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This study evaluates the limits of machine learning profitability in the English Premier League betting

market (2000–2021). Using a rigorous Walk-Forward Validation approach to prevent look-ahead bias, we

tested three standard algorithms (XGBoost, LightGBM, and Random Forest) against the efficient market

consensus. While the models achieved statistical distinctness from bookmaker odds (confirmed via

Diebold-Mariano tests), they failed to generate consistent risk-adjusted returns. Our analysis isolates two

drivers for this failure: (1) Alpha Decay, where the predictive edge dissipated significantly post-2015, and

(2) Calibration Error (ECE   0.11), where model overconfidence caused standard risk-management

strategies like the Kelly Criterion to increase bankruptcy risk rather than wealth. These findings suggest

that in mature prediction markets, ”Accuracy” is a misleading metric, and Probability Calibration is the

primary barrier to profitability.
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1. Introduction

Predicting the future is the central goal of data science. However, not all datasets are created equal. Some are

static, waiting to be solved, while others are ”adversarial”—meaning there is an opponent on the other side

actively trying to prevent correct prediction. Sports betting provides a laboratory for studying these

adversarial environments. Unlike the stock market, which acts as a continuous flow of prices, a sports match

has a definite start and end. The ”price” (the odds) is set by bookmakers who are highly motivated to be

accurate. If a predictive model can consistently beat these odds, it proves that the market has a leak—an

inefficiency that can be exploited. Conversely, if a sophisticated model cannot make a profit, it suggests the

market has become ”efficient,” meaning the price already reflects all available information.
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This paper investigates the evolution of this efficiency. While early research often found small cracks in the

bookmakers’ armor, we ask: ”How has the market learned to beat machine learning?”

To answer this, we applied three machine learning architectures to twenty-one years of English Premier

League football data (2000–2021). Our approach was strictly historical. We did not let the models ”peek” at

the future; we trained them season by season, exactly as a data scientist would have done in real time.

The results indicate a structural break in market efficiency. We found that while complex algorithms are

indeed distinct from the bookmaker’s odds—meaning they have their own ”opinion”—they are no longer

profitable. Our analysis reveals a clear timeline: strategies that generated reliable profits in the mid-2000s

slowly degraded until the edge effectively evaporated around 2015. Furthermore, we identified a critical flaw

in how these models operate. While they are often correct about who will win, they are consistently

overconfident about their chances. This gap between confidence and reality—known as calibration error—is

what ultimately causes financial strategies to fail in a modern, efficient market.

2. Related Work and Background

Before detailing our experiments, it is necessary to contextualize our findings within the broader literature

of sports economics and statistical modeling. While the application of modern Machine Learning to sports

betting is a relatively new field, it rests on two well-established pillars of research: the economic theory of

Efficient Markets and the statistical problem of Probability Calibration.

2.1. The Efficient Market and the Strategic Bookmaker

The primary obstacle to profitable prediction is the Efficient Market Hypothesis (EMH). Originally proposed

for financial markets, the theory suggests that asset prices already contain all known information, making

consistent profit impossible without inside information  [1]. In the specific context of sports, Sauer (1998)

refined this into the ”Efficient Forecast Hypothesis,” arguing that wagering markets are efficient if the

closing odds are unbiased predictors of match outcomes [2].

However, sports betting markets differ from financial markets in one critical way: the presence of an active

opponent. Levitt (2004) argues that bookmakers are not merely passive market-makers but ”adversarial

agents.” They are highly skilled at setting prices that not only reflect true probabilities but also exploit

human biases—such as the ”favorite-longshot bias”—to maximize their own profit while minimizing risk [3]

[4]. This creates a strategic environment where a predictive model is not just solving a math problem, but

battling an optimized pricing algorithm.
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Early research often found small cracks in this armor. Studies from the 1990s and early 2000s identified

persistent inefficiencies  [5][6]. However, as our study aims to demonstrate, the gap between ”market

efficiency” and ”model accuracy” has closed significantly in the big-data era.

