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Abstract

Americans evaluated 22 cues laypeople might use to decide which group of disagreeing scientists is more likely

correct, rating perceptions of the cue’s reliability in determining the more valid side, its availability in their information

sources, and average Americans’ ability to use it effectively, plus self-reported cue use. Overall scientists’ experience,

research quality, and credentials rated highest on these “expressed value” criteria, findings which can complement

future “normative value” (e.g., expert judgments of cues’ reliability, availability, and usability) and “persuasive value”

(whether exposure to a cue changes lay views) research advancing theory and practice regarding lay assessment of

intra-science disputes.

Keywords: Scientific Disputes; Credibility; Cues.

 

 

 

Introduction
 

        Audience-centered communication tailors its content and presentation to complement audience expectations and

behavior to promote effective communications, including science communication (e.g., Ledford, Willett, & Kreps, 2012;

Logan, 2001). Criteria for evaluating communications also include “audience evaluation” (e.g., do recipients deem a

message accurate, helpful, understandable, etc.?), besides effectiveness measures, such as whether observers

determine that the message is comprehensible (e.g., recipients report its meanings as observers expect) or that it prompts

people facing the same objective risk to report the same subjective risk (Weinstein & Sandman, 1993). Assessing science

communications requires taking audience views into account, not because they are the only or most important criterion,

but because they can influence communication efficacy (e.g., publicly-devalued content may not affect public beliefs or

behavior as intended, however well-designed). To rephrase, audience-centered or “expressed value” judgments can

complement “normative value” judgments (e.g., experts’ views of the communication’s qualities) and “persuasive value”

tests (whether communication exposure changes lay views or behavior as expected)

        Audience views reported here (“expressed value”) were elicited to supplement later experimental manipulations
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(“persuasive value”), and point to potential “normative value” studies, regarding cues that might help laypeople judge the

relative credibility of disputing scientists. Before scientists reach consensus (or not), confusion about “the truth” can affect

more than public knowledge: public disputes may undermine scientific authority partly stemming from its perceived

consensus (Campbell, 1985; Collingridge & Reeve, 1986; Jasanoff & Wynne, 1998; Stilgoe, 2007; Zehr, 2000), with

consequent effects on citizens’ knowledge and/or uncertainty, trust in topical experts or in science, and policy and

research support, among others (Irwin & Wynne, 1996). Yet concealing disputes could have similar or worse

consequences (Beatty, 2006; De Melo-Martin & Intemann, 2013; Halfon, 2006; Miller, 2016; Solomon, 2007).

        This study is part of a larger project exploring public reactions to and interpretations of scientific disputes, specifically

the relative credibility of two groups of scientists, defining “credibility” as which position the lay observer deems relatively

more valid. Intra-science disputes can be as critical to science communication as more-studied disputes between

scientists and non-scientists (e.g., climate change and vaccine impacts; Van der Linden, Clarke, & Maibach, 2015; Van

der Linden, Leiserowitz, Feinberg, & Maibach, 2015). Effects of and cues for mass disputes may differ from those

between individual scientists (Thomm & Bromme, 2016).[1] Here lay Americans rated cues for scientific disputes varying in

familiarity and salience: the nature of dark matter, recommended daily salt intake, and nanotechnology’s risks and

benefits. People generally agreed on “best” cues (e.g., those deemed most reliable for judging relative credibility) and

“worst” cues.

 

Background

 

Credibility Cues

 

Lay understandings of scientific findings and scientific processes (Irwin & Wynne, 1996; Lysaght & Kerridge, 2012;

Yearley, 1994) must be addressed when studying lay credibility cues. Few laypeople—including scientists in other

disciplines or subfields (Hardwig, 1985)—understand technical scientific claims (Collins & Evans, 2007). Yet in certain

local cases, and among the highly motivated, laypeople can identify limits to some science applications (Epstein, 1996;

Irwin & Wynne, 1996; Lysaght & Kerridge, 2012; Wynne, 1989; Yearley, 1994), and generally determine who is (more)

trustworthy and whether there is a consensus, if needed information is available and used (Anderson, 2011; Goldman,

2001). Lay processes can be studied with participant-observation and other qualitative approaches, experiments, and

surveys quantifying self-reports; this study entailed the first survey.

        This study limited its probes of lay credibility cues to citizens’ judgments on multiple dimensions, not scientific

accuracy (Collins & Evans, 2007, p. 31; Fallis & Frické, 2002; Frické, Fallis, Jones, & Luszko, 2005) or other objective

measures: how people understand the experts rather than the evidence scientists provide (Collins & Evans, 2007; Fallis &

Frické, 2002). Many field studies of societally-disputed science (Irwin & Wynne, 1996) cover cues regarding anyone a

layperson deems expert or trustworthy in geographically or socially specific contexts (Collins & Evans, 2007, p. 53). The

current concern was cues discriminating among scientists only, cues ubiquitous (widely available) even to those unfamiliar

with the experts involved (Collins & Evans, 2007). Cues were limited to scientists en masse, excluding cues about
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individual scientists’ performance, such as understandable and acceptable explanations (Anderson, 2011; Wagenknecht,

2015), reactions to challenges (Brewer, 1998; Gelfert, 2011; Matheson, 2005), or honesty and ethical behavior about their

own and opponents’ claims (Fallis & Frické, 2002). “Civic epistemologies,” how citizens evaluate knowledge claims for

collective decisions, are institutionalized practices of judging science that differentiate societies (Jasanoff, 2005), which

vary across countries on such attributes as trust, accepted bases of expertise, transparency of expert bodies, and ways to

assess objectivity. This cross-sectional survey of an American sample allowed only for indirectly testing accepted bases

of expertise (e.g., training, experience, or professional practices as more credible cues). Finally, this study excluded well-

studied lay evaluations of credibility of specific disputant messages (e.g., Flanagin & Metzger, 2007; Gauchat, O’Brien, &

Mirosa, 2017; Johnson, 2003; Johnson & Slovic, 1995, 1998; Van der Linden, Clarke, et al., 2015; Van der Linden,

Leiserowitz, et al., 2015).

        The communications literature on source credibility only somewhat overlaps with cues probed here. First, credibility

of media sources or outlets (e.g., “newspapers” or “ABC News”) is more closely related to persuasive value tests about

whether cues affect observers, bringing in associated factors (e.g., news attention; Williams, 2012) unrelated to lay

judgments of specific relative-validity cues. Second, the literature on credibility of sources cited within a given story has

emphasized individuals. Third, cues covered in these literatures relate variously to those here. Some cues covered here

are arguably covered partly as well by source-credibility scholars: e.g., the “information quality” cue here shares recency

with tweet posting recency which influenced source credibility of a Twitter.com page owner (Westerman, Spence, & Van

Der Heide, 2014), while one of the strongest source characteristics (expertise; e.g., Wilson & Sherrell, 1993) is echoed by

some cues here (e.g., relative experience or prestige of protagonists’ universities), but probably weaker because all

disputants are scientists. Some source-credibility cues are excluded here: e.g., manipulated or perceived honesty

characterizes individual rather than masses of scientists, and message quality’s mutual effects on credibility judgments

(e.g., Slater & Rouner, 1996) does not apply as there is no message here to evaluate. Finally, some cues here are

irrelevant to assessing traditional source-credibility sources: e.g., individual disputants cannot represent a majority of

scientists on one side. In short, cues covered here potentially expand, without contradicting, those in previous source

credibility research in communications, marketing, and associated fields.

