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This article explores a pair of skew lines in three-dimensional (3D) space using the scalar triple

product (STP), which is a combination of vector operations dot and cross products acting on three

vectors in 3D space. Using STP, we formulate practical theorems not only to determine whether two

distinct lines in 3D space are skew but also to calculate the distance between a pair of skew lines.

Based on the main results, we provide a comparison as evidence to show that our �ndings in this

paper align with the existing literature on related topics. Several examples of skew lines in daily life

and potential applications related to rectilinear dynamics are also presented.
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1. Introduction

Although two lines in a two-dimensional (2D) plane can either coincide, parallel, or intersect, two lines in

a three-dimensional (3D) space can also be skew, in addition to the three possible cases found in the plane

geometry. In 3D geometry, skew lines are a pair of lines that do not intersect and are not parallel to each

other. They are also non-coplanar because the lines do not lie in the same plane [1][2][3].

Skew lines can be found in many real-life situations. For example, a line that is formed by a �oor and a

wall and another line that is formed by a ceiling and a different wall that is perpendicular to the �rst wall,

say, the one with a window in an of�ce room, form a pair of skew lines. Geometrically, this situation can

be represented as a pair of lines through adjacent or opposite edges of a regular tetrahedron.

Another set of examples can be found outside houses or of�ce buildings. Consider our modern cities,

where they feature different types of roads, such as highways and overpasses. They are considered to be

on different levels on the earth’s surface. Notice that two lines on different levels of a structure, like the
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lines painted on a road on an overpass and the lines on the road below, form a set of skew lines, where

they are neither parallel nor intersecting because they exist on different planes. Figure 1 shows additional

examples of skew lines found in everyday life.

Given any arbitrary two lines in    in their parametric forms, determining whether they are skew is

straightforward. First, by comparing whether their direction vectors are parallel and, second, by �nding

parameter values in an overdetermined system. If they do not match, then the lines do not intersect. This

approach can be found in standard textbooks in multivariable calculus [4][5][6].

Although the topic of lines and planes in 3D space is usually presented in conjunction with vectors and

their operations, most textbooks, with notable exceptions like Boas’ book  [7], rarely utilize vector

operations to identify whether two lines are skew or to calculate the shortest distance between them. In

this article, we approach the problems using a vector operation known as the scalar triple product (STP),

sometimes also referred to as triple scalar product (TSP), that is, the dot product of a vector with the cross

product of two other vectors [8][9].

STP is a standard vector operation and has numerous well-established applications in mathematics,

physics, and engineering, such as testing the linear independence and coplanarity of three vectors, to

calculate the volume of a parallelepiped, to determine the �ux integral of a vector �eld across the

parametrically de�ned surface, and to calculate the magnitude of the torque produced by a force at an

angle acting on a lever arm. However, there is relatively little work in formalizing theorems that utilize

STP as a structured tool to verify the skewness of two lines in 3D space.

This article �lls the literature gap by formulating a practical theorem to determine whether a pair of lines

in 3D space is skew. Some of the references in the literature were mentioned to verify our results.

Furthermore, the proposed theorem considers a more general setup for the conditions of such lines in 3D

space.
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Figure 1. Some examples of skew lines in real life. From the top left clockwise direction (color online): The

lines pass through two adjacent lateral hexagonal sides from different longitudinal sides of a bolt. The yellow

median lines of the bridge road on the top and the highway below it. The green lines on the white band run

across the top of the tennis net and the white center line divides the tennis court beneath it. Two red lines in

an of�ce space, one in the middle of the window side and the other on the top of the wall near the ceiling.

Figure courtesy to SplashLearn, Pexels Kindel Media, Pexels Sami Abdullah, and Pexels Pixabay, respectively.

Although some dictionaries mention that the �rst known use of the term ”skew lines” was in the mid-

20th century  [10][11], a body of published literature suggests that the phrase appeared much earlier. For

example, English mathematician Thomas T. Tate de�ned skew lines in his geometry monograph in

1860  [12]. An engineer from Philadelphia, Joseph M. Wilson, mentioned the term once in 1877 when

describing the construction of the Pennsylvania railroad that intersected Belmont Avenue in

Philadelphia, United States [13].