2.2. From Statistical History to Calibration Errors

To beat these efficient markets, researchers initially relied on parametric statistical models. The

foundational work by Dixon and Coles (1997) established that simple averages are insufficient; models must

account for time-decay, weighting recent match results more heavily than older ones  [7]. This concept of

”recent form” remains a standard feature in modern engineering, including our own.

As the field moved from statistical models to Machine Learning (e.g., Random Forests and Neural Networks),

the metric for success shifted. In standard classification tasks, we optimize for Accuracy. However, recent

literature argues that in betting environments, Accuracy is a misleading metric. Wheatcroft (2020)

demonstrated that a strategy’s profitability is far more sensitive to ”Calibration Error” than to raw predictive

accuracy [8].

This distinction is critical. If a model predicts a 60% probability of a win, but the event occurs only 50% of

the time, the model is ”miscalibrated” [9]. Walsh and Joshi (2024) recently confirmed that when using risk-

management strategies like the Kelly Criterion [10], calibration-optimized models significantly outperform

accuracy-optimized ones [11]. If a model overestimates its own certainty, the Kelly criterion will command it

to bet too aggressively, transforming a potentially winning strategy into a losing one.

3. Methodology and Data

To ensure our results were robust, we utilized a testing method that strictly followed the flow of time,

preventing the common mistake of using future data to predict the past.

3.1. The Dataset: English Premier League (2000–2021)

Our primary dataset covers twenty-one seasons of English top-flight football  [12]. The original raw data

contained detailed match statistics and odds from multiple bookmakers (including Bet365, William Hill, and

VC Bet).

To create a consistent input for the models, we performed the following preprocessing steps:

1. Market Consensus (Odds): We utilized the average odds across all available major bookmakers for

Home Win, Draw, and Away Win. This ensures the model is training on the global market opinion
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rather than a single provider’s price.

2. Team Fundamentals (Feature Engineering): We engineered rolling window features representing each

team’s form over the Last 5 Games (L5). Specifically, we computed L5 averages for Points, Goals

Conceded, Shots, Shots on Target, and Corners. This transforms raw match results into trend metrics.

Date Home Away FTR HO DO AO H_Pts H_GC H_S H_ST H_C A_Pts A_GC A_S A_ST A_C

2001-

08-

20

Everton Tottenham D 2.25 3.20 2.75 3.0 1.0 12.0 9.0 4.0 1.0 0.0 8.0 2.0 6.0

2001-

08-21
Ipswich Derby H 1.66 3.30 4.50 0.0 1.0 10.0 4.0 1.0 3.0 1.0 7.0 3.0 4.0

2001-

08-21
Bolton Middlesbr. H 2.20 3.25 2.75 3.0 0.0 18.0 8.0 5.0 0.0 4.0 6.0 2.0 2.0

2001-

08-21
Arsenal Leeds A 1.72 3.25 4.20 3.0 0.0 14.0 9.0 6.0 3.0 0.0 16.0 6.0 10.0

2001-

08-

22

Blackburn Man Utd D 4.50 3.30 1.66 0.0 2.0 14.0 4.0 10.0 3.0 2.0 12.0 6.0 6.0

2001-

08-

22

Fulham Sunderland H 1.90 3.20 3.50 0.0 3.0 8.0 5.0 4.0 3.0 0.0 12.0 6.0 1.0

2001-

08-25
Arsenal Leicester H 1.22 5.00 9.50 1.5 1.0 14.0 7.0 8.0 0.0 5.0 6.0 1.0 3.0

2001-

08-25
Blackburn Tottenham H 2.30 3.10 2.75 0.5 2.0 13.0 4.5 6.5 1.0 0.5 7.5 2.0 3.0

2001-

08-25
Everton Middlesbr. H 2.00 3.10 3.30 2.0 1.0 15.0 10.0 6.0 0.0 2.5 8.5 3.0 2.0

2001-

08-25
Fulham Derby D 1.50 3.40 6.00 1.5 1.5 10.5 5.0 6.0 1.5 2.0 4.5 2.5 3.0

Table 1. Snapshot of Transformed Input Data (First 10 Rows)
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Note: FTR = Full Time Result. HO/DO/AO = Home/Draw/Away Odds (Averaged). H_/A_ = Home/Away Team L5

Rolling Averages. Pts=Points, GC=Goals Conceded, S=Shots, ST=Shots on Target, C=Corners.