        Specific cues have been identified both empirically and logically. Field observations (Bubela et al., 2009; Irwin &

Wynne, 1996) identified social/institutional affiliations, self-interested information processing (Frické et al., 2005),

reference group messages (Frické et al., 2005), and accuracy. Despite lay epistemic dependence on experts—they

cannot independently assess experts’ technical claims (Hardwig, 1985)—philosophers and scholars of social studies of

science cited cues non-experts might use: credentials (Goldman, 2001), the scientific majority’s position (Goldman, 2001),

interests and biases (Goldman, 2001), track records (Goldman, 2001), and length of experience (Collins & Evans, 2007).

Ubiquitous cues by which scientists evaluate other scientists’ claims could help laypeople: employer, failures, doctoral

university’s size and prestige, nationality (Collins & Evans, 2007, pp. 50–51, note 10). Factors affecting trust of hazard

managers (Earle & Cvetkovich, 1995; Kuklinski, Metlay & Kay, 1982; White & Johnson, 2010) also might judge disputing

scientists: employer, salient shared values, reference groups, precautionary performance. Cues volunteered by focus

groups in this or an earlier study (Maxim & Mansier, 2014) included their employer, political ideology, proportion of studies

per side, research protocols, data recency, and use of established methods. Blogs about the H1N1 vaccine frequently
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cited scientific content, interests and bias, blind trust (i.e., no cue use), and “commonsensical social judgments” seemingly

dominated by generalized suspicion, but rarely used formal authority indicators (e.g., credentials; Kutrovátz, 2010).

        Repetition across diverse literatures suggested a taxonomy would improve this study’s design, and perhaps future

theory. Seven classes of credibility cues were defined: 

interests: e.g., employer pressure to earn or retain money or prestige; scientists’ similar motivations

shared values: e.g., with scientists or reference groups

credentials: e.g., degrees, awards

performance: e.g., scientists’ prior accuracy, their experience

demographics: e.g., nationality, demographic similarity to observer

vote-counting: i.e., proportion of scientists or studies per position

research quality: e.g., the field’s uncertainty, use of methods such as control groups or replication 

These seven categories appear to represent a minimal set of cue types; e.g., how scientists work (research quality) cannot

be subsumed under outcomes (performance), nor scientists’ motivations (interests) conflated with the majority position in

a scientific dispute. At least the taxonomy provides a foundation for wider discussion of potential lay cues to scientific

disputants’ relative credibility.

 

Research Questions

 

        This study aimed to identify what laypeople say are better or worse cues to the relative credibility of disputing

scientists, expressed value data to complement experiment-revealed or expert-normative values for the same cues, just

as measures of subjective and objective topical knowledge carry different implications for communications (e.g., Rose et

al., 2019).

        We could ask people which are best and worst for relative-validity judgments on a list of cues, or elicit a complete

ranking from best (#1) to worst (#22, in this case). This “explicit” ranking directly contrasts some or all cues, and may

integrate judgments across multiple dimensions salient if not all conscious to the respondent, but not necessarily known to

the researcher. Rankers’ social desirability or self-presentation motivations might rank high those cues they think

researchers favor. The number of cues ranked can burden respondents, potentially undermining results’ validity and

reliability. 

        Alternatively, the researcher could impute “implicit” rankings from mean ratings of one or more scales, such as a

cue’s value for determining relative credibility of disputants’ positions. Raters are unlikely to compare all cues before

rating, as full explicit ranking does, much less compare cues across scales, nor be aware of rankings being imputed from

their collective ratings. Salience likely varies across scales or raters, although rarely assessed by researchers. Yet rating

one cue, on one scale at a time, burdens raters less than explicit ranking, increasing mean scores’ reliability despite

potentially lower validity. 

        Many laypeople are only vaguely familiar with the existence of or reasons for scientific disputes, may use rules of

thumb in cue evaluations they cannot fully articulate, and might want to present themselves positively (Collins & Evans,

2007). Researchers should take no one approach or answer at face value, given these factors. Recent work on why
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laypeople think scientists might disagree (Johnson & Dieckmann, 2018; cf. Dieckmann & Johnson, 2019)distinguished

with difficulty people favoring one reason (e.g., incompetence versus topical complexity), even controlling for dispute

interest. The authors suggested that this task may be novel enough for respondents that their on-the-fly answers are less

coherent collectively than for more familiar questions. If true here, we need both explicit and implicit ranking to answer 

 

RQ1. What do lay Americans report as better and worse credibility cues for scientific disputes?

 

        Benefits of multiple answers to RQ1 imply multiple scales should underlie implicit rankings. How people decide the

relative credibility of groups in a mass scientific dispute was central here, lay judges may distinguish such cues from those

to the competence of “scientists,” although most cues here apply logically to both.[2] Thus each was subject to a separate

rating scale (hereinafter “inter-group reliability” and “scientist reliability,” respectively).

        These reliability scales were complemented by three others. Self-reports of cue use (“use”) may echo reliability

ratings but are not independent observations. People’s imputed reliability and use rankings might converge due to

accuracy (people use only reliable cues), and/or to self-presentation concerns.

        A cue’s reliability is irrelevant if it is inaccessible, so respondents also rated whether their information sources about

scientific disputes include it (“availability”). This subjective measure implies that a reliable available cue trumps a reliable

unavailable one. If laypeople and scientists agree a cue is reliable but unavailable, this information also could inform

science communication. If reliability and use are only moderately correlated, availability may be a moderator: self-reported

use of more reliable cues is higher when people see them as available.

        The fifth scale concerned how able the rater thought “the average American” would be to find, process and use the

cue to judge relative credibility (“ability”). Belief in one’s own competence (implied but not directly assessed by the use

scale) and in others’ competence may not converge (cf. drivers’ belief they are above average; Svenson, 1981). If overall

these rankings diverge, this might shape science communication, whether to make “good” cues more visible, accessible

and/or usable (and “bad” cues less so), or to offset people’s unjustified relative optimism about their skill in understanding

scientific disputes. Comparing rankings derived from this and other scales (e.g., use) might be used to infer third-person

effects (Davison, 1983), belief others will be persuaded by the message but not oneself. But no direct comparison of self

to others was elicited, no mention was made of persuasion, and none of the five scales asked people to rate whether or

how much they thought the cue would influence them or others (a judgment whose accuracy could not be assessed via

self-reports, only by experiments).

        Rankings imputed from the two reliability ratings were expected to be most correlated, followed by reliability’s

correlations with use and availability, with availability perhaps moderating the reliability-use link. Rankings from (average-

American) ability ratings were expected to correlate least with other rankings. Explicit reliability rankings were expected to

correlate most with implicit reliability rankings.

 

RQ2. Do implicit rankings converge across rating scales and with explicit rankings?

 

        Interest in scientific disputes likely varies widely, potentially affecting cue ratings and rankings. Those highly
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interested may not be more familiar with certain cues, but will more likely engage with evaluation, perhaps providing more

valid and reliable answers. Dispute topic also might affect cue responses: e.g., arcane subjects such as dark matter seem

unlikely to offer, or make salient, cues about economic interests as recommended salt intake. Belief science yields “truth”

and mistrust of science might increase perceived relative value of credentials and interests cues as respective signals of

scientists’ competence or bias, while those familiar with scientific reasoning might emphasize research quality cues.