The use of the phrase during the �rst half of the 20th century is also abundant in the literature on solid

geometry, both in textbooks and research articles. In their �rst monograph on projective geometry ever

written in English, Veblen and Young (1910) discussed the properties of skew lines in multiple places in
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their books [14]. Hobbs (1921), Hawkes et al. (1922), Haertter (1930), and Frame (1948) provided a de�nition

of skew lines in their monographs [15][16][17][18].

In particular, Hawkes et al. (1922) demonstrated the construction of a line that is perpendicular to a pair

of skew lines [16] and Hobbs (1921) expanded further by including some theorems related to skew lines,

such as “if two skew lines are perpendicular to each other, then a plane can be drawn through either line

perpendicular to the other”, “through either of two skew lines, one and only one plane parallel to the

other can be drawn”, “between two skew lines, one and only one common perpendicular can be

drawn” [15].

However, an explanation of �nding the distance between a pair of skew lines is found in an engineering

drawing handbook, albeit in the absence of the distance formula  [19]. Similarly, without providing any

formulas, a mathematics dictionary from the 1940s provided a descriptive de�nition for skew lines and

the distance between them [20]. Furthermore, although the notion can be challenging for many students,

Davidson and Pressland (1926) and Green (1941) thoroughly cover the de�nition and calculation of the

angle between two skew lines [21][22].

Hedrick and Ingold (1914) use skew lines as a tool to construct other geometric concepts in 3D space, such

as pencils and doublets [2]. At a more advanced level, Rao (1920) uses skew lines as a fundamental element

in constructing and understanding imaginary elements in geometry, particularly their connection to

imaginary lines and quadric surfaces associated with them  [23]. As one possible application of vector

concepts in analytic geometry, Byrne (1935) derived a formula for the perpendicular distance between

two skew lines where it involves direction angles  [24]. Although the “skew lines” terminology was not

explicitly mentioned, Bell (1938) provided the condition where two lines are coplanar and a formula for

calculating the shortest distance where two lines are not coplanar [25].

The use of the term “skew lines” during the second half of the 20th century and the �rst quarter of the

21st century is abundant. Exhausting all of them in this rather short review article is neither constructive

nor necessary, as many of them are written at an advanced level for specialists in geometry. However,

some notable work is accessible to undergraduate students and secondary school mathematics teachers.

For example, building upon the treatise from Bell (1938), Clarke (1951) algebraically veri�ed the

uniqueness of the shortest distance between a pair of skew lines, which is also their common

perpendicular  [26]. Using the minimization of a two-variable function, Givens (1970) also derived a

necessary condition for the shortest distance between a pair of skew lines [27]. In solid geometry, Smith
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and Henderson (1985) argued that the existence of a tetrahedron depends on the presence of skew lines,

demonstrating that its volume remains constant whenever segments of �xed lengths are moved along a

pair of skew lines [28].

Beyond a pair of skew lines, Viro and Viro (2006) attempted to answer the question of how skew lines can

be arranged in 3D space, writing in the form of an introduction that is accessible to advanced high school

students. Analogously to arranging a bunch of perfectly straight and in�nitely long uncooked spaghetti

noodles, the paper explores whether different arrangements of these lines are truly distinct, or if they can

all be transformed into one another through continuous movements (isotopies) without touching or

becoming parallel [29].

We end this rather long introduction by presenting the organization of this article. The preliminary

section, i.e., Section  2, introduces conventions for notations and some necessary de�nitions. Section  3

follows by presenting the main result of this article, i.e., a theorem that serves as a systematic criterion to

determine whether a given pair of lines in 3D space is skew and a formula to calculate their distance.

Section  4 provides some potential applications beyond geometry and pure mathematics, such as in

maritime navigation and skew bridge construction. Finally, Section 5 concludes our discussion.

2. Preliminaries

In this section, we provide several de�nitions and theorems related to a pair of skew lines and STP in 3D

space.1

De�nition 2.1. (Plane sharing). Let   be the set of all planes in  . For any two lines   and   in  ,

we say that   and  share a plane if and if only if there exists a plane   such that both   and 

 lie on  . The relationship is denoted  .