3.2. Model Specifications

We treated the sports betting problem as a multi-class classification task with three target classes: Home

Win ( ), Draw ( ), and Away Win ( ). The feature set consisted of 13 variables: 3 market-implied odds and

10 fundamental team metrics. We utilized three standard, widely accessible machine learning architectures:

XGBoost: Trained using the multi:softprob objective to output probabilities, using mlogloss as the

evaluation metric.

LightGBM: Trained using the multiclass objective with Gradient Boosting Decision Trees (GBDT).

Random Forest: Constructed as a bagging ensemble of 100 trees using Gini Impurity for split quality.

We intentionally abstained from extensive hyperparameter grid-searching. The goal was to test whether the

information contained in the features was sufficient for a standard algorithm to extract an edge, rather than

testing the limits of hyperparameter optimization.

3.3. Validation Protocol: Preventing Look-Ahead Bias

The most common error in forecasting studies is ”cheating” by shuffling the data. If a model is trained on

data from 2010 and 2020 mixed together to predict a game in 2015, the model implicitly learns the future

trends.

To avoid this, we used a ”Walk-Forward” approach:

We started by training the model only on data from 2000 to 2005.

We then asked it to predict the games in 2006.

After 2006 finished, we added that data to the training set and asked it to predict 2007.

This process was repeated season by season until 2021. This mimics exactly how a real-world analyst

operates: making decisions based only on what happened yesterday, never on what will happen tomorrow.

4. Results and Analysis

We analyzed the performance of three machine learning models—XGBoost, LightGBM, and Random Forest

—over the 15-year validation period (2006–2021). The results reveal a disconnect between predictive

accuracy and financial success.

H D A
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Model Accuracy ROI (%) Total PnL ($) Brier Score

XGBoost 51.07% +0.29% +$1,611 0.638

LightGBM 51.79% -1.10% -$6,092 0.609

Random Forest 52.83% -2.01% -$11,049 0.586

Table 2. Walk-Forward Validation Results (2006-2021)

As shown in Table 2, the model with the highest raw accuracy (Random Forest, 52.83%) generated the

largest financial loss (-$11,049). Conversely, XGBoost, which had the lowest accuracy (51.07%), was the only

model to generate a profit. This validates the ”Accuracy Paradox” in betting markets: optimizing for the

frequency of wins often leads to betting on ”safe” favorites with poor value, resulting in negligible returns or

a slow bleed of capital.

4.1. Are the Models Just Copying the Odds?

A primary concern was whether the models were simply mimicking the bookmaker’s probabilities to

minimize error. To test for informational independence, we utilized the Diebold-Mariano test [13].

The test returned significant statistics for both XGBoost (11.58,  ) and LightGBM (8.74, 

). Statistically, this confirms that the models are distinct from the market; they are identifying

unique patterns in the Rolling Window (L5) features rather than just regressing to the implied odds.

However, distinctness does not imply superiority. When comparing the best model (XGBoost) against a

common ”Bet on Favorite” strategy, the difference yielded a p-value of 0.054. Strictly speaking, this falls just

short of the 0.05 threshold for statistical significance. This suggests that while the AI found a signal, that

signal was not strong enough to decisively outperform a simple heuristic over the full sample size.

4.2. The ”Draw” Blind Spot

To understand why high accuracy failed to translate into robust profits, we analyzed the specific betting

behaviors of the models (Fig. 1).

p < 0.0001

p < 0.0001
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Figure 1. (a) The Confusion Matrices reveal a systemic failure to predict Draws (center column). (b) The Bet

Distribution shows the models compensating for this uncertainty by over-betting on the Home Team (right

bars), effectively ”chasing” the home-field advantage.

