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H. Ebisui and J.C.G. Notrott studied patterns of squares around respectively a right and an

arbitrary triangle, thus generalizing the Pythagorean theorem. We construct a new pattern
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of squares around an arbitrary triangle, based on the four squares theorem, using simple
vector constructions to avoid trigonometric calculations. This gives rise to some known

number sequences, with new applications on a geometric pattern of squares.
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Generalizations of the Pythagorean
Theorem

The Pythagorean theorem for a right-angled triangle is the
most well-known theorem. There are many generalizations,
such as Japanese mathematician H. Ebisui’s ‘Pythagorean
fivefold theorem’ (see 1), J.C.G. Notrott had published an even
more general result earlier (see 21 3nd m), but he did so in the

doi.org/10.32388/7CoUCE.3

magazine Pythagoras, in Dutch, so one can assume both
discoveries were made independently.

Ebisui considered a right-angled triangle AABC (in red on
Fig. 1) with right angle in C and squares on the sides q;, b, c;-
The Pythagorean theorem states that ¢ = o2 + b3. If a ring
of (blue) squares with sides 4;, B;, C; is built on the convex
hull of these squares, then 5 O} = A? + B2. Another ring of
squares with sides as, bs, c2 on the convex hull of these
squares will again satisfy the Pythagorean theorem, and the
next one with sides Ay, B, C> will again satisfy
5CF = A3 + B}. Andsoon.
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Figure 1. A right-angled triangle (shaded red) and several rings of squares around it, alternately satisfying
the Pythagorean theorem cf = a? + b? (red squares) or the Pythagorean fivefold theorem
5C% = A? + B? (blue squares)

Notrott considered an arbitrary triangle and constructed
squares around it the same way (see Fig. 2). Using similar
notations, the sums of the areas of the squares of the
consecutive rings are:

AP+ B2+ C? = 3(al+ bl + ),

a3 + b5 +c} =16 (af +b] + cf),

A+ B3+ C2=15 (al+b2+ c2),...

which gives rise to the sequence 1, 3, 16, 75, 361, 1728, 8281, ...
(A005386 in the Online Encyclopedia of Integer Sequences). Of
course, for a right triangle, where C? = ¢2 = a? + b2,
Notrott’s result becomes Ebisui’s ‘fivefold theorem’.
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Figure 2. An arbitrary triangle and several rings of squares around it, for which the sum of the areas can be
expressed in terms of the sum of areas of the first row by sequence A0005386 of the OEIS

A proof of an even more general theorem for arbitrary
triangles was given by Long Huynh Huu (see 1), He shows
that any linear relation that holds between the areas of the
squares of the first ring will also be valid for the areas of the
squares of the third, fifth, ... ring. And any linear relation that
holds for the areas of the squares of the second ring, will also
hold for those of the fourth, sixth, ... ring.

To a Pattern of Four Squares around an
Arbitrary Triangle

The four squares theorem

There are still other patterns to be discovered in the squares
around an arbitrary triangle A ABC'. Let’s start with four (red)

squares instead of three (see Fig. 4). Denote
— N - - —
CB=a, AC= b, BA= ¢, DG= d and the vectors

obtained by rotating them 90° clockwise respectively by

- = = —
d'.

= -
a, b, and Note this implies that <a’> = —a.

These notations allow the use of simple vector constructions
and avoid trigonometric calculations as used in (&

— - 7 - 7 7
Thus, c=—(a+b), d =b —a and
— s U
¢ =— (a’ + b’), d = a — b. Moreover, since the

—
-

vectors a and a' have the same length, as well as the vectors

= 7 =

b and b , and the angle between a and b is the same as the

— — i "
angle between ¢’ and b ,wehavethata’ e ' = a @ b.From

— ’
cC o C

e a + e b
— —
— ’ - ’
= a eb + b ea,
N — - —
itfollowsthat ¢ ¢ = — b ed .

The areas of the squares with sides c and d are:

doi.org/10.32388/7CoUCE.3 3


https://www.qeios.com/
https://doi.org/10.32388/7C0UCE.3

— — —
A= ?o ?: (?—0— b>0<7+ b>:a2+270 b and
+ b2
- = - = - = , —
2= d e d = (b'—a’)'(b’—a'>:b2—2a'
H

’ — —
e b +a’=a>-2a e b+ 7,
sothat: ¢? + d? = 2(a® + b?).
Hence, “the sum of the areas of the squares on the non-equal
sides of two triangles with two equal sides and supplementary
enclosed angles is double the sum of the areas of the squares
on the equal sides”. This result is known as the four squares
theorem.

