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We show that in the presence of a strengthened Kripke’s schema — a plausible addition to the
axiomatisation of intuitionistic analysis (see in e.g. 1l or 21) — choice sequences can be recursively
encoded in intuitionistic real algebra. Choice sequences are intuitionistically meaningful counterparts
of sequences of natural numbers, and with them intuitionistic analysis can be interpreted in

intuitionistic real algebra.
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1. Introduction

The present article is part of a series of papers on the complexity and expressive power of intutitonistic
real algebra, the intuitionistic version of the theory of real closed ordered fields. The models of these
theories are the real algebraic parts of models of intuitionistic analysis based on complete Heyting
algebras — complete, bounded lattices with a binary operation a — b such that ¢ A @ < b if and only if
¢ < a — b. Heyting algebras correspond to intuitionistic propositional logic in the same way Boolean
algebras to classical propositional logic. In particular they serve as the structure of truth values: if a
propositional sentence is an intuitionistic tautology, then it evaluates to the top element in every Heyting
algebra. If the algebra in question is complete, this interpretation can be extended to intuitionistic
predicate calculus, moreover there is a standard way to interpret choice sequences as special maps from
the set of pairs of natural numbers to the algebra, £(m, n) being the truth value of the statement that the
m-th element of the sequence is n. For more about choice sequences the interested reader may consult

with eg. {m/18/1.
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The simplest model of intuitionistic real algebra based on a Heyting algebra (in this case the open-set
algebra of Baire space) is due to D. Scott. In 2] he defined a model where the elements are continuous
functions from Baire space to the structure of reals. Moschovakis in 4! defined a model for analysis
where the structure of reals, via a standard representation due to Vesley (and described below) agrees
with Scott’s interpretation. Other models of this type were investigated for example by M.D. Krol
in 8l and by P. Scowcroft in 1l and in 121,

Since classical real algebra is a particularly nice theory, decidable with complete axiomatisation, it was
hoped that the intuitionistic models may also have nice properties. In the spirit of the Feferman-Vaught
theorem one might have hoped that a reduction of the real-algebraic theory of Scott’s model to some
combination of the decidable classical theory of reals and some decidable topological structure is
possible. The first results were indeed about decidability. In [6] scott proved that the universal fragment
of the order structure of his model is decidable. In the papers Zl and 81 Scowcroft showed that the
validity in the model of certain V3-sentences of the language L of ordered rings is also decidable. We
proved the decidability of Scott’s model restricted to the language of ordered Q-vectorspaces in [ and
that proof indeed used, via Rabin’s theorem, the decidability of the underlying topological structure. But
the full real algebraic structure turned out to be undecidable. There were results by Smorynski (in LU}
and by Cherlin (in 1)) suggesting that this might be the case. Indeed, building on Cherlin’s work,
in 121 we were able to interpret true first order arithmetic in the L-theory of Scott’s model. Then,
in [Bl we extended this result to the classes of models defined in Scowcroft’s papers 1 and 2 and in
Krol’s paper 12l In I3l we interpreted true second-order arithmetic in the L-theory of Scott’s model, and

also showed that Moschovakis’ model for analysis can be encoded in true second-order arithmetic giving

the exact complexity of the L-theory of Scott’s model.

In 34 we have shown an encoding of true second-order arithmetic in models, in this paper we give an
encoding using an axiom system. The point is that the coding will be direct, no G6del numbering of
syntax is needed. The effective translation of intuitionistic analysis into real algebra presented here
yields an intuitionistically meaningful undecidability result; the previous arguments via models is less
compelling if they are treated in a classical metamathematics.! The result parallels the results
in 121 and 3] where we moved from proving the interpretability of the natural number structure in a
model of intuitionistic real algebra to proving interpretability from an axiom system, moving away from

the peculiarities of a given structure. A similar attempt was made in 12l where a relativised generalisation
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of Random Kripke’s Schema (see below) was proposed and it was shown that the interpretability of

second-order Heyting arithmetic in intuitionistic real algebra follows from the axiom system

 from [ with Relativised Random Kripke’s Schema (RR-KS). Unfortunately the consistency of the full
version of RR-KS with 7 remains open. In this paper we sidestep the problem of consistency to get a
related result - the interpretability of full second-order arithmetic in intuitionistic real algebra using the
axiom system 7 with Random Kripke’s Schema. In fact, if the first order structure of natural numbers is

definable in an intuitionistic real algebra (as in the real algebraic structures of the models described
in 1 and in [2I - the definability there follows from R-KS and the usual axioms, for the details see 11y,

then so is intuitionistic analysis.