Demographics also might affect cue responses, although no prior data or theory suggest how. Testing these variables’

associations with cue ratings and rankings helps us grasp the extent of lay consensus.

 

RQ3. Do dispute interest, topic, knowledge of or attitudes toward science, or demographics affect cue ratings or rankings?

 

Methods

 

Qualitative Research

 

        Three focus groups (n = 35), varying education and political ideology, preceded this survey. The author defined mass

scientific disputes (versus among individuals), and moderated a discussion of “what catches your attention when groups

of scientists disagree?” Then several short paragraphs, each describing an actual scientific dispute (e.g., wolves’

ecological effects in Yellowstone; molecular biology), were distributed. For each dispute people explained their answers to

four questions: the degree of disagreement they observed; their “good or bad” feelings about the dispute; why they

thought some scientists took one position versus another; and which position the focus group members thought “more

likely to be correct.” Any explanations entailing potential cues (e.g., “follow the money” on research funding) were probed,

including thoughts related to potential scales. Members’ potential actions taken or avoided given the dispute were

discussed before reviewing the next scenario. Finally, group members were asked about cue differences across scientific

topics, and thoughts prompted by a list of potential cues, not all mentioned earlier. 

        Focus group members emphasized cues of self-interest, whether scientists had a financial stake in their dispute

position; accuracy, whether they had a history of being right; precaution, whether scientists tended to be cautious or

reckless in research methods and conclusions; and counting “votes” for a position by the proportion of studies supporting

it.

 

Instrument and Measures

 

        Initial questions on respondents’ awareness of and reaction to scientific disputes (Table 1, “Dispute interest”) were

followed by one dispute scenario (Table 2). People indicated which dispute position they thought more valid, their

confidence in this answer (Table 1, “Correct position” and “Confidence”), and likelihood of 16 explanations for why

scientists disagree (discussed elsewhere; reference omitted). 

        Then people rated 22 cues (Table 3), randomly ordered per respondent, on five scales each (Table 1, “Scales”);
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ratings were elicited for all five scales before the next cue. Mean scores for a cue on a scale generated “implicit rankings”

reported below; e.g., Cue A would implicitly rank higher than Cue B on availability if its mean score on that scale was

higher. After all cues were rated, people ranked them in three steps (Table 1, “Ranking”). First, they indicated which were

among the three best and three worst on reliability without distinguishing among them, expected to be easier than eliciting

all 22 cue ranks. Second, they ranked the three “best” on order (1 best, 2, 3). Third, they ranked the three “worst” (1 worst,

2, 3). Proportions of respondents ranking a cue as best/worst or in the top three produced “explicit rankings”: e.g., if 30%

of the sample rated Cue A “best” and 25% Cue B, Cue A would rank above Cue B in explicit “best” rankings. 

        Respondents finished with 10 questions on beliefs about scientific positivism (e.g., “Science provides objective

knowledge about the world,” 1 strongly disagree, 5 strongly agree; Rabinovich & Morton, 2012; Steel, List, Lach, &

Shindler, 2004), an 11-item scientific reasoning scale (e.g., for understanding of reliability, “A researcher develops a new

method for measuring the surface tension of liquids. This method is more consistent than the old method. True or False?

The new method must also be more accurate than the old method”; the answer is false; Drummond & Fischhoff, 2017), a

6-item mistrust of scientists scale (e.g., “People trust scientists a lot more than they should,” 1 disagree very strongly, 7

agree very strongly; Hartman, Dieckmann, Stantsy, Sprenger, & DeMarree, 2017), and demographic measures.

 

Topic Measure

Dispute
interest

Sometimes a large group of scientists disagrees with another large group of scientists about the causes or effects of a natural event or
technology. Have you ever heard about such a scientific dispute? (Yes/Don’t know/No)
[If yes/DK] Have you ever tried to decide which group of scientists was more likely to be correct? (Yes/Don’t know/No)

Correct
position

Which of the two positions about this topic do you think is more likely to be correct?
Salt: Position A- People at risk of health problems should cut dietary salt intake by one-half, the rest by one-third 
         Position B- All people should cut dietary salt intake by one-third 
Dark Matter: Position A- Most of the matter in the universe is made of WIMPs
         Position B- Most of the matter in the universe is made of axions 
Nanotechnology: Position A- Nanotechnology will have many benefits 
         Position B- Nanotechnology could have risks we don't know about 

Confidence 
How confident do you feel about your choice of one group of scientists as more likely to be correct on this topic than the other group? (1 I have
little or no idea which group is more expert, 2 I have some idea which group is more expert—but I am more unsure than sure, 3 I have a good
idea which group is more expert—and I am more sure than unsure, 4 I am pretty sure I know which group is more expert; adapted from Ref. 25)

Scales

1) How reliable is this information as a signal of whether scientists are competent? (1 not at all reliable, 5 extremely reliable)
2) How reliable is this information as a signal that one group of scientists is more competent than another group of scientists? (1 not at all reliable,
5 extremely reliable)
3) How often do your real-life information sources about scientific disputes include this kind of information? (1 never, 5 always)
4) How able do you think the average American would be to find, understand and use that information to decide which group of scientists was
more likely to be correct? (1 not at all able, 5 extremely able)
5) How often have you used this kind of information to decide which group of scientists involved in a disagreement with other scientists was most
likely to be correct? (1 never, 5 always)

Ranking

Below is a list of cues again, which we would like you to rank in terms of their overall performance—considering the ability of the average
American to find, understand and use that information—to help people decide which group of disagreeing scientists is most likely to be correct. In
other words, which cues are the best and worst for figuring out which group of scientists are correct? First, select the "Best 3" cues. Second,
select the "Worst 3" cues.
Now please rank the 3 best cues (the best should be #1) you selected by dragging them up or down the list
Now please rank the worst 3 cues (the worst should be #1) you selected by dragging them up or down the list

Table 1. Selected Measures
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Dark Matter. About 85% of all matter in the universe is ‘dark matter’ which scientists know is there due to its gravitational pull on visible matter such as galaxies
and radiation, but they cannot see it and do not know what it’s made of. Some scientists think dark matter is made of axions, (currently hypothetical) subatomic
particles formed in the core of a star when X-rays scatter off protons and electrons in a strong electric field. Other scientists think dark matter is made of the
lightest of the neutralinos, a different set of (currently hypothetical) subatomic particles resulting from the decay of squarks and other relatively heavy particles.
Until research can answer this question, scientists do not know what makes up most of the matter in the universe.

Dietary Salt. Scientific studies on nutrition agree that Americans eat too much salt, both sprinkled on food and far larger amounts in processed foods (bread,
cereal, salad dressing, canned vegetables and soup, ketchup, etc.). But they disagree on what level is safe, especially for people at risk for heart disease and
stroke: over half the U.S. population, including those with high blood pressure, older than 51, African Americans, and with diabetes, chronic kidney disease, and
congestive heart failure. Some scientists think everyone should reduce intake by one-third, with people at risk cutting salt intake by half. Other scientists think
there is little or no health benefit from cutting intake in half or giving different recommendations for at-risk subgroups and others.