A ( )R
3

R
3 ℓ1 ℓ2 R

3

ℓ1 ℓ2 α ∈ A ( )R
3 ℓ1

ℓ2 α ∼ℓ1 ℓ2
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Figure 2. Two lines   and   lying on a plane  .

De�nition 2.2. (Skew lines). Two lines   and   in   are skew lines if and only if   and   are neither

parallel nor intersecting. We denote this relationship by  . 2

Note that the binary relation    satis�es the properties of an equivalence relation while    does not.

Furthermore, for any two lines   and  , exactly one of the conditions   or   always holds.

De�nition 2.3. (Dot/scalar product). Let    and    be vectors in  . The

dot/scalar product of   and  , denoted by  , is de�ned as

where   is the angle between   and  .

Alternatively, the dot product is given by

We can verify that the de�nition of the dot product given by equation (1) is equivalent to equation (2).

De�nition 2.4. (Cross product). Let    and    be vectors in  . The cross

product of   and  , denoted by  , is a vector perpendicular to both   and  , de�ned as [30]

where   is the angle between   and  , and   is a unit vector perpendicular to both   and  , following the

right-hand rule.

Alternatively, in component form, the cross product is given by

ℓ1 ℓ2 α

ℓ1 ℓ2 R
3 ℓ1 ℓ2

≁ℓ1 ℓ2

∼ ≁

ℓ1 ℓ2 ∼ℓ1 ℓ2 ≁ℓ1 ℓ2

= ( , , )u ⃗  u1 u2 u3 = ( , , )v ⃗  v1 v2 v3 R
3

u ⃗  v ⃗  ⋅u ⃗  v ⃗ 

⋅ := cosα,u ⃗  v ⃗  ∣∣u ⃗ ∣∣ ∣∣v ⃗ ∣∣ (1)

α u ⃗  v ⃗ 

⋅ = + + .u ⃗  v ⃗  u1v1 u2v2 u3v3 (2)

= ( , , )u ⃗  u1 u2 u3 = ( , , )v ⃗  v1 v2 v3 R
3

u ⃗  v ⃗  ×u ⃗  v ⃗  u ⃗  v ⃗ 

× := sin(α) ,u ⃗  v ⃗  ∣∣u ⃗ ∣∣ ∣∣v ⃗ ∣∣ n̂ (3)

α u ⃗  v ⃗  n̂ u ⃗  v ⃗ 
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We can verify that the de�nition of the cross product given by equation (3) is equivalent to equation (4).

Based on this de�nition, we obtain the following proposition:

Corollary 2.5. Let   and   be vectors in  . From De�nition 2.4, the magnitude of

the cross product   gives the area of the parallelogram   spanned by   and  :

where    is the angle between    and  . In particular, when    and    are linearly dependent, the area of the

parallelogram is zero, i.e.,  .

De�nition 2.6. (Determinant). Let    be vectors in  , and 

  be vectors in  . The determinant of    or 

 matrices formed by these vectors is de�ned as follows:

and

These determinants are related to the area (in  ) and the volume (in  ) by representing the signed area

and volume of a parallelogram and parallelepiped, respectively, formed by the vectors that form rows (or

columns) of the matrix, as discussed in [31]. Consequently, we obtain the following theorem:

Theorem 2.7. Let   be the vectors de�ned in De�nition 2.6. Then, the area   and volume   spanned

by these vectors are given by their corresponding determinants:

respectively, where the absolute value ensures that the measure is non-negative. Speci�cally, the area    and

volume   are described by the following sets:

which represents the parallelogram spanned by   and  , and

× = ( − , − , − ).u ⃗  v ⃗  u2v3 u3v2 u3v1 u1v3 u1v2 u2v1 (4)