From 3! Jet us recall the following. We shall use the language L; from O 1t contains two sorts of
variables — m, n, k, etc. ranging over the elements of w, and a, S, etc. ranging over choice sequences. We
also have the equality symbol =. It will be used in atomic formulas of the form ¢t = ¢’ or £(t) = ¢’ where

tand ¢’ are terms of natural-number sort and £ is of choice sequence sort.

In the Appendix of 12l we defined Random Kripke’s Schema as the following axiom schema of analysis:
R-KS(p) = FB[(Bn(B(n) > 0) = ¢) A (=3n(B(n) > 0) = —p)A
Vk > 0(-3n(B(n) = k) = ¢V —p) AVk > 0Vn((B(n) = k) — Ym > n(B(m) = k))]
where ¢ is a formula that does not contain the choice sequence variable £ free.

Also in 3l we have proved the following.

1. The models of intuitionistic analysis described in 1 and in (2 are models of R-KS (@, Appendix).
2.From a standard axiom system augmented with R-KS the definability in the language LOR of
ordered rings of the set of natural numbers follows: there is a formula N(z) with one free variable in

the language of ordered rings such that 3k € N* (z = k) = N(z) follows from the axioms in two-

sorted intuitionistic predicate calculus with equality (@1, p1015, Theorem 1).

Using these results one may prove the following.

Proposition 1. The ordered semiring structure of natural numbers has a uniform definition (ie. the defining
formulas do not depend on the models in question) in the real algebraic part of any model of the axiom system

7 from W (also in [2) with R-KS added. From this follows that each recursive function has such a uniform
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definition. The restriction to {|N(x)} of the quantifiers in the formula defining the recursive function/relation

in the structure of natural numbers works. []
Also, the real algebraic structure is defined in intuitionistic analysis:

In 261 Vesley considers a species R of real-number generators: £ € R (also denoted by R(¢)) if and only if
the sequence 27%¢(z) (z€N') of dyadic fractions is a Cauchy-sequence with

Vk3azVp|2-%¢(z) — 27 P€(z + p)| < 27F,ie. if and only if
VEIzvp2F|2P¢(x) — £(z + p)| < 2777 (%)

Note that to make what comes below simpler we changed the domains of real number generators from

wtoNT.

Equality, ordering, addition and multiplication on R are also defined (cf. 07 3150 ), and the definitions can

be extended readily to polynomials of choice sequences with nonnegative coefficients.

¢ is a global real-number generator just in case R(&) holds. We shall use the letters f, g, u etc. to range over

global real-number generators and we shall use the defined quantifiers
3246 := Ju(R(u) A 6)
VR4 := Yu(R(u) — )
and when we have the definition V() of the natural numbers
N w6 = Ju(N(u) A6)
VWu6 = Yu(N(u) — 6)

For each natural number n there is a corresponding global real-number generator f, (also denoted by
n in the context of real numbers only) defined as follows: f,,(I) = n2'. Then in the real numbers,

n

—_———
If=Ft 11

A choice sequence 7 with range in the set {0,1} (@ 0 — 1 sequence) corresponds to the real number

generator
Erx>1v— 22 n(i)2""

1=

with the corresponding real
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£y 0()27 = lim 57 n(0)2"
in the closed unit interval. In fact,
2"2°¢(x) — &z +p)| = 2°(STY (0277 — 2 B 0(0)27) <

k «z+p z+p—i k+p
A LI P

so z = kin () shows that ¢ is a real number generator.

We shall use the (definable) quantification 3%2 and V%2 over real number generators with range in the

set {0,1}.