In Fig. 3, we illustrate the theorem. The triangles AABC and
ABDG have two corresponding sides equal, e.g.
|AB| = |BD| and |BC| = |BG| while the enclosed angles in
B are supplementary. The theorem states that the sum of the
areas of the blue squares is double the sum of the areas of the
red squares.

geios.com doi.org/10.32388/7CoUCE.3
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Figure 3. Illustration of the four squares theorem, the sum of the areas of the blue squares is double the
sum of the areas of the red squares.

Extending the pattern of the four squares theorem to
the next ring of squares
We extend the pattern of the four squares theorem as follows

(see Figure 4). We construct four new squares by connecting
vertices of the previous set of squares. Then:

A T A -
a? + d? =|a +2b |Je|la +20b +(b—2a>

%
b?)

- =
b

! ! %
—d 44t v 4d e b 444G e b =

+50
S S S
a =V - d=4d+ and
A — — —
blzd’—b:<7—b>—b=7—2b, 5
b+ o :<a—2b> < >+ —a—b
- = 7 Y
ca=cd —a = —-2a -V, .
— - — — 2' b
d1=—7—d:—?—<7— b>=—2?+b, ( )

— - 7
so that: — 44 —4d e b+t +4d>+44d o b =
— — — +5b2
di=—a—-25b,

N N N Hence, a? + df = b2 + .
V1= =d -2V,
— —
di=24d+b,
— - =
di=-2d +V.
Using these expressions, the sums of the areas of opposite
(green) squares are equal since:
geios.com doi.org/10.32388/7CoUCE.3 5
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Figure 4. A new pattern of four squares around an arbitrary triangle

Tid)e(@rd)ia (b-0)e(b-v

The set of the auxiliary squares - ( ¢ ta ) * < ¢t > * < B > * ( a )
- —

Before building the next set of four squares, we first create two | 4 <;> +d ) . ( ? _p )

auxiliary squares (the blue ones in Figure 4) on the vertices of
the squares with sides a; and b;, and on those with sides =242 + 852

¢ and d;. The vectors associated with its sides can be e = N %/ a{
expressed as: +4(a0b+a eb— a eb — a -b>
— — — — — -

— - ; N
z1=Y1—di1=a+d +2b -2V and —22218R+8d eb,
- - 7 — - = =

=ci—di1=2a+2d + b— V. - =
= imdi=2atias and similarly, y? = 8> + 20> +8d e b.
Consequently,

. R . . The last part of these expressions can be reformulated in

— — . e .

93% _ < 7 Tl 42 b —2 b’) N ( 7 L d 420D —2 b’) terms of the area Ax4pc of the original trlangle_> AABCL> Note
that the (smallest) angle between the vectors o’ and b and

_)
the (smallest) angle between the vectors 7 and b sum up to
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270° in case of an acute triangle or differ by 90° in case of an
obtuse triangle so that:

- =

a e b =ab cos , where we
- = N —

(a’, b>:—absin<a7 - b) = —2 AaaBC

- =
denote by cos(a’7 b) the cosine of the angle between

z and ? and by sin (7, — ?) the sine of the angle
between E) and f?.

It follows that:

x2 = 2a%+8b%—16 Apupe,

y? = 84+ 2b% — 16 Aaagc,

andsoz} + yf =10 (a® +b*) — 32Aa45c-

Further extension of the pattern

The next ring of squares is constructed with a vertex of a
square of the previous one and a vertex of an auxiliary square.
And this procedure can be continued (see Fig. 5). Labelling the
vectors associated with the blue auxiliary squares as «; and

— . . - 7
y ;, and those associated with the other squares as a4, b,

— - )
c ;and d ;, we find that:

— — - —
— — — ’
as=a1+ 21=2d —a +4b +2b

e T T N
b2:b1—m11:2a—a—4b—2b
— - N -
— / — ’ — ’ —
zo=—-a2t+xz1+ ba=4qd +4a —8b +8b =41

Hence, 2 = 16 22 and

- -7 - -
bo—as=bi1—a1+2zxz1=3 2z,

Similarly,

N

- ; —
p=8d +8a 40 +45b =4y

Calculating the sum of the areas of opposite squares, yields:
a}+ d} = b2+ 2= 25(a® +b*) — 64Ananc

In the next paragraph, we will generalize this pattern.

geios.com doi.org/10.32388/7CoUCE.3
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Figure 5. The constructed pattern of four squares around an arbitrary triangle

Generalization of the Pattern of Four
Squares around an Arbitrary Triangle

Defining the pattern

With the aid of the set of auxiliary squares, we can generalize
the pattern as follows (see Fig. 5).