= ( , , )u ⃗  u1 u2 u3 = ( , , )v ⃗  v1 v2 v3 R
3

×u ⃗  v ⃗  A u ⃗  v ⃗ 

× = Area(A) = sinα,∣∣u ⃗  v ⃗ ∣∣ ∣∣u ⃗ ∣∣ ∣∣v ⃗ ∣∣

α u ⃗  v ⃗  u ⃗  v ⃗ 

Area(A) = 0

= ( , ), = ( , )a ⃗  a1 a2 b ⃗  b1 b2 R
2

= ( , , ), = ( , , ), = ( , , )u ⃗  u1 u2 u3 v ⃗  v1 v2 v3 w ⃗  w1 w2 w3 R
3 2 × 2

3 × 3

det[ ] = det[ ] := − ,
a ⃗ 

b ⃗ 
a1

b1

a2

b2

a1b2 a2b1

det = det := det[ ] − det[ ] + det[ ].
⎡

⎣
⎢
u ⃗ 

v ⃗ 

w ⃗ 

⎤

⎦
⎥

⎡

⎣
⎢
u1

v1

w1

u2

v2

w2

u3

v3

w3

⎤

⎦
⎥ u1

v2

w2

v3

w3

u2
v1

w1

v3

w3

u3
v1

w1

v2

w2

R
2

R
3

, , , ,a ⃗ b ⃗ u ⃗  v ⃗ w ⃗  A V

Area(A) = det[ ]   and  Volume(V) = det ,
∣

∣

∣
∣

a ⃗ 

b ⃗ 

∣

∣

∣
∣

∣

∣

∣
∣

⎡

⎣
⎢
u ⃗ 

v ⃗ 

w ⃗ 

⎤

⎦
⎥

∣

∣

∣
∣

A

V

A = {x + y ∣ (x,y) ∈ [0, 1 },a ⃗  b ⃗  ]2

a ⃗  b ⃗ 
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which represents the parallelepiped spanned by  ,  , and  , respectively.

De�nition 2.8. (Scalar triple product, STP). Let  ,  , and    be vectors in  . The scalar triple product

 is de�ned as

that is, the scalar product of the cross product of   and   with  .

Ostermann et al.  [31]  also note that the STP of given vectors is equivalent to the volume of the

parallelepiped spanned by those vectors.

Corollary 2.9. Let   be vectors in  . Then,

here,   represents the parallelepiped spanned by the vectors  ,  , and  .

3. Verifying skew lines and calculating their distance

In this section, we verify using STP whether a pair of lines in    is skew and provide a formula to

calculate their shortest distance.

Theorem 3.1. (Skew Lines Test). Suppose there are two lines    and    in  . Let    and    be directional

vectors of   and  , respectively. Let   be a point on   and   be a point on  , then

and

Proof. We start by proving equation (5). First, assume  .

Consider two cases:   and   are parallel to each other, and   and   are not parallel.

Case 1.

 and   are parallel. Clearly, we have

V = {x + y + z ∣ (x,y, z) ∈ [0, 1 },u ⃗  v ⃗  w ⃗  ]3

u ⃗  v ⃗  w ⃗ 

u ⃗  v ⃗  w ⃗  R
3

T [ , ; ]u ⃗  v ⃗ w ⃗ 

T [ , ; ] := ( × ) ⋅ ,u ⃗  v ⃗ w ⃗  u ⃗  v ⃗  w ⃗ 

u ⃗  v ⃗  w ⃗ 

, ,u ⃗  v ⃗ w ⃗  R
3

T [ , ; ] = Volume(V) = det ,u ⃗  v ⃗ w ⃗ 

∣

∣

∣
∣

⎡

⎣
⎢

u ⃗ 

v ⃗ 

w ⃗ 

⎤

⎦
⎥

∣

∣

∣
∣

V u ⃗  v ⃗  w ⃗ 

R
3

ℓ1 ℓ2 R
3 u1

→
u2
→

ℓ1 ℓ2 P1 ℓ1 P2 ℓ2

T [ , ; ] = 0 ⇔ ∼ ,u1
→

u2
→

P1P2

→
ℓ1 ℓ2 (5)

T [ , ; ] ≠ 0 ⇔ ≁ .u1
→

u2
→

P1P2

→
ℓ1 ℓ2 (6)

∼ℓ1 ℓ2

ℓ1 ℓ2 ℓ1 ℓ2

ℓ1 ℓ2

T [ , ; ] = ( × ) ⋅ = 0 ⋅ = 0.u1
→

u2
→

P1P2

→
u1
→

u2
→

P1P2

→
P1P2

→
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Case 2.

 and   are not parallel.