Nanotechnology. Scientific studies on nanotechnology, a new field which exploits how materials change when very small (1,000–8,000 times narrower than a
human hair), disagree about its impact. Some scientists stress benefits: medicines (nano-particles can breach the brain-blood barrier, carrying medicine to treat
Alzheimer’s or brain cancers hard or impossible to treat now), self-cleaning windows, packaging extending vegetables’ shelf life, pollution cleaners, clothing that
repels odors and lasts longer, and so forth. Other scientists stress that the same qualities could impose harm (nano-particles can reach places in the human
body larger materials cannot), far more research is done on product development than potential risks, and many benefits claims are so far unproven.

Table 2. Dispute Scenarios

 

Table 3. Cue Categories and Items

Qeios, CC-BY 4.0   ·   Article, September 21, 2022

Qeios ID: 7AIP0E   ·   https://doi.org/10.32388/7AIP0E 8/27



Interests

Employer: What institution (for example, government, business, nonprofit) or specific organization employs the scientists who take that position.  

Scientist interests (Grants): Whether the scientists who take that position can obtain research grants as a result. 

Scientist interests (Business): Whether the scientists who take that position can be promoted, sell a patent, or start a business as a result. 

Scientist interests (Prestige/Influence): Whether the scientists who take that position can earn prestige or influence as a result. 

Self-interest: Whether you will benefit from the position that the scientists take (for example, get better or cheaper products, more safety, environmental quality,
or convenience). 

Shared Values

Salient shared values: The scientists who take that position appear to share values with you that you think are important to making decisions about this topic. 

Reference group positions: Whether groups or organizations you trust take the same position, or announce that they trust the scientists who take that position. 

Credentials

Type of Degree: Whether the scientists who take that position have advanced degrees (such as Ph.D. or M.D.) in a field closely related to the topic. 

Source of Degree: Whether the scientists who take that position have degrees from well-known and respected universities 

Awards: Whether the scientists who take that position have received prestigious awards (Nobel Prize, U.S. National Medal of Science, etc.). 

Performance

Accuracy: Whether the scientists who take that position have been right or wrong about similar scientific issues in the past. 

Precaution: Whether the scientists who take that position tendency in their work to be cautious or enthusiastic, risk-taking or risk-averse, or take extreme versus
moderate positions 

Experience in the field: How long they have been working on this topic; whether they have spent a lot of time learning practical or theoretical details of the issue. 

Demographics

Nationality: Whether the scientists who take that position are Americans or not. 

Similarity: Whether the scientists who take that position are similar to you; for example, the same gender or ethnic group or age. 

Vote-Counting

Scientists: The proportion of scientists (for example, 50% or 90%) that take this position. 

Studies: The proportion of peer-reviewed scientific studies (for example, 50% or 90%) that take this position. 

Research Quality

Uncertainty of the field: How much uncertainty you think there is in understanding and making accurate predictions for this topic. 

Control groups: Whether the scientists test how outcomes change when a factor is present rather than absent (for example, health outcomes when people
randomly get a new drug or a fake one). 

Comparison: Whether the scientists who take that position have tested in the same studies the effect of their explanation against the effects of competing
explanations. 

Study replication: Whether the scientists who take that position have evidence favoring that position from more than one study, conducted by scientists who are
independent of each other. 

Information quality: Whether the evidence supporting that position is up-to-date, or has been collected with the best available techniques. 

 

Sampling

 

        A sample of Americans from Survey Sampling International’s online panel responded October 16–19, 2015 (median

completion = 22.7 minutes). Removing 26 responses (22 for completion < 8 minutes; 4 nonsensical answers) left 534

responses. A third each read one dispute scenario (33.5% dark matter, 34.3% salt, 32.2% nanotechnology), topics based

upon focus group results and an earlier experiment (reference omitted).
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Analyses

 

        Analyses included t tests, one-way ANOVAs, and multiple linear regressions. Although frequency of rank ties varied,

Kendall’s tau-b (τ) rank-order correlation was used consistently for its ability to account for ties, yielding weaker, less

significant correlations than did Spearman’s rho rank-order correlation. For multiple comparisons, the Benjamini &

Hochberg (1995; Glickman, Rao, & Schultz, 2014) method was used to retain sufficient power to minimize false positives,

whose testing of significance for individual items is more conservative than Bonferroni-type adjustments (which tests a

universal null hypothesis against an omnibus alternative). The false discovery rate (FDR) d = .01 used here,

recommended for empirically- (versus theoretically-) driven conditions (Glickman et al., 2014), meant no more than 1% of

significant tests were expected to be false positives. Tests of availability’s moderation of the reliability-use relationship

used PROCESS 3.0, model 1 (Hayes, 2018), with 5000 bootstrap samples for 95% confidence intervals, and the HC4

heteroskedasticity-consistent standard-error estimator (Hayes & Cai, 2007).

 

Results

 

Demographics

 

        Mean age was 38.60 (SD = 15.54, median = 34, range 18–82); 74% were women, 74.2% non-Hispanic whites,

26.9% had a high-school-graduate education or less, 35.7% college degrees or more, 26.3% politically conservative, and

28.5% liberals. The sample was more female than the U.S. population (50.8%) and more-educated (29.3% college

degrees or more among those 25-plus), but similar in age (median = 37.4) and white ethnicity (72.4%), based on 2010–

2014 American Community Survey 5-year estimates (U.S. Census, 2016). No significant demographic differences across

dispute scenarios confirmed random allocation.

 

General Views

 

        Two-thirds (66.3%) of the sample were aware of scientific disputes; 15% did not know. Among these respondents,

64.8% had ever tried to decide which side was correct, 23.1% did not, and 12% did not know (n = 432). A Dispute Interest

nominal measure distinguished those low (unaware; never tried to decide who was right; 37.8%), ambiguous (did not

know if they had tried, or did not know if aware but had tried to decide who was right; 13.7%), and high (aware and tried to

decide; 48.5%) in interest. Dispute interest differed insignificantly by scenario.[3]

        Knowledge of scientific reasoning was moderate (M = 5.73, SD = 2.39; median = 6 correct of 11). This differed

across scenarios (F(2,521) = 3.21, p = .041)—readers about nanotechnology understood scientific reasoning less (M =

5.37, SD = 2.33) than did dark matter readers (M = 6.02, SD = 2.43, p = .034)—and by dispute interest (F(2,521) = 19.61,

p < .0005): high-DI respondents showed more understanding (M = 6.38, SD = 2.45) than did low-DI (M = 5.09, SD = 2.17,
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p < .0005) or ambiguous-DI groups (M = 5.21, SD = 2.12, p < .0005). Mistrust of scientists was moderate (M = 24.67, SD

= 7.90, median = 25, range 6-42; α = .89), insignificant at p < .05 across topic or interest. Scientific positivism items (two

non-positivist items reversed) formed an unreliable index (α = .54) without omitting those two items (α = .74; M = 27.23,

SD = 5.25, median = 27, range 8–40). Positivism differed insignificantly across scenarios or interest.

 

Cue Ratings

 

Task Difficulty and Straightlining

        Survey researchers screen for response biases, such as acquiescence bias, agreeing or disagreeing with every

question; extreme responding, such as answering only with 1s or 5s on 1-5 Likert scales; or straight-lining, answering all

scales the same (e.g., here awarding all 2s to the similarity cue, all 4s to control groups). Chronic straightlining can reflect

respondent inattention or indifference to question content, or inability to make requested distinctions, prompting that

person’s removal from analyses. Yet just as zero straightlining need not indicate fully valid and reliable responses,

someone providing different straightlined ratings across cues (see similarity versus control-group example above) may

still rate cues’ relative value as best she can. Asking people to rate 22 cues on five scales each might amplify

straightlining, due to the task’s novelty (discussed earlier) and cognitive fatigue from making 110 judgments, although

randomizing cue order here should have minimized fatigue variance across cues. Most implicit rankings (excluding

average-American-ability, unless respondents identified as “average”) were expected to correlate (Research Questions),

which identical ratings across criteria would only amplify. 