For ¢ > 2, we define:

- = -
a;= Qi1+ Ti1
- = =
bi=bi1— 2
4)
— - ;
Ti= i1+ bi— ai

so that

_>
> 7 = e e
a;+ bi=da;1+ bii=a1+ b1= a+a —2
‘>
+20
Rotating 90° clockwise, yields:
< _ -
a;=0a;-1— Ti-1
- =
_)
bi=bi1+ i1
1t follows that:
— — — — — — o
di+bi=dia+tVii=d1+b1= —a+a
— —
-2b -2V
and

doi.org/10.32388/7CoUCE.3
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— — — —
b =27 b /
i— ai=2zTi1+ i-1 — @ -1

Hence,

- = - — = =
z;= i1+ bi—di=3z;1+ (Vi1 — di-1]-

The sequence of the areas of the auxiliary squares

Now we turn to the sequence of the ?, and the sequence of

— —
the ¥; — o ; and derive an expression for both in terms of
%
ry-
Theorem 1

- - 7
For the sequences of the = ; and the & ; — a ; defined by (1),

we have that

Ti— ki diwithk =1, ky —4dand k; — 4 k;_1 — k;_» for
i>3,(2)
— —

b’i — a'i = lz ?1 with
Li=4l_1—1;» for s > 3. (3)

l1:1, l2:3 and

Proof

From the previous calculations, it follows that the relations
hold forn = 1, 2.

Forn > 3, we have by induction on n:
— - — —
— —
Vi —di=22;1+ (b’ila’il):2ki1 T

— —
+l 1= 2ki—1+1is1)

—
z1=1 1

- — = — —
T = ?i—l‘F <b/i — ai>:(ki—1+li) z1= ki x1,

li=2ki_1+ L1 (4)
and

ki= ki1+ lfori >3 (5)

Now, using (&), (5):
liyi= 2k + s (by 4)
=2k 4+ 2L+ 1 (by 5)
=34+ L — i (by 4)

=41 — ;1

In a similar way, we find that:

kivi = ki+ lin
=ki+1i+2k
=3k + I;
=3k + ki — ki
=4k — ki1

which proves the result.

doi.org/10.32388/7CoUCE.3

Note that the sequences for the k; and the I; correspond to
sequences A001353 and A001835 of the Online Encyclopedia of
Integer Sequences. Both series are extensively commented, but
the geometric applications given here seem new.

The theorem implies that the areas of the auxiliary squares
are:

z? = k? 22 = k?(2a® + 8 b* — 16 Aaanc)

In an analogous way, we find that:

- = -
Ci= Ci-1— Y i1
— — -
di=dia1+ yi1
- = -
Yi= Yiat ci— dy
- 7 —
cdi—di=1 y,
— —
yi= ki y1

y? =k y? =k(8a’ +2b* — 16 Aaapc)

where the sequence of the k; and the sequence of the /; are the
- - =
same as in the case of the =z ; andthe ¥'; — a ;.

The sequences connected to the sum of the areas of the
opposite squares

Now let’s turn to the sequence of the sums of the areas of

opposite  squares. We claim that, for > 2,
%

— — ; .

a; = a1+ t; 1z 1,Wlthti: ki+ ks +...+ k;.

Obviously, the relation holds for i = 2. For ¢ > 2, we have, by

induction on ¢ that:

NN — N - N
a;= a;1+ x'is1= a1+tiox’1+ kiiz'1 = a;since
%
+ti1x'y
tir=tio+ ki1
Similarly,
N —
bi = b1 —tiiz's
- — =
ci = c1—ti1y
— — -
d; = di1+ti1y,
It follows that
-2 P 2 2 42 2 2
a; + d;=af+ di +1t; (m1+ yl)
— —
— —
+2ti71(a1'$11+ d ‘?/1)
where
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- 7 - - = =
agrex1+ di1ey;=|(a +2b
- 7 - =
o|l—a+a +2b+20b |+
= L =
.(-27+2a'+b+b’>

:5a2+5b2—16AAABC

Using the above expression and those for a? + d? and
z? + y? derived previously, yields:
al+ d}= [1+2¢t 1+ 2t2, | (5a*+ 5b)

— [tici+ t7,] 32 Aasnc

This expression can be rewritten as:
a? + dz2 =5 (a2 + bz) — 32 s; AaaBC
where the sequence of the r; and the sequence of the s; are
given by:
rp=1+2¢_1+2¢t_ fori>2andr =1
8; =t;1+ t2  fori > 2ands; = 0.
So, we proved a second theorem.
Theorem 2
The sums of the areas of the opposite squares satisfy the
equation:
a? + dz2 =5 (a2 + bz) — 32 s; AaaBC

where the sequence of the r; and the sequence of the s; are
given by:
rp=14+2¢_1+2¢  fori>2andr =1
si=t; 1+t fori >2ands; = 0.
Inasimilar way, b + ¢ = 5r; (a®> +b%) — 32 s; Aaanc-

Note that the proof does not depend on the character of the
triangle and that the pattern remains valid for obtuse triangles
as well as for acute triangles. Figure 6 illustrates the case of an
obtuse triangle. In the construction, the triangles may
eventually overlap, but this has no influence on the formula.

doi.org/10.32388/7CoUCE.3
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Figure 6. The pattern of four squares around an obtuse triangle

The sequence of the ¢; is 1, 5, 20, 76, 285, ... which is known as
A061278 in the Online Encyclopedia of Integer Sequences. The
sequence of the s; is 0, 2, 30, 420, 5852, 81510, ... and
corresponds to the sequence known as A217855 in the Online
Encyclopedia of Integer Sequences. So we found a new
geometrical application for both sequences.