The Confusion Matrices (Fig. 1(a)) reveal a flaw: the models are ”risk-averse.” They almost never successfully

predict a Draw, which is typically the outcome with the highest variance but also significant value. Instead,

as seen in Fig. 1(b), they aggressively bet on the Home Team. By avoiding the risky Draw calls, the models

artificially inflate their accuracy (since Home wins are common) but miss the high-odds opportunities

necessary to overcome the bookmaker’s margin.

4.3. The Timeline of Profitability (Alpha Decay)

While the models were distinct, they were not consistently profitable. When we broke down the returns year

by year, a distinct pattern emerged (Fig. 2). This phenomenon is often called ”Alpha Decay”—the tendency

for a profitable strategy to stop working as the market adapts.

Phase I: Market Inefficiency (2006–2014): In the earlier years of our simulation, the XGBoost model

showed strong performance. It generated positive returns in several seasons, peaking with an +18.31%

return on investment in 2014. During this era, the ”edge” was real. Crucially, the model’s advantage

during this period was large enough to overcome the ”vigorish” (the bookmaker’s built-in fee of approx.

4%–7%), resulting in net profit.

Phase II: Market Correction (2015–2021): Around 2015, the trend reversed. The returns became highly

volatile and failed to sustain growth, suffering significant drawdowns in 2017 (-15.10%) and 2020

(-13.24%). While the models still found patterns, the signal was too weak to overcome the bookmaker’s

margin.
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This timeline aligns with the broader modernization of sports betting. As bookmakers integrated their own

advanced algorithms and real-time data feeds around the mid-2010s, the inefficiencies that our models

exploited in the early data likely vanished.

To verify that the models didn’t simply degrade in quality, we analyzed the stability of their error rates

comparing the profitable early era (2006–2012) against the losing late era (2015–2021). We found that the

Mean Brier Error remained stable (0.242 vs 0.234). Crucially, a Kolmogorov-Smirnov (KS) test on the error

distributions yielded a p-value of 0.29, failing to reject the null hypothesis. This confirms that the model’s

predictive distribution did not fundamentally change; rather, the market’s efficiency threshold increased.

Figure 2. Alpha Decay Analysis. (a) The stylized trend showing the ”Golden Age” (green) vs the ”Efficient Era”

(red). (b) The raw performance lines for all three models, showing the specific volatility and the sharp drop-off

for XGBoost (blue) after 2014.

We can see this impact most clearly when looking at the cumulative wealth over time (Fig. 3). If you had

started using the XGBoost model in 2006, you would have seen a steady climb in profits. However, the data

reveals a persistent ”Alpha Decay.” A linear trend analysis shows the model’s edge over the bookmaker

degrading consistently as the market became more efficient.
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Figure 3. Cumulative Wealth Accumulation. The green line (XGBoost) illustrates the ”Golden Age” of sports

betting, showing strong growth until 2015. After that point, the line flattens and becomes volatile, struggling to

beat the simple ”Market Benchmark” (grey dashed line) of just betting on the favorite.

4.4. Impact of Calibration Error on ROI

The most critical finding of our study lies in the difference between being ”accurate” and being ”calibrated.”

We simulated two betting strategies (Fig. 4(a)). The first was ”Flat Betting,” where the model bet the same

amount ($100) on every game it liked. The second was the ”Kelly Criterion,” a famous mathematical formula

that increases the bet size when the model is more confident. In theory, the Kelly strategy should make

much more money.