        Most respondents avoided straightlining per cue (68.5% nationality to 77.0% comparison), but only 25.7% (n = 137)

avoided it for all cues (“Zeroes”). Two-thirds (64.8%; n = 346) straightlined for zero to five cues of the 22 (“Minimals”), with

identical scores rarely awarded to different cues under multiple-cue straightlining. Rankings for the most important scales

—inter-group reliability and ability—correlated highly between these groups (τs = .82 and .84, respectively). Rankings

including people straightlining up to seven cues still correlated with Zeroes’ rankings at τ = .82 for inter-group reliability,

but only τ = .68 for ability, expanding the sample modestly (71%, n = 379). Some analyses here (regression analyses,

contrasts in dispute interest) benefited from larger sample sizes, for which the Minimal group seemed sufficient. Online

Supporting Information (SI) for this paper reports both Zero and Minimal results, but the main text focuses on the latter.

        Independent t tests with listwise deletion found no differences significant at p < .05 between Zeroes (n = 127, given

missing data on comparison variables) and those doing any straightlining (n = 370) in demographics (gender, age,

education, non-Hispanic white ethnicity, political ideology), dispute topic, dispute interest, or scientific-reasoning

knowledge. The only significant differences at p < .05 included science mistrust (Zero M = 25.81, SD = 7.84; Any M =

24.11, SD = 7.86, p = .036) and scientific positivism (Zero M = 28.10, SD = 5.01; Any M = 26.95, SD = 5.29, p = .033),

neither meeting the FDR criterion for statistical significance. Repeated with the Minimal group (n = 319; Other

straightliners, n = 178), four of ten variables exhibited differences significant at p < .05: scientific-reasoning knowledge

(Minimal M = 5.96, SD = 2.42; Other M = 5.42, SD = 2.32, p = .016), dispute interest (Minimal M = 2.18, SD = 0.93; Other

M = 1.98, SD = 0.89, p = .020), education (Minimal M = 4.91, SD = 1.43; Other M = 4.61, SD = 1.45, p = .023), and white
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ethnicity (Minimal M = 0.71, SD = 0.45; Other M = 0.80, SD = 0.40, p = .024). None met the FDR criterion.[4] The only

difference between these sub-samples and other respondents concerned straightlining’s extent, so analyses focus on

people apparently both motivated and capable of distinguishing among unfamiliar cues and criteria.

        By focusing on those with minimal straightlining—a larger subsample than the zero-straightlining group yielding

potentially more reliable estimates, and likely reflecting inability to determine how to rate a given cue on the five scales

except that it rates more or less than another cue—later analyses excluded respondents most likely to be indifferent or

inattentive. Zero straightlining yielded little difference in results reported here for minimal straightlining.[5]

 

Rating Differences and Availability as Moderator

        One-way ANOVAs revealed ratings differed insignificantly (p < .05) by topic. On dispute interest (DI) Minimals

exhibited statistically significant ANOVAs (36 of 110; SI 1), but differences in only three cue-scale ratings met the FDR

criterion. For the similarity cue the high-DI group (n = 172) differed from the low-DI group (n = 110) on scientist reliability

(F(2,312) = 12.65, p < .0005; M = 2.38, SD = 1.29; M = 3.06, SD = 1.00, p < .0005) and inter-group reliability (F(2,312) =

17.17, p < .0005; M = 2.30, SD = 1.22; M = 3.05, SD = 1.11, p < .0005). On both reliability scales low-DI respondents

scored similarity higher. Reported use of the replication cue was higher for high- versus low-DI respondents (F(2,312) =

13.37, p < .0005; M = 3.58, SD = 0.96; M = 2.91, SD = 1.22, p < .0005). Later analyses contrasted high- and lower-DI

rankings only.

        Availability’s potential moderation of the relationship of inter-group reliability and use was poor: only one cue (degree

type) exhibited an interaction significant at p < .05, and three at p < .10 (similarity, business, shared values).

 

Implicit Rankings

 

        Implicit rankings derived from mean scores on the same scale across cues. Rank-order correlations of Minimals’

implicit rankings appear in Table 4. Each cell reports full-sample results, and those for high- and low-dispute interest, in

that order; bracketed correlations are between high- and low-DI rankings. Reliability rankings were highly correlated,

particularly for high DIs. Also as expected, reliability correlated highly with self-reported use, with an even greater gap

between high-DI and low-DI than for reliability; implicit rankings for scientist reliability and use were identical. Minimals

reported reliable cues as available without much divergence by dispute interest. Reliability correlated moderately with

judged ability, with mixed and modest differences on whether high DIs were more likely to think the average American

could “find, understand and use” reliable cues. Finally, implicit-ranking correlations between high- and low-DI respondents

for each scale were roughly τ = .5. 

 

Table 4. Kendall’s tau-b Implicit Rank-Order Correlations Across Scales, Overall and by Dispute Interest
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Criteria

1 2 3 4 5

1. How reliable is this information as a signal of whether scientists are competent?
 
[.49***]

    

2. How reliable is this information as a signal that one group of scientists is more competent than another
group of scientists?

.95***

.87***

.59*** 

 
[.48**]

   

3. How often do your real-life information sources about scientific disputes include this kind of
information?

.70***

.79***

.68***

.69***

.81***

.67***

 
[.57***]

  

4. How often have you used this kind of information to decide which group of scientists involved in a
disagreement with other scientists was most likely to be correct?

.80***
1.00***
1.00***

.82***

.87***

.59***

.78***

.79***

.68***

 
[.49***]

 

5. How able do you think the average American would be to find, understand and use that information to
decide which group of scientists was more likely to be correct?

.56***

.48**

.59***

.55***

.48**

.48**

.73***

.64***
 .57***

.61***

.48**

.59***

 
[.50***]

Minimal straightlining results (n = 343-346 full, 183-185 high DI, 124-127 low DI). Cell numbers, vertically, report two-tailed

Kendall’s tau rank-order correlations (τ) for the full sub-sample, and high and low DI groups. Bracketed correlations in

diagonal report rank-order correlations for high- and low-DI groups for Minimal (bottom) groups. Rankings n = 22. † p <

.10   * p < .05   ** p < .01   *** p < .001

 

        These correlation patterns illustrate mostly convergent implicit rankings, plus the value of multiple rankings given

occasional differences by dispute interest. These results address RQ2 about convergence among implicit rankings. They

confirm expectations the two reliability scales would yield similar rankings, although somewhat less for low-DI

respondents, so subsequent ranking analyses include only inter-group reliability. By also confirming correlations—

particularly among high DIs—between inter-group reliability and use claims, further analysis of use data would be

redundant. Thus to answer RQ1 on which cues were implicitly “best” and “worst,” we emphasize inter-group reliability,

availability, and ability rankings. 

