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Patterns of Squares Around an Arbitrary
Triangle
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H. Ebisui and J.C.G. Notrott studied patterns of squares around respectively a right and an arbitrary triangle, thus
generalizing the Pythagorean theorem. We construct a new pattern of squares around an arbitrary triangle, based
on the four (hinged) squares theorem, using simple vector constructions to avoid trigonometric calculations. This
gives rise to some known or unknown number sequences, with new applications on a geometric pattern of

squares.
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Generalizations of the Pythagorean Theorem

The Pythagorean theorem for a right-angled triangle is the most well-known theorem. There are many
generalizations, such as Japanese mathematician H. Ebisui’s ‘Pythagorean fivefold theorem’ ].C.G. Notrott had
published an even more general result earlier (see Ll and 121), but he did so in the magazine Pythagoras, in Dutch, so

one can assume both discoveries were made independently.

Ebisui considered a right-angled triangle AABC (in red on Fig. 1) with the right angle in C and squares on the sides
a1, b1, c1. The Pythagorean theorem states that c% = a% + b%. If a ring of (blue) squares with sides A4;, By, C; is
built on the convex hull of these squares, then 5 Cl2 = A% + B%. Another ring of squares with sides a3, b2, c2 on the
convex hull of these squares will again satisfy the Pythagorean theorem, and the next one with sides

Ay, By, Cywillagain satisfy 5 C5 = A2 + B3. And so on.
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Figure 1. A right-angled triangle (red) and several rings of squares around it, alternately
satisfying the Pythagorean theorem ¢ = a? + b7 or the Pythagorean fivefold theorem

5C? = A? + B?

Notrott considered an arbitrary triangle and constructed squares around it the same way (see Fig. 2). Using similar

notations, the sums of the areas of the squares of the consecutive rings are:

A+ B+ C? = 3(al+ b2+ c2),

a3 +b2+ci=16 (a?—}—b% + c%),

Al+ B3+ C2=15 (a?+b2+ c2),..

which gives rise to the sequence 1, 3, 16, 75, 361, 1728, 8281, ... (A005386 in the Online Encyclopedia of Integer

Sequences). Of course, for a right triangle, where C* = c¢* = a*+ b?%, Notrott’s result becomes Ebisui’s ‘fivefold

theorem’.
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Figure 2. Rings of squares around an arbitrary triangle

A proof of an even more general theorem for arbitrary triangles was given by Long Huynh Huu (see Bl). He shows that
any linear relation that holds between the areas of the squares of the first ring will also be valid for the areas of the
squares of the third, fifth, ... ring. And any linear relation that holds for the areas of the squares of the second ring will

also hold for those of the fourth, sixth, ... ring.

To a Pattern of Four (Hinged) Squares around an Arbitrary Triangle

There are still other patterns to be discovered in the squares around an arbitrary triangle A ABC'. Let’s start with

— N - — - —
four (red) squares instead of three (see Fig. 3). Denote CB= a, AC= b, BA= ¢, DG = d and the vectors

- = - - =\’ 5
obtained by rotating them 90° clockwise respectively by o/, b, ¢/ and d’. Note this implies (a’ ) = —a . These

notations allow the use of simple vector constructions and avoid trigonometric calculations as used in [a])

Thus, ¢ =—(a +b),d =b —a and ¢ =—(a +b),d = a — b.Moreover, since the vectors a and

— — — - =
o' have the same length, as well as the vectors b and ¥, and the same angle between them, we have that o’ e & =

— — = - -
deb. From ?oc':0=(g>+ b>o<a'+b’>
— — — — - — — — — — -

= ?oa' + ? eb + bed+ beld = 7 e b + b e a’,itfollowsthat?o b= — bed.

The areas of the squares with sides c and d are:
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— — —
02:?0 ?: (74— b>0<?+b :a2+27o b + b?and
- = - — - — , — — , N —
d>=d e d = <b'—a’>0<b'—a'>:b2—2a'Ob'—}—at2 =a’—2a e b + b, S0 that:

¢ +d? = 2(a? + b?). Hence, “the sum of the areas of the squares on the non-equal sides of two triangles with two equal
sides and supplementary enclosed angles is double the sum of the areas of the squares on the equal sides”. This result is
known as the four (hinged) squares theorem (we added the word ‘hinged’ to avoid confusion with Langrange’s four

squares theorem).