By De�nition 2.1, there exists a plane   containing both lines   and  .

If  , then  , which directly yields

Thus, we shall let  . Observe that    is perpendicular to  , and since    lies on  , it

follows that   is also perpendicular to  . Hence,

To prove the converse, assume   Then,

Let    be the plane containing    and  . Since    is perpendicular to    and    is

perpendicular to   by equation (7), it follows that   lies in  . Therefore,   and   lie on

the same plane, implying  .

Next, we are going to prove equation (6). Assume  . Let    and    be points on line    and  ,

respectively such that vector    is perpendicular to both   and  . Thus, there exist real numbers 

 such that

Therefore,

The equation (10) comes from the fact that  . Notice that both 

 and   are both nonzero vectors and are not parallel to each other. Therefore,   is also a nonzero

vector. Moreover, both   and   are parallel to each other; this results in:

ℓ1 ℓ2

α ∈ A ( )R
3 ℓ1 ℓ2

=P1 P2 = 0P1P2

→

T [ , ; ] = 0.u1
→

u2
→

P1P2

→

≠P1 P2 ×u1
→

u2
→

α P1P2

→
α

×u1
→

u2
→

P1P2

→

T [ , ; ] = 0.u1
→

u2
→

P1P2

→

T [ , ; ] = 0.u1
→

u2
→

P1P2

→

0 = ( × ) ⋅ = ⋅ ( × ).u1
→

u2
→

P1P2

→
u1
→

u2
→

P1P2

→
(7)

ζ ∈ A ( )R
3 u2

→
P1P2

→
×u2

→
P1P2

→
ζ u1

→

×u2
→

P1P2

→
u1
→

ζ , ,u1
→

u2
→

P1P2

→

∼ℓ1 ℓ2

≁ℓ1 ℓ2 Q1 Q2 ℓ1 ℓ2

Q1Q2

→
u1
→

u2
→

s, t

= + s + t .P1P2

→
Q1Q2

→
u1
→

u2
→

T [ , ; ]u1
→

u2
→

P1P2

→
= T [ , ; + s + t ]u1

→
u2
→

Q1Q2

→
u1
→

u2
→

= ( × ) ⋅ ( + s + t )u1
→

u2
→

Q1Q2

→
u1
→

u2
→

= ( × ) ⋅ .u1
→

u2
→

Q1Q2

→

(8)

(9)

(10)

( × ) ⋅ = ( × ) ⋅ = 0u1
→

u2
→

u1
→

u1
→

u2
→

u2
→

u1
→

u2
→

×u1
→

u2
→

Q1Q2

→
×u1

→
u2
→

T [ , ; ] ≠ 0.u1
→

u2
→

P1P2

→
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To prove the converse, assume  . In order to prove  , by De�nition 2.2 it is

suf�cient to show that   and   are not parallel to each other and do not intersect each other.

First, assume   and   are parallel. Then there exists   such that  . Then,

which contradicts our initial assumption. Thus,   and   are not parallel, yielding   and   not parallel

to each other.

Next, assume   and   intersect each other. Then, there exist   such that

Substituting equation (12) into the triple scalar product yields

The �nal result   comes from the fact that the cross product of a vector with itself is the zero vector  ,

and the dot product of any vector with the zero vector is  . Thus, we have

which contradicts our initial assumption. Therefore,   and   do not intersect each other.

Hence, we conclude  . 

Observe that equation (5) provides a stronger statement than the one formulated by Gellert et al.  [32].

Moreover, our proof does not rely on the formula for the distance between two skew lines, whereas

Gellert et al.’s proof explicitly uses it.