        Full implicit ranking data on these scales (SI 2 Zeroes, SI 3 Minimals) are summarized in Table 5 as the number of

times, among the full Minimal sub-sample, high- and low-DI respectively, a given cue ranked among the best or worst

three cues on a scale.[6] The best cues fell into research quality (excluding field uncertainty) and credentials categories,

plus experience in the performance category for low-DI respondents. High-DIs were more likely to rank research quality

cues among the best on these three scales, but low-DIs often agreed.

        “Worst” cues were interests, demographics, and field uncertainty; counting scientists’ “votes” (which dispute position

has a majority) was seen as unavailable by low-DI respondents.

 

Table 5. Implicit Rankings of Cues by Inter-Group Reliability, Availability, and

Ability (summary; SI 2-3 for full results)
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Inter-Group Reliability Availability Ability

Best 3 Worst 3 Best 3 Worst 3 Best 3 Worst 3

Interests       

Employer       

Grants    √ H  √H

Business  √√√  √√L  √L

Prestige  √L    √√L

Self-interest       

Shared values       

Salient values       

Reference group       

Credentials       

Type of degree √ L  √√√  √√√  

Source of degree     √ H  

Awards     √√√  

Performance       

Accuracy       

Precaution       

Experience √√L  √ L    

Demographics       

Nationality  √√√  √√H   

Similarity  √√ H    √√√

Vote-counting       

Scientists    √ L   

Studies       

Research quality       

Uncertainty of
field

   √ L  √√ H

Control group √√ H  √√ H    

Comparison √H      

Replication √√ H  √H    

Information quality √L  √√√  √√L  

Derived from SM2 (Minimal Group) on whether overall sub-sample, high dispute-interest (DI), and/or low DI groups ranked

cue in the best three or worst three for the column’s scale. Number of check marks indicates how many groupings so

ranked the cue. If less than all (3 checks), letter indicates whether high- (H) or low- (L) DI respondents ranked it so

(e.g., √√ L indicates full sub-sample and low DI group gave this ranking, while high DI group did not).

 

        On best implicit ratings high- and low-DI respondents agreed for no reliability, two availability, and two ability ratings,

or four of 15 top-ranked cues across the three scales; on worst implicit ratings they agreed on two reliability and one ability

ratings, or three of 14 bottom-ranked cues. However, they generally agreed on categories of cues, if not specific ones,
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better or worse on these criteria. 

 

Explicit Rankings

 

        Some 38 people ranked more or fewer (5 people) than three “best” cues (161 provided no rankings at all), and 39

more or fewer (3) than three “worst” cues, all excluded from analyses. Two different rankings—based on the proportion

who ranked a cue absolutely best or worst, or among the three best or three worst—were derived, with rank-order

correlations in Table 6 for the full Minimals sub-sample, and high and low DI groups. 

        Explicit “best” rankings correlated well as expected, and more strongly for explicit “worst” rankings. Both “worst”

ranking approaches converged across dispute interest, slightly less for the “best 3” approach. High and low DIs converged

little for “best #1” cues. Expected but overall weaker negative correlations between “best” and “worst” rankings indicated

people were not simply reversing “best” rankings to rank “worst” cues, particularly among low DIs.[7]

 

 1 2 3 4

1. Best #1
 
[.43*]

   

2. Best 3
.76***
.77***
 .61***

 
[.42**]

  

3. Worst
#1

 -.45**
 -.57***
 -.06

 -.47**
-.53***
 -.06

 
[.66***]

 

4. Worst 3
-.38*
 -.57***
-.06

 -.37*
-.54***
 -.06

.81***

.77***
1.00***

 
[.67***]

Table 6. Kendall’s tau-b Rank-Order

Correlations Across Minimals’ Explicit

Rankings, Overall and by Dispute Interest

n = 343-346 full, 183-185 high DI, 124-127 low DI). Cell numbers, vertically, report two-tailed Kendall’s tau rank-order

correlations (τ) for the full sub-sample, and high and low DI groups. Bracketed correlations in diagonal report rank-order

correlations for high- and low-DI groups for Minimal groups. Rankings n = 22. † p < .10   * p < .05   ** p < .01   *** p < .001

 

        Explicit rankings by Minimals (Table 7; full details, Zeroes SI 4, Minimals SI 5) thus revealed slightly broader answers

to RQ1 about best and worst cues than among implicit rankings, if with more agreement across dispute interest. Overall

best cues were experience and degree type, with control groups and replication also favored by high dispute-interest

respondents, and awards and reference groups by low DIs. The worst overall were self-interest of the lay observer and a

scientist’s business opportunities, with demographic similarity (and to a lesser degree prestige and nationality) mentioned

by high-DIs and employer by low-DIs. Field uncertainty ranked among both best and worst cues (fifth best and seventh

worst), as did field uncertainty (eighth best and fourth worst). 
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Best Worst

#1 Top 3 #1 Top 3

Interests     

Employer  √L √L √√L

Grants   √  

Business   √√√ √√√

Prestige   √√√ √L

Self-interest   √√√ √√√

Shared values     

Salient values    √H

Reference group  √L   

Credentials     

Type of degree √√√ √√√   

Source of degree     

Awards √L    

Performance     

Accuracy √√H √√H   

Precaution     

Experience √√√ √√√   

Demographics     

Nationality   √√H √√H

Similarity   √H √√H

Vote-counting     

Scientists     

Studies     

Research quality     

Uncertainty of
field

√L √√L √L √L

Control group √H √√H   

Comparison     

Replication √√H √H   

Information quality √√√    

Table 7. Explicit Rankings of Best and

Worst Cues

Derived from SM5 ( (Minimal Group): Number of checks indicates whether overall sub-sample, high dispute-interest (DI),

and/or low DI groups ranked that cue among the best three or worst three for reliability. If less than all (3 checks),

associated letter indicates whether high- (H) or low- (L) DI respondents ranked it so (e.g., √√ L indicates full sample and

low DI group gave this ranking, while high DI group did not).

 

Qeios, CC-BY 4.0   ·   Article, September 21, 2022

Qeios ID: 7AIP0E   ·   https://doi.org/10.32388/7AIP0E 16/27



        Rank-order correlations of explicit versus implicit rankings (Table 8) further answer RQ2 about convergence. Of 24

correlations involving dispute interest sub-groups, all but four (ability, concerning #1 best and worst rankings) were

stronger for high- versus low-DIs, but all cases exhibited identical signs. The #1 versus top-3 methods did not obviously

differ. Explicit best rankings exhibited positive, thus convergent correlations with all implicit rankings. Scales most

correlated with explicit best rankings were inter-group reliability and availability, indicating people largely followed

instructions specifying inter-group reliability as the explicit-ranking criterion (Table 1). The more people saw cues as

reliable for determining which group of scientists is more credible, and available in their own information sources, the

more likely they were to explicitly rank those cues best. Given positively correlated implicit and explicit best rankings, and

negatively correlated explicit best and worst rankings, negative correlations of implicit best and explicit worst rankings

were expected, and again the greater negative correlation with implicit inter-group reliability rankings underlines that

people followed explicit-ranking instructions. 