The sequence of the r; is connected to that of the s; since it
follows from the definition that

r; =1+ 2 s;. The sequence of the r; is 1, 5, 61, 841, 11705,
163021, ... which is not yet in the Online Encyclopedia of
Integer Sequences but which is connected to the sequence
f; known as A123480, since f; = r;,; — 1. Here again, we give
a new geometric application of this sequence.

In the appendix, we show that the sequences correspond
indeed to the sequences of the OEIS and derive some new
formulas connecting their terms.

Concluding remarks

In this article, we constructed a series of four squares around
an arbitrary triangle and found some connections between the
areas of these squares and sequences in the Online
Encyclopedia of Integer Sequences. In the construction of

these series, we made use of the four squares theorem, thus
grouping four squares instead of the usual three. It might be
interesting to look for other patterns in the squares around a
triangle by grouping them in other ways. Maybe there might
be some other sequences to be discovered.

Appendix. Formulas for the terms of the
sequences

For the sequence of the k;, it is clear that this sequence
corresponds to sequence A001353 since it satisfies the same
recurrence relation k; = 4 k;_1 — k;_o with k; = 1.
Formulas for the sequence of the t;

The sequence of the ¢; is defined by the partial sums of the
sequence of the k; since

ti=ki+ ka+...+ ks

Hence it corresponds to sequence A061278. From the
definition, it follows that:

tiyn = ti+ kiprandt; = ti1 — ki

doi.org/10.32388/7CoUCE.3 11
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We derive some other formulas for the terms of this sequence:
2t; = kiyy — k; —1fori > 1(6)

t2 — t;= t;_1 ety fori > 2(7)

ti=4t1— tio+1fori > 3(8)

Proof of the first formula:

We work by induction.

Fori =1,wehaveky, — k1 —1=2=21¢;

For i > 1, we use the induction hypothesis:
2ti:2ti,1+2ki :3]61— ki,1—1: ki+1_ki -1

Proof of the second formula:

We use again induction.

Fori =2,12 — ty =20 = t; e t3.
Fori > 2:

2~ ti=(tin+ k) — (bia+ k)= 2, — tia
+2kiti+ K — ki

And, by induction,
22— b=t tig +2kiti + K — Kk

(tivn — kiva) (bin — kia) +2kitia+ K — K
tiontivn — (ki — ki) tion — ki (B + Kiga)
kiikivi+ 2kt + K — ki
=t 1ty —2kitia+ kistion— kit + K — ks
= ti1tiv1 — 2k tio1 + kisation — kisi(fion + ki) + K
— K
=ti gty + ki (-2t — ki + ki —1)
= t;—1 tiy1 (by (6)
Proof of the third formula:
Fori=3,4t; — t1 +1 =20 = t3.

+

For ¢ > 3, we use induction to find that:
At — tio+1=4 (tio+ kis1) — (ti—3+ kia) +1
=M4tig— tig+ 1)+ (4ki—1— ki_2)

=ttt k=1t

Formula for the sequence of the s;

The sequence of the s; is determined by s; = t;_; + t2 | for
1 > 2 and s; = 0. We show that it satisfies also the recurrence
relation

si=14s;_1 — s;_9+2for: > 3, ©9)

which identifies it as the sequence A217855 of the Online
Encyclopedia of Integer Sequences.

=162 +12¢ 1 +2+ 2, —3t;i o — 81t o

=14s; +287 =2t 1 —si 1 +21] ) — 2t o +2
—8ti1tia

=14 s; — s;1+2

+2 (t,?,l —tia+ B, —tia—4tii1tio )

=14 5;— s;.1+2+2 (tz?Z tit+ t2 .y —tiio—4dtiit o ) (br
)

=14 s;— s;1+2+2t 9(ti+ tia—1—4¢_1)
= 14 s; — s;-1 +2(by(8)

Formula for the sequence of the r;

Since the sequence of the r; is connected to that of the s; by
the formula r; = 1+ 2 s;, the following recurrence relation
holds between the r;, fori > 3:

Ty = 14 Ti—1 — Tij—2 — 8
Proof:

rp=1+2s,=5+28s; 1 —2s; 5 =14 (2s,_;+1)
*(281',14*1)*8:141“1',1* 7‘1;2*8
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