Theorem 3.2. (Distance between two skew lines). Suppose  . Let   and   be directional vectors of 

  and  , respectively. Let    and    be any points on    and  , respectively. Then, the shortest distance

between   and  , denoted by  , is given by:

T [ , ; ] ≠ 0u1
→

u2
→

P1P2

→
≁ℓ1 ℓ2

ℓ1 ℓ2

u1
→

u2
→

c ∈ R = cu2
→

u1
→

T [ , ; ]u1
→

u2
→

P1P2

→
= T [ , c ; ]u1

→
u1
→

P1P2

→

= ( × c ) ⋅u1
→

u1
→

P1P2

→

= 0 ⋅ = 0,P1P2

→

u1
→

u2
→

ℓ1 ℓ2

ℓ1 ℓ2 s, t ∈ R

+ sOP1
→

u1
→

P1P2

→
= + tOP2

→
u2
→

= s − t .u1
→

u2
→

(11)

(12)

T [ , ; ]u1
→

u2
→

P1P2

→
= T [ , ; s − t ]u1

→
u2
→

u1
→

u2
→

= ( × ) ⋅ (s − t )u1
→

u2
→

u1
→

u2
→

= s ⋅ ( × ) − t ⋅ ( × )u1
→

u1
→

u2
→

u2
→

u1
→

u2
→

= 0.

0 0

0

T [ , ; ] = 0,u1
→

u2
→

P1P2

→

ℓ1 ℓ2

≁ℓ1 ℓ2 □

≁ℓ1 ℓ2 u1
→

u2
→

ℓ1 ℓ2 P1 P2 ℓ1 ℓ2

ℓ1 ℓ2 d( , )ℓ1 ℓ2
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Proof. Let   and   be points on lines   and  , respectively, such that vector   is perpendicular to

both   and  .    is nothing other than   (Figure 3). Since   and   are parallel,

we have:

Thus, by equation (10) and (13):

Finally, equation (14) yields

as desired. 

Figure 3. The shortest distance between two skew lines   and   is 

Corollary  2.9 allows us to compute the shortest distance between    and    via the determinant of a

matrix:

d ( , ) = .ℓ1 ℓ2

T [ , ; ]
∣

∣
∣ u1

→
u2
→

P1P2

→ ∣

∣
∣

×∣
∣u1
→

u2
→∣

∣

Q1 Q2 ℓ1 ℓ2 Q1Q2

→

u1
→

u2
→

d ( , )ℓ1 ℓ2
∣

∣
∣Q1Q2

→ ∣

∣
∣ ×u1

→
u2
→

Q1Q2

→

( × ) ⋅ = ± × .u1
→

u2
→

Q1Q2

→ ∣
∣u1
→

u2
→∣

∣
∣

∣
∣Q1Q2

→ ∣

∣
∣ (13)

T [ , ; ] = ( × ) ⋅ = × .
∣

∣
∣ u1

→
u2
→

P1P2

→ ∣

∣
∣

∣

∣
∣ u1

→
u2
→

Q1Q2

→ ∣

∣
∣ ∣

∣u1
→

u2
→∣

∣
∣

∣
∣Q1Q2

→ ∣

∣
∣ (14)

= ,
∣

∣
∣Q1Q2

→ ∣

∣
∣

T [ , ; ]
∣

∣
∣ u1

→
u2
→

P1P2

→ ∣

∣
∣

×∣
∣u1
→

u2
→∣

∣

□

ℓ1 ℓ2 | |Q1Q2

→

ℓ1 ℓ2
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Proposition 3.3. Let  ,  ,  ,  ,  , and    be as de�ned in Theorem 3.2. Then, the shortest distance

between   and   is given by

Ostermann et al.  [31]  provide an interesting perspective in calculating the distance between two skew

lines using the concept of the volume of a parallelepiped. Consider the lines    and    with directional

vectors   and  , respectively. Let   and   be points on the lines   and  , respectively. By Theorem

(2.7), the volume   of the parallelepiped spanned by the vectors   and   is given by

Moreover, according to Corollary 2.5, the base of this parallelepiped has an area   of  , as shown

in the right diagram of Figure 4. Therefore, comparing equation (15) with the formula for the volume of a

parallelepiped, i.e.,  , we obtain the following expression:

This height    is exactly the shortest distance   between the skew lines, and thus the preceding

proposition follows. From the preceding theorem, we obtain the following corollary.

Corollary 3.4. Let  , and   be as de�ned in Theorem 3.2. The shortest distance between   and 

 can be expressed as

where   is the unit vector of  .