Now, we construct four new squares by connecting vertices of the previous set. Then:

e T —
o=V - d=d+2¥

- 7 = — — —
bh=d — b= (?—b)—b:?—zb,
—-_7_ =7
coc=c —d = —2d -V,

— - — —
= —a- d’:—?—(?— b>: — 24 + b,sothat:
— — —

adi=—a —-20b,

— —

bi= =d -2V,

— — —

di1=2a+ 0,

— - =

di=-2a + V.

Using these expressions, the sums of the areas of opposite squares are equal since:

A A U o N A W -
a%—}—df(a+2b)o(a+2b>+(b—z?).(b—2?>

) ) - —
—d 44t 44 o b 44>+ 43 o b =5a® 450

and

7 .7 7 .7 - —
b§+c§(a—2b)-<a—2b>+<b+2?>.<b+2?>

, ) - —
—d 44 —4d e b 42 +d4a’+4d o b =5d+5b

2 2 _ 32 2
Hence, a7 + dj = b} + cf.
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Figure 3. A new pattern of squares around an arbitrary triangle

Before building the next set of four squares, we first create two auxiliary squares on the vertices of the squares with

sides q; and b;, and on those with sides ¢; and d; . The vectors associated with its sides can be expressed as:
- — — — - — - = =

— — — —

z1=0b1—-di= a+ad +2b—-2bandy; =c;—d;=2a +2d + b — V.

Consequently,

— — — — — —
ol = <Z’+a’+2 b —2 b’>.(7+ d+20b —2b’>
_>

—\ 2 - n\2 — —
- (Z’+a’> +4<b—b’) 4 (E’Jra’).(b—b’)
a

=2a’+80®+4(a eb+d eb —

/N

1

%
=2a>+80°+ 8 d eb,
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- =
and similarly,y? =8 a’>+2b>+8d e b.
The last part of these expressions can be reformulated in terms of the area Aa4p¢ of the original triangle AABC.

— — N —
Note that the angles between the vectors o’ and b and the angle between the vectors ¢ and b sum up to 270° in

the case of an acute triangle or differ by 90° in the case of an obtuse triangle so that:
- = - = L= —

o © b =abcos|(a, b)=—absin|a, — b ) =-2Arspc-

It follows that:

2 2a2+8b2716AAABc,

8
=
Il

o
I

=8a2+2b>—-16 AnaBe,
andsoz? + yi = 10 (a® + b*) — 324a4B0-

The next ring of squares is constructed with a vertex of a square of the previous one and a vertex of an auxiliary
square. And this procedure can be continued (see Fig. 4). Labelling the vectors associated with the blue auxiliary

— — . . - 7 = -
squaresas z ; and y ;, and those associated with the other squaresas a ;, b;, c ;and d ; yields:

— — = —

8:71+m’1:2a’—7+4b+2b

- = = - 7 = =

bb=b1—x21=2a —a —40b -2

= 2 R
Zy=—dot T1+ bao=4d +44 86 +80b =4z,

Hence, z2 = 16 z? and
e

’ ! / — —
b'27a2=b17a1+2a:1:3m1

Similarly,

— T

7 —
ca=2a—4a — b -2V

-!

G—2d 4T+ 8 2
£:83+8?—4Z+4?:4§I
So that the sum of the areas of opposite squares equals:
ai+ di= b2+ 2= 25(a® +b*) — 64Ansnc

In the next paragraph, we will generalize this pattern.
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Figure 4. A pattern of squares around an arbitrary triangle

Generalization of the Pattern of Four (Hinged) Squares around an Arbitrary

Triangle
For: > 2:
- = -
a;= a;1+ T
— — -
bi=b;1— 21
- = - 7
zi= T+ bi—a;y
— — — — — — — _/> —
sothata,— + bl = a;-1+ bz,1= ai+ b1= a+a —2 b +2b’
Rotating 90° clockwise yields:
-7 -
ai=ai-1— Ti-1l
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- =
_>
Vi=bi1+ zia
It follows that
— — — — — — - = — —
a;+Vi=di1+ Vici=d1+ bV1= —a+ad —2b -2V and

