(Q) = Ap—1 = A, (25)
where )\, are the eigenvalues of () sorted in decreasing order and m is the number of metastable states
in the system. As the spectral gap is maximized, z space is adjusted accordingly by improving the

parameters of the neural network. At the end, z space corresponds to slow CVs. A simplified diagram

spectral map and comparison to RSE is given in Fig. 2.

Rydzewski and Gokdemirl28 showed that maximizing timescale separation in spectral map results in
the dynamics in z space with Markovian characteristics. In their work, it was shown that it is possible
to construct a high-quality Markov state model based on the learned slow CVs and estimate kinetics
accurately. In another work, Rydzewski showed that the framework can be easily extended for
learning the transition state ensembles20l (Fig. 3), which is demanding for complex systems due to

the scarcity of transitions between states[1621[1631[164]

Using the transition state ensemble to count transition paths[103] Rydzewskil169l showed that a slow
CV learned by spectral map closely approaches a Markovian limit for overdamped Langevin
dynamics[i‘?-l. Moreover, it was illustrated that spectral maps can estimate the quality of the reduced
representations with commonly used physical descriptors by comparing their spectral gaps. It was

demonstrated that spectral map can be used to construct interpretable reaction coordinates for
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protein folding with a linear model instead of a deep neural network, and they are slower than the

fraction of native contacts or end-to-end distancel109],

F. Enhanced Sampling via Neural Networks

After the training procedure, a neural network representing CVs can be used for the purposes of
ehnanced sampling. To bias such a neural network, a biasing force must be applied in CV space. This
force is equal to the negative derivative of the biasing potential with respect to the CVs, which can be

estimated using the chain rule:

dV(z)

F(x) = == 29 f(x), (26)

where the second term on the right-hand side is automatically computed through backpropagation.
By accumulating the biasing potential in CV space, the neural network can be used to push the system

out of local minima. Such CVs, in the form of a neural network, can be integrated into several advanced

MD simulation codes, such as PLUMED/1661[1671(168](169](170]

We want to underline that there might be more requirements for slow CVs represented by a neural
network (not only limited to spatial techniques). An often overlooked issue that can harm the
convergence of biasing methods is that the neural network may learn a function where Vy f(x) ~ 0 in
basins. According to Darve et al.[82], biasing a CV can be imagined in terms of an object that is pulled or
pushed, where the CV has a “mass” attached to it that is related to the inverse of Vf(x).
Consequently, applying bias to neural networks with V4 f(x) ~ 0 in energy minima might be

inefficient due to the large mass and lead to numerical stability issues in MD simulations.

IV. Summary

Overall, we think further research in spatial techniques will follow by carefully incorporating more
thermodynamical information into ML. Due to rapid developments in physics-informed algorithms,
we expect that the primary effort will be directed toward solving the problem of constructing

interpretable and explainable reaction coordinates for complex systems in chemical physics.

To address this issue, we can examine the theoretical progress in modeling slow dynamics in the

context of timescale separation in CV spacel171172111731[174] By investigating slow dynamics using
overdamped Langevin dynamics in a free-energy landscape with configuration-dependent diffusion

coefficients, we can propose a Markovian interpretation of the physical process. The diffusion tensors,
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which depend on the coordinates, are important for reduced dynamics and can impact the free-energy

landscape by altering transition states and barrier height[173111761117711781(179] To account for this in
spatial techniques, we can incorporate information about them in anisotropic kernels and transition
matrices. Additionally, analyzing spatial techniques from the perspective of spectral graph theory 201l
especially the long-term behavior of Markov chains, the asymptotic rate of convergence to

equilibrium, and mixing ratest1801181] can Jead to improvements.

For spatial techniques to learn from enhanced sampling simulations, slow CVs should be computed
using unbiased Markov matrices through a transition reweighting algorithm, such as those presented
in the review, to capture equilibrium information accurately. It would be interesting to explore the
relationship between the reweighting of Markov transition matrices and dynamical path reweighting,
for example, based on the Girsanov theoremn[1821118311184] ¢ improve sampling and drive it toward
complex physical processes, spatial techniques can be extended with a general iterative learning-
sampling framework where rounds of learning slow CVs (including reweighting) are followed by
biasing using an enhanced sampling technique. Such iterative approaches have already been

implemented using ML to learn from MD simulationst21185111861(13311871[9311881[169](189]

Finally, we underline that apart from spatial techniques, many others can be used to study complex

processes in the fields of chemical physics and MD1211911(1921(1931[1941[1951[1961(1971[1981[1991(200]

[2011(2021(2031[2041[2051[2061(2071(2081[2091[2101[2111[212] A detailed introduction to such ML methods can

be found in recent reviewsl401l411[4210431(4411451[4611471[481[491(501[511(52] vy7e think, however, that

recent results in spatial techniques for learning slow CVs are worthy of further development and could
provide a valuable alternative to temporal techniques for understanding the physics of complex

systems.
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