In our experiment, the opposite happened:

Flat Betting Final Bankroll: $11,611

Kelly Betting Final Bankroll: $9,206

Why did the ”smarter” mathematical strategy lose $2,400 compared to the simple one? The answer is the

”Expected Calibration Error” (ECE), which we measured at 0.1109. This means that when the model said, ”I

am 60% sure this team will win,” the team actually won only 49% of the time. The model was chronically

overconfident. Because it overestimated its own edge, the Kelly formula commanded it to make bets that

were too large, amplifying the losses.
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Figure 4. (a) The Kelly strategy (green line) underperformed the Flat strategy (grey line), a classic sign of

overconfidence. (b) The calibration curve confirms this: the model’s confidence lines are mostly below the

”Perfectly Calibrated” dotted line, meaning it was consistently too optimistic.

To understand what the AI was actually looking at to make these confident (but wrong) predictions, we

analyzed the Feature Importance (Fig. 5). The results showed that the Home Odds (0.33 importance) and

Away Odds (0.24 importance) were the primary drivers. These market signals vastly outweighed team

performance metrics like Away Avg Shots (0.13). The AI was effectively trying to read the bookmaker’s mind

rather than the game itself.
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Figure 5. SHAP Feature Importance. The blue bars represent how much each data point contributed to the AI’s

decision. The most important feature was ”HomeOdds”—the price set by the bookmaker. This suggests the AI

spent more effort analyzing the market price than the actual team statistics (like Shots or Points).

4.5. Risk Assessment via Monte Carlo Simulation

Averages can be misleading. Just because the ”average” simulation made a small profit doesn’t mean a real

person would. To see the true risk, we ran 20,000 simulations of the best performing strategy (XGBoost) to

see the range of possible outcomes for a bettor.

The results (Fig. 6) were sobering. While the strategy was profitable 58.3% of the time, the risk profile

reveals hidden dangers. The strategy achieved a Sortino Ratio of 0.38, but the risk profile is dangerous. As

shown in Figure 6, 41.7% of all simulated lifetimes failed to generate a profit, with 5.1% resulting in total

bankruptcy. Furthermore, the 95% Value at Risk (VaR) analysis shows significant downside potential in the

worst-case scenarios.
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Figure 6. Monte Carlo Simulation (XGBoost). This histogram shows the final bankroll for 20,000 simulated

players. While the average (orange line) is profitable at $11,520, the distribution is wide. The red dashed line

shows the starting $10,000. Anyone to the left of that line lost money.

When we compare this to standard human strategies (Fig. 7), we see that the AI (green curve) shifts the

outcomes slightly to the right compared to simply betting on the Favorite (blue) or the Home Team (red). It

doesn’t guarantee a win, but it tilts the odds slightly in your favor—just not enough to overcome the variance

for everyone.
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Figure 7. Comparative Performance Density. This chart overlays the AI’s performance (green) against human

strategies. The AI curve is taller and shifted right, meaning it produces consistent, moderate results more often

than the volatile human strategies.

5. Discussion

Our findings offer a cautionary tale for the application of machine learning in competitive, human-driven

markets. The failure of sophisticated models to generate a consistent profit in the modern era (post-2015) is

not a failure of the algorithms themselves, but a testament to the efficiency of the market they are trying to

beat.

5.1. The Evolution of the Opponent

The clear decay in performance over time supports the ”Adaptive Market Hypothesis.” In 2006, a standard

gradient boosting algorithm could likely outpace the human compilers setting the odds. Today, those same

bookmakers are almost certainly using similar, if not superior, automated systems. We are no longer playing

against a human; we are playing against a mirror. The market has effectively ”priced in” the very technology

we are trying to use against it.
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5.2. The Danger of Metric Fixation

This study also highlights a flaw in how data scientists typically evaluate models. In a classroom setting, we

optimize for Accuracy or AUC (Area Under the Curve). By those standards, our models looked fine—they

predicted match outcomes correctly more than half the time (approx 51%). However, in an applied setting

where risk management is key, ”Accuracy” is a misleading metric.

The failure of the Kelly Criterion strategy proves that Calibration is the more vital metric. A model that

knows it is guessing (and bets small) is infinitely more useful than a model that thinks it is a genius (and

bets big). The 11% calibration error we observed is the difference between a viable investment strategy and a

losing one.