 

 
Explicit Rankings

Best Worst

Implicit Rankings #1 Top 3 #1 Top 3

Inter-group reliability
.55***
.65***
.34*

.53***

.62***

.28†

-.79***
-.76***
-.54***

-.81***
-.82***
-.54***

Availability
.50***
.58***
.43**

.50***

.55***

.36*

-.62***
-.66***
-.36*

-.56***
-.61***
-.36*

Ability
.47**
.36*
.35*

.43**

.35*

.41**

-.49**
-.38*
-.30†

-.43**
-.33*
-.30†

Table 8. Kendall’s tau-b Rank-Order Correlations

Between Implicit Rankings and Explicit Rankings,

Overall and by Dispute Interest

Numbers in each cell, vertically, report two-tailed Kendall’s tau-b rank-order correlations (τ) for the full sample, and

respondents with high and low dispute interest. n = 22. † p < .10   * p < .05   ** p < .01   *** p < .001 or better

 

Factors in Inter-Group Reliability Ratings

 

        Multiple linear regression analyses using Minimal subjects probed factors affecting inter-group reliability ratings for

selected “best” and “worst” cues in both implicit and explicit rankings. Non-reliability dimensions were omitted for brevity,

with cues selected to avoid multiple examples from the same category. “Best” examples included degree type,

experience, and replication; “worst” examples included business opportunities and nationality.

        Each reliability rating was regressed on demographics (gender, age, education [dummy coded, reference category =

< “some college”; this level of U.S. education or higher is most associated with exposure to scientific thinking], ethnicity,

political ideology), dispute-interest dummies (reference category = no), topic dummies (reference category = dietary salt),
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scientific reasoning knowledge, science mistrust, and scientific positivism.[8] Table 9 shows that dominant effects came

from scientific reasoning knowledge and scientific positivism beliefs: greater knowledge meant less positive reliability

ratings, while belief in science’s ability to reveal truth did the reverse, across these five cues. Better replication ratings also

stemmed from interest in scientific disputes, viewing the dietary salt versus the nanotechnology scenario, and being older.

Better ratings for scientists’ business opportunities also were associated with non-Hispanic white ethnicity, and for

nationality also from conservative political ideology. Among these examples, more variance in ratings was explained for

“worst” than “best” cues.

 

Table 9. Multiple Linear Regression Analyses of Selected “Best” and “Worst” Cues’ Inter-group

Reliability 
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Best Cues Worst Cues

Type of
degree

Experience Replication Business Nationality

Female
.06
.15
1.09

.06

.13
1.06

.07

.15
1.25

.00

.01

.06

-.03
-.08
-.53

Age
-.02
-.00
-.37

.09

.01
1.46

.11†

.01†
1.85

-.07
-.01
-1.22

-.07
-.01
-1.13

Education (some college-
plus)

.02

.04

.31

-.04
-.08
-.65

.04

.08

.67

.05

.12

.79

.01

.02

.13

White
.04
.10
.69

.01

.02

.17

.07

.15
1.21

.11†

.30†
1.86

-.05
-.13
-.79

Liberal
.05
.05
.92

.03

.02

.46

.02

.02

.43

-.02
-.03
-.42

-.16**
-.18**
-2.88

Dispute Interest—Yes
.01
.01
.08

.06

.11

.90

.18**

.35**
2.92

-.02
-.05
-.32

-.03
-.07
-.46

Dispute Interest—Maybe
-.01
-.04
-.19

-.00
-.01
-.05

.05

.17

.76

.02

.08

.65

.02

.09

.37

Dark Matter
-.03
-.06
-.38

.01

.01

.11

.03

.05

.40

.01

.03

.21

-.03
-.08
-.45

Nanotechnology
-.00
-.01
-.03

-.08
-.16
-1.18

-.12†
-.24†
-1.80

.01

.04

.22

.00

.01

.06

Scientific reasoning
-.18**
-.08**
-2.75

-.17*
-.07*
-2.48

.11†

.04†
1.74

-.33***
-.17***
-5.40

-.29***
-.15***
-4.62

Science mistrust
-.01
-.00
-.12

.00

.00

.02

.05

.01

.79

.00

.00

.04

.08

.01
2.42

Scientific positivism
.18**
.04**
2.95

.18**

.04**
3.05

.19**

.04**
3.28

.15**

.04*
2.57

.19***

.05***
3.42

      

F, p
2.15***
(12,288)

2.01*
(12,286)

3.42***
(12,292)

4.66***
(12,282)

6.88***
(12,268)

R2 .08 .08 .12 .17 .24

Each variable cell reports in order standardized and unstandardized correlation coefficients, and t values. ✝ p < .10   * p <

.05   ** p < .01   *** p < .001 or better

 

Discussion

 

Major Findings and Implications
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        Ideally, cues laypeople use to determine which group of disputing scientists is more credible would be “objectively”[9]

reliable at separating relative scientific truth from falsehood, available to laypeople, and effectively usable by them; their

unambiguous presence (e.g., one side of the dispute clearly has more experience or did better-quality research) makes

attentive laypeople decide that this dispute position is more valid; and would be seen by laypeople as reliable, available,

and something they can use effectively.

        Rather than “normative value” and “persuasive value” attributes, this paper focused on the last, “expressed value”

attribute: what do laypeople think is the relative value of potential relative-credibility cues? Account had to be taken of

potentially widespread lay unawareness of scientific disagreements, indifference to their outcomes, unfamiliarity with

some or all cues presented, or unfamiliarity with suggested evaluative scales. Throughout analysis two controls were

used: dispute interest, with the highly interested assumed to be less unaware, indifferent, or unfamiliar, and the degree of

straightlining answers (here, the same rating across all five scales for a cue), between chronic straightlining—an indicator

of inattention or indifference, to be omitted—and modest straightlining, which might reflect inability to distinguish scale

dimensions for a few cues in a novel task. Only a quarter of respondents did no straightlining, a sample size reducing

analyses’ reliability without guaranteeing greater validity. So analyses here mainly focused on a group straightlining for no

more than five of the 22 cues, half of whom straightlined only once or not at all. Reporting results for this Minimals group

provided a larger sample, with potentially more reliable results. 

        These Americans reported the most reliable relative-validity cues for disputing groups of scientists included research

quality (e.g., replication), experience and degree type, they used these cues, and (usually) their sources of dispute

information contained them. Expressed valuations of cues average Americans can use differed slightly, primarily adding

credentials (degree source, awards). The worst cues were deemed interests (e.g., whether scientists or their employers

could gain money or prestige) and demographics (whether disputants were American or otherwise similar to the lay

observer). These results answered RQ1 about “best” and “worst” cues regarding expressed value. These results do not

assess cues’ normative or persuasive values, nor do they cover all possible cues (e.g., omitting local cues). But their

reliability within these limits is enhanced by findings, addressing RQ2-3, of surprisingly few differences in cue rankings,

implicit or explicit. We found somewhat stronger effects for high- versus low-dispute interest respondents (e.g., in

correlations across rankings), implying more coherence in the former’s responses (but not necessarily more accuracy: as

noted earlier, social desirability motivations that might increase inter-rank correlations might be stronger among high-DI

respondents, but also might be more accurate if, for example, these cues are both available and used by them).

Dimensions reflected in the five rating scales tended to correlate as expected (e.g., perceived ability of the average

American least associated with the other criteria), approaches to collating explicit rankings did not yield markedly different

results, and explicit rankings largely correlated with inter-group reliability implicit rankings, expected if people complied

with instructions. Main variations in multiple regression analyses of inter-group reliability ratings for five selected “best”

and “worst” cues were between people high and low in knowledge of scientific reasoning, and those high and low in

beliefs in scientific positivism, but those relationships did not vary across these cues. 