— — N — —
! ’
bi—a;i=2z;0+ (Vi1 — aia

- = - 7 — = 7
Hence, z;, = z, 1+ V;— ;=3 z; 1+ (b’i—l - dia
— - = .
Now we turn to the sequence of the z ; and the sequence of the &/ ; — a' ;. We claim that:
-

Zi— k Zywithk, —1, ks —4andk; — 4 k; | — k; o fori > 3,

— —
v, —d;=1 ?1 withly =1, Iy =3andl; =41;,_; —[;,_, for i > 3. These sequences correspond to sequences
A001353 and A001835 of the Online Encyclopedia of Integer Sequences. Both series are extensively commented, but

the geometric applications given here seem new.
From the previous calculations, it follows that the relations hold for n = 1, 2.

Forn > 3, we have by induction on n:

— - — —
Vi—a;=2 ;)i—l + (b/ i1 —ain]| =2k ?1 + i1 ?1 =(2ki1+1i) ?1 =1 ?1
— —
and?i = ?i—l + (b’i — a'¢> = (k'z'—l +lz‘) ?1 = k; ?hsothat
Li=2k_1+ iy Wandk; = ki1 + [; @ fori > 3.
Now, using (1), (2):
liv1= 2k + I; (1)
= 2ka+ 2L+ (2)
=3 ll + ll - lifl (1)
=4l — ;1

In a similar way, we find that:
kivi=ki+lLp=k+li+2k=3k+1li=3k+ k— k1=4k -k
which proves the result.
This implies that the areas of the auxiliary squares are:
z? = k? 22 = k}(2a® + 8% — 16 Aaanc)

In an analogous way:
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y}= kK y} =k}(2d® +8b° — 16 Aaanc)

!

— —
where the sequence of the k; and the sequence of the [; are the same as in the case of the ?, andthe v'; — ;.

Now let’s turn to the sequence of the sums of the areas of opposite squares. We claim that

4)
7,» = 71 + (k1 + k2 + ...+ ki_1) x'1. Obviously, the relation holds for ; = 2. For ; > 2, we have, by induction on

4 that:
= = - — = =
a;= a1+ 2= ar+ki+kt...+ ko)1t kiz1
- -
:al+(k1+ ko + ...+ k‘i,l)xl
Similarly,
— — -
b; = bi—(ki+ ka+...4+ k1) 2’y
%
— —
c; = Cl—(k1+ ko + ...+ k',-_l)y'l
— — =
d;=di+ki+ kat...4+ k1) y'y
It follows that
—? il 2 - -
a; + d; = a%Jr d12+ (ki + ko4 ...+ kic1) ($§+ yf)+2(k1+ ko+...4+ ki1)(ar1ex1+ d 1 ey,)
where

- = 7 - 7 - = 7 - 7 = 7
E)lo:vl—i-dloyl(a+2b>0<—z)+a+2b+2b)+<—2?+b>0<—27+2a+b+b>
=5a’>+5b% — 16 Aaanc

Using the above expression and those for a? + d? and z2 + y? derived previously, yields:

a?—i— di2: [1+2(l€1+ ko + ...+ kz;l)-i- 2(k1+ ko + ...+ ki,l)z](5a2+ 5b2)

- [(k1+ ko4 oot ki) + (bt kot ...+ ki—1)2] 32 Aaasc
This expression can be rewritten as:
a? + df =57 (a2 + bz) — 32 s; AaaBe

where the sequence of the r; and the sequence of the s; are given by:
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r; = 1+2(k1+ ky + ...+ ki,1)+ 2(k1+ ks +...+ ki,l)zforiz 2andr =1
8; = (k1+ ko +...+ ki,1)+ (k1+ ko + ...+ ki,1)2forz' >2ands; = 0.
The sequence of the r; is 1, 5, 61, 3241, 11705, 163021, ... which is not yet in the Online Encyclopedia of Integer

Sequences. The sequence of the s; is 0, 2, 30, 420, 5852, 81510, ... and corresponds to the sequence known as A217855

in the Online Encyclopedia of Integer Sequences. Again, this series has no geometric application yet.

Inasimilar way, b} + ¢ = 5r; (a® +b?) — 32 s; Aaasc.
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