5.3. Strategies for Mitigation

Our results showed that the standard Kelly Criterion failed due to parameter uncertainty—the model was too

confident. This aligns with findings by Baker and McHale (2013), who suggest that exact Kelly betting is

perilous when probability estimates are imperfect [14]. A ”Fractional Kelly” approach (betting half or quarter

of the recommended amount) is often proposed as a solution to this volatility.

Furthermore, while our fundamental models struggled, other approaches exist. Kaunitz et al. (2017)

demonstrated that strategies focusing purely on ”consensus odds”—identifying outliers where one

bookmaker is slow to update compared to the rest of the market—can still yield profits  [15]. This suggests

that while predicting the game is hard (as our study shows), predicting the market errors might remain viable.

Conversely, Boshnakov et al. (2017) achieved success using bivariate Weibull count models, suggesting that

perhaps our feature set was too simplistic and that complex parametric models still hold value [16].

6. Limitations

While this study provides robust empirical evidence regarding market efficiency, certain constraints in our

scope and methodology must be acknowledged to contextualize the findings.

6.1. Data Availability and Feature Scope

Our sports betting analysis relied on a public dataset that, while historically extensive (2000–2021), was

limited in feature depth. The dataset contained only match-level statistics and odds. We did not incorporate

granular data points such as player-level injuries, lineup changes, or advanced metrics like Expected Goals

(xG) simply because reliable historical data for these features was unavailable for the full twenty-year period.
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It remains an open question whether a model trained on such deep, granular data could uncover

inefficiencies that our match-level models missed.

6.2. Closing Line Rigidity

Our Walk-Forward validation tested the models against the ”Closing Odds”—the final price available before

the match starts. The ”Closing Line” is statistically proven to be the most accurate version of the market

price. In a real-world scenario, professional bettors often target ”Opening Odds” (days before the match),

attempting to identify mispricing before the market corrects it. By testing against the Closing Line, we

effectively forced our AI to beat the market at its strongest point. A model that fails against the Closing Line

might still have been profitable against the softer Opening Line, though testing this hypothesis requires

data that is rarely publicly available.

7. Conclusion

This study began with a simple question: Can standard machine learning algorithms outsmart a highly

efficient prediction market? The answer, as it turns out, is a qualified ”no”—but the reasons for that failure

reveal a great deal about the state of modern data science.

By benchmarking our models against twenty years of real-world betting data, we established that our

algorithms identified unique, statistically distinct patterns in the football data. Yet, despite this technical

success, they failed to generate a sustainable profit in the modern era.

The evidence points to a market that has fundamentally changed. The clear decay in performance—from

consistent profits in the mid-2000s to consistent losses after 2015—suggests that the window for simple

algorithmic arbitrage has closed. The ”edge” that data scientists look for has been smoothed out by the

efficiency of the bookmakers.

Most importantly, our results highlight a critical blind spot in how predictive models are built and tested.

The fact that our models could predict the winner with respectable accuracy, yet lose money when betting

with the Kelly Criterion, proves that accuracy is not enough. The models suffered from a significant

calibration error, consistently overestimating their own certainty. In a low-margin, high-risk environment,

this lack of self-awareness is fatal.

Ultimately, this research suggests that in mature, adversarial environments, the challenge is no longer about

building more complex models to find better answers. The challenge is building more honest models that

qeios.com doi.org/10.32388/7A61RS 15

https://www.qeios.com/
https://doi.org/10.32388/7A61RS


know when they are guessing. As markets become more efficient, the most valuable trait in an algorithm is

not just its ability to predict the future, but its ability to accurately measure its own doubt.

Statements and Declarations

Reproducibility

All code, datasets, and full statistical reports generated during this study are publicly available for review and

replication at: https://github.com/MostafaShams5/Predicting-EPL-Winners-But-Losing-Money-With-Data-

Science.
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