        This reassuring convergence of rankings still leaves questions about expressed value. For example, people rated

research quality cues highly, among technical information purportedly least accessible to lay understanding (one
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“normative value” criterion; Collins & Evans, 2007; Flanagin & Metzger, 2007; Goldman, 2001; Hardwig, 1985). Laypeople

may indeed fail to read research literature and accurately determine the relative degree of study replication between

disputing scientists. That does not preclude their using an accurate report of replication in their information sources, if

those sources can access and are willing to report accurate accounts. Meanwhile, people rated interest cues—often

deemed vital in qualitative research (“follow the money”) and reasons laypeople think scientific disputes occur (Dieckmann

et al., 2017; Dieckmann & Johnson, 2019; Johnson & Dieckmann, 2018; Kajanne & Pirttilä-Backman, 1999; Maxim &

Mansier, 2014; Sprecker, 2002)—among the least reliable. The source of this discrepancy merits study: e.g., did this

larger quantitative sample tend to believe both sides would have interests in its outcome, thus reducing such cues’

discriminative value?

        The non-representative sample used here, with its above-average education, may have positively affected observed

straightlining and results. If chronic (high-frequency) straightlining reflected topical indifference, that would likely increase

in an average-education sample, reducing the power of a given sample size to identify clear implicit rankings across cues.

If the more moderate straightlining on which reported results are based was due to inability to distinguish among the rating

criteria for a given cue in this sample, using a representative sample would only yield greater convergence across implicit

rankings. Probing reasons for poor within-cue discrimination may be important: e.g., does difficulty in definitively recalling

whether a cue is available in their information sources generalize to rating its reliability or average-American utility? why?

But within-cue straightlining does not affect relative rankings of different cues, as the high education of this sample might

have: e.g., more emphasis than a representative sample might offer on the perceived reliability of research quality cues,

whether due to greater knowledge or greater motivation to offer socially desirable responses. 

        The utility and parsimony of the proposed cue taxonomy will be validated only with logical analysis and empirical

application by others, but in this expressed-value effort generally people treated cues within a category similarly, a partial

vindication. For example, all but the field uncertainty cue among research quality cues ranked high, while interest and

demographic cues ranked low; credentials’ rankings varied more depending upon the ranker, while only experience

among performance cues consistently ranked high. 

        Assuming these results replicate, we need complementary normative and persuasive value studies (e.g., which cues

more influence lay decisions about disputants’ relative credibility, and which should?). Intriguingly, experimental tests

involving eight of these cues yielded odds ratios for persuasive value—how much more often people select Position B as

the more valid position when the cue favors Position B over Position A—across three disputes (dark matter, sea level rise,

marijuana risks and benefits) whose rank correlation with their rankings in this expressed-value study was a remarkable

.71 (reference omitted). This does not validate overall survey rankings, but justifies further probing of expressed,

normative and persuasive values of cues.

        Science communication practitioners may consider some current findings, besides assessing whether cues appear in

information sources. They might try to influence which cues appear in mass and social media, despite mass media’s

constrained ability and willingness to report relevant information in science stories, such as uncertainty or the balance of

scientific opinion (“vote-counting”) (Friedman, Dunwoody, & Rogers, 1999; Singer & Endreny, 1993; Wakefield & Elliott,

2003). Meanwhile, recent guides for lay assessment of scientific studies stress research quality cues without explaining

their strength or other cues’ drawbacks, or acknowledging that scientists also use other cues which might help laypeople if
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available (Alberts & McNutt, 2013; Collins & Weinel, 2011; Harvard School of Public Health, 2016; Sutherland,

Spiegelhalter, & Burgman, 2013). These somewhat mutually-reinforcing factors in journalistic and science education

practice may limit opportunities to change availability or lay use of normatively-valued cues, but need not prohibit action.

Emphasizing cues endorsed or rejected by high-DI citizens would be the most efficient approach, as they are the ones

most likely to attend to cues in their information sources.

 

Study Limitations

 

This study emphasized expressed valuation, not normative or persuasive valuation; ubiquitous versus local cues; two-

sided disputes between masses of scientists; and Americans’ views (see civic epistemologies; Jasanoff, 2005). This

national sample’s relatively high education limits generalization to the U.S. population, and may have evoked clearer but

somewhat different cue rankings than a representative sample (e.g., emphasizing research quality cues rather than

credentials). 

 

Conclusions
 

        Scholars of expertise, and of citizens’ access to information allowing them to distinguish better from worse science,

disagree on which cues are better and suitable evidence (e.g., reasonable arguments, versus lay access to tacit

knowledge or social evidence; Alberts & McNutt, 2013). Yet scholars agree on both difficulties of lay discrimination and

that in some circumstances laypeople can (somewhat) assess expertise. Building upon earlier conceptual discussions,

and limited qualitative or documentary data on ubiquitous versus local (Irwin & Wynne, 1996) cues, this study examined

which ubiquitous cues people say are reliable, available, usable and used, as a complement to ethnographic and

experimental studies of cues people actually use, plus “normative value” and “persuasive value” studies noted above. The

aggregate convergence on research quality, experience and degree types as “best” cues—with relatively few differences

based on dispute interest and evaluative dimension (reliability for relative validity versus the average American’s ability to

use the cue)—provides a foundation for further scholarly effort in improving the cue taxonomy proposed here, replicating

these findings and extending them, and advancing science communication about how laypeople can assess intra-scientific

disputes. Collectively these studies’ aim should be to help scholars understand strengths and limitations of lay decisions

about science using such cues, and potentially improve both science communication and policy-making.

 

 

Footnotes

 
[1] Alternatives not covered here occur in who disagrees (e.g., individuals; non-scientist experts; three-plus parties) on

what (e.g., a phenomenon’s magnitude or frequency; data quality or methods). 
[2] Vote-counting—which side does the majority support?—exemplifies a cue applying only to disputing groups of
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scientists, not to disputing individual scientists.
[3] Education differed significantly by dispute interest (F(2,531) = 9.59, p < .0005): high-DI (dispute interest) respondents

averaged some college (M = 5.07, SD = 1.32), versus vocational education for low-DI (M = 4.63, SD = 1.53, p = .004) and

ambiguous-DI respondents (M = 4.35, SD = 1.47, p = .001).
[4] No statistically significant contrast met the looser FDR criterion of d = .05.
[5] Briefly, the Zero group exhibited no FDR-significant differences in ratings by dispute interest; Zeroes and Minimals

diverged slightly on reliability-availability correlations, as the former exhibited moderately strong correlations, with high-DIs

reporting reliable cues as available much more often; Zeroes exhibited slightly stronger correlations than Minimals for

three scales but much weaker ones for availability and ability.
[6] Supporting Information highlights the top five, but Table 5 focuses on the top three, to parallel the explicit rankings in

Table 6.
[7] People were asked separately for their three best and worst cues to minimize burden; complete explicit rankings might

have yielded stronger inverse “best”-“worst” correlations. 
[8] Logistic regression analyses merit > 50 cases per predictor, impossible even with the full sample, precluding testing

factors in explicit rankings.
[9] “Objectively” is a loaded word used as a proxy for debates on social construction of scientific practice beyond this

paper’s scope (Beatty, 2006; Irwin & Wynne, 1996; Stilgoe, 2007).
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