ℓ1 ℓ2 u1
→

u2
→

P1 P2

ℓ1 ℓ2

d ( , ) = det .ℓ1 ℓ2
1

×∣
∣u1
→

u2
→∣

∣

∣

∣

∣
∣
∣
∣

⎡

⎣

⎢⎢
⎢

u1
→

u2
→

P1P2

→

⎤

⎦

⎥⎥
⎥

∣

∣

∣
∣
∣
∣

ℓ1 ℓ2

u1
→

u2
→

P1 P2 ℓ1 ℓ2

V , ,u1
→

u2
→

P1P2

→

Volume(V) = det .

∣

∣

∣
∣
∣
∣

⎡

⎣

⎢⎢
⎢

u1
→

u2
→

P1P2

→

⎤

⎦

⎥⎥
⎥

∣

∣

∣
∣
∣
∣

(15)

A ×∣
∣u1
→

u2
→∣

∣

Volume(V) = Area(A) ⋅ h

h = det .
1

×∣
∣u1
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∣
∣
∣
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⎢
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→
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→

⎤

⎦

⎥⎥
⎥

∣

∣

∣
∣
∣
∣
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→
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∣
∣

=n̂
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∣
∣
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Figure 4. The projections of   and   onto   and  , respectively, from the left diagram form a

parallelepiped spanned by the directional vectors  ,  , and   as shown in the right diagram.

Observe that this expression agrees with the one formulated in [32][33] even though we do not provide an

explicit expression for the line equations in parametric form. Furthermore, Boas  [7]  speci�cally

mentioned the notion behind selecting arbitrary points   and    in her work and computing the dot

product of   with its normal vector  . Figure 3 shows that the length of   is the shortest distance

between two skew lines in 3D space and the vector   is perpendicular to both lines   and  [32].

4. Application

In the context of navigating submarines under the sea, if two submarines move in different directions

(e.g., not parallel) without colliding with each other, their journey lines can be considered a pair of skew

lines in 3D space. The Skew Lines Test (Theorem 3.1) can be deployed to determine whether the paths of

two submarines will collide by expressing each journey line as a vector equation. We can check whether

the journey lines that represent the submarines’ rectilinear dynamics intersect at some point despite

operating in the same area.

Furthermore, given the non-colliding journey lines of the two submarines, the shortest distance between

these two journey lines can be calculated using the distance formula between two skew lines (Theorem

3.2). Having this knowledge is particularly useful in route planning to avoid journey lines that are too

close to each other or any potential hazards.

However, because the Earth is round, the journey lines of a submarine over long distances should ideally

be mapped onto a spherical surface, which limits the applicability of this theorem in real-world

navigation. This shortcoming arises because the theorem assumes a 3D space, whereas the actual

ℓ1 ℓ2 P1 P2

u1
→

u2
→

P1P2

→

P1 P2

P1P2

→
n̂ Q1Q2

→

Q1Q2

→
ℓ1 ℓ2
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navigational space is affected by the Earth’s curvature. This issue becomes signi�cant only for

suf�ciently long journey paths, as noted in some studies, e.g., [34]. For short journey paths, however, the

effect of the Earth’s curvature is negligible due to the relatively small size of submarines compared to the

vast scale of the Earth. In such cases, we can consider the journey lines as straight lines and apply the

Skew Line Test.

A similar geometric framework applies in civil engineering, particularly in the design of skew bridges.

Gregory [35] discussed the case of two bridges forming a pair of skew lines with different heights, which

is a relatively straightforward scenario when the two bridges cross each other at an orthogonal angle (

). However, complexity arises when the bridges intersect at a nonperpendicular angle, i.e., either an

acute or obtuse angle. The application of Theorem 3.1 can be implemented in the following manner.

Figure 5. An example of skew bridge construction adopted by Gregory [35] near Gospel Oak station, a ward

adjacent to Kentish Town in the London Borough of Camden, United Kingdom. The railway tracks heading in

the northeast and southeast directions are the Suffragette (heading to Barking) and Mildmay (heading to

Stratford) Overgrounds, respectively. The road beneath them is Gordon House Road. Figure courtesy of Google

Maps.

Let    be a straight line with directional vector  . For any curve  , we de�ne the directional vector

based on the tangent at arbitrarily chosen points, forming a sequence of directional vectors  ,

where    represents a set of arbitrary points in  , as shown in the diagram depicted in Figure  6. In

90∘

ℓ1 u1
→

ℓ′
2

{ }u2,λ
→

λ∈Λ

Λ ℓ′
2
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particular, we use the notation    instead of the standard    to emphasize that it is not a straight line.

Note that Figure 6 illustrates the sequence of directional vectors   for  .

By construction, all directional vectors    of    represent the direction of a straight line    that is

locally tangent to   at the given point. Since   for all  , it follows that for any pair of points 

 and   on   and  , respectively, Theorem 3.1 guarantees

Figure 6. An illustration of an aerial view of two non-orthogonal skew bridges represented by line, curve, and

vectors based on Figure 5. The blue line and red curve corresponds to Gordon House Road and Suffragette

line, respectively.

Furthermore, by Theorem 3.2, we can deduce that the distance between   and   is given by

This formula holds for any choice of  , which means that the distance formula (16) remains invariant

regardless of which directional tangent vector is chosen.

Among the arbitrary points in  , there exists a particular    such that the directional vector 

 forms an angle   with  , satisfying

In particular, the second subscript in   corresponds to   in Figure 6.

ℓ′
2 ℓ2

{ }u2,λ
→

λ∈Λ
Λ = {1, 2, 3, 4, 5, 6, 7}

u2,λ
→

ℓ′
2 ℓ2,λ

ℓ′
2 ≁ℓ2,λ ℓ1 λ ∈ Λ

P1 P2 ℓ1 ℓ′
2

T [ , ; ] ≠ 0, ∀λ ∈ Λ.u1
→

u2,λ
→

P1P2

→

ℓ1 ℓ′
2

d ( , ) = .ℓ1 ℓ2,λ

T [ , ; ]
∣

∣
∣ u1

→
u2
→

P1P2

→ ∣

∣
∣

×∣
∣u1
→

u2,λ
→ ∣

∣

(16)

λ ∈ Λ

ℓ′
2 ∈ Λλ′

u2,λ′
→

α u1
→

cosα = .
⋅u1

→
u2,λ′
→

∣
∣u1
→∣

∣
∣
∣u2,λ′

→ ∣
∣

u2
→

= 3λ′
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5. Conclusion

This article reviews some characteristics of skew lines in 3D space, discusses how to verify their

skewness, and presents a formula to calculate the shortest distance between them. Using STP, we present

an old subject in solid geometry in connection to basic vector operations of the scalar and vector

products. This systematic criterion for determining whether a given pair of lines is skew is convenient to

implement and simpli�es the calculation process.

Although this method is effective for lines in three-dimensional space, it faces some limitations when

applied to real-world navigation systems, where the Earth’s curvature must be considered. Incorporating

Earth’s curvature into the model poses a signi�cant dif�culty, particularly for long-distance navigation.

For short-distance navigation, the curvature effect can be ignored because of the relatively small scale of

submarines compared to the Earth’s size. In such cases, the Skew Lines Theorem can still be effectively

applied as if the journey paths were straight. Alternatively, if we do not want to assume the paths are

straight, the skew bridge con�guration provides an example of its application under such conditions.

This presents an opportunity for future work to extend the current theorem to accommodate the Earth’s

spherical nature. One potential direction for development is to adapt the theory from geodesic lines,

which represent the shortest paths between two points on a sphere [36].

Footnotes

1 To maintain clarity, we will use the notation    when referring speci�cally to three-dimensional

Euclidean space within de�nitions, theorems, propositions, and corollaries. In broader discussions, we

will use the term “3D space.” We trust that the readers will �nd this distinction helpful in understanding

the intended level of formality and mathematical precision within each context.

2 For brevity, when a pair of lines   and   are established as skew, we may sometimes use “skew” as an

adjective (e.g., “the skew con�guration”). In such cases, it should be clear from the context that the

previously de�ned binary relation for skew lines is applied.
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