Definition 2. A real number y is p-rational (p € N*) if 3V ¢ (y - 2P = q). Note that "y is p-rational” (for some

p) and "y is not p-rational for any p" are definable in the language LOR.

2. Encoding choice sequences

We encode choice sequences as real numbers in the closed unit interval such a way that atomic formulas
of the form A(m) = k could be translated into a formula C(b, m, k) in the language of ordered rings
where b is a code for 8. Also the set of codes will be definable, a code will be unique (with respect to
equality of real numbers) and each code will be a code of a unique choice sequence (see Proposition 6

below).
Some notation: (., .) will denote a recursive injective and surjective pairing function.

The code C of a choice sequence £ will be a real number with generator a 0 — 1 sequence Cé such that

iCl

5(2<m, k)) = 1iff &(m) = k(m, k € w).

The second (technical) condition above is needed to make sure that any real number is a code of at most
one sequence and to be able to deduce properties of a 0 — 1 real number generator from the properties of

the corresponding real (see Lemma 3).

Now some details. First of all we have to express Cé(p) = 0 with a formula on the languge LOR of
ordered rings involving the real numbers C; € [0,1] and p with N(p). The next lemma gives the required

translation.

geios.com doi.org/10.32388/7IMXXE.2


https://www.qeios.com/
https://doi.org/10.32388/7IMXXE.2

In what follows, for every 0—1 sequence z' let z be the corresponding real number
=X, /(¢)27". Then z’(p) = 0 means that in the dyadic expansion of z there is no 1/27. The next

lemma connects values of 2’ with properties of x expressible by a LOR-formula.

Lemma 3.

i.If '(m) =0 for all m > p, then g (z - 2P = q), ie. x is p-rational; vice versa, if x is p-rational (
N'g(z-22=q) and 2'(m)=0 for some m>p, then z'(m)=0 for all m>p If

z'(4m + 1) = 0and 2’ (4m + 3) = 1 forallm € w,then forallp € N* z is not p-rational.

1. Assume ' (4m + 1) = O and ' (4m + 3) = 1 forallm € wand z'(p) = 0. Letz, = X" /(i) - 1/2¢ a
(p — 1)-rational real. Then 3" q (z, - 20! = g)and 0 < & — z, < 1/27.
2. Assume that ' (i) = 0 for some i > p. If Iy N q (y- 27" = qgA0 < z —y < 1/2P), then 2’ (p) = 0.

In this case y has a representation y’ such that y'(j) = z'(j) forall j < p.
Proof.

i. is trivial. &[]
.z —z, = Ti>p2 (i) - 1/20 > 1/2%73 > 0.
Sincez'(p) =0andz’'(4p+ 1) = 0,z — x, = X;>,@(3) - 1/2° < £;2,1/20 = 1/2P. BO
iii. First note that z’ being a 0 — 1 choice sequence implies that =’ (k) = 0 or 2’(k) = 1 for all k. By ()
yis of the formy = Ef;ll y'(4) - 1/2¢ for an appropriate representation y'.
If j<p is the least index with ¢'(j) #2'(j) then if ¢'(j) <2'(j) we have
z—y>1/27 -390 1/9m > 100, If y'(j) > 2'(j) then

z—y<-1/2+%,,.;2'(m)-1/2™ < —1/2) +1/27 = 0, since 2’ (i) = 0 for some i > p.

Ifforalli < py'(¢) = 2'(¢) and 2’ (p) = 1,thenz —y > 1/27.0J

To apply the lemma we need to take care of the condition on the "returning zeros". For a 0 — 1 sequence

2’ corresponding to the real number z let [z, p| denote the LOR-formula equivalent to
A gy 2 =g A0<z—y<1/2)

Lemma 4. Ym z'(dm +1) =0, (dm+3)=1 and z'(p)=0 iff

Vm([z,4m + 1] A =[x, 4m + 3]) A [z, ).

Proof. First assume that Vm 2/(4m+1) =0, '(4m +3) =1 and z'(p) = 0. Then by Lemma 3 (ii)

VYm|z,4m + 1] and [z, p|] follows. To finish the left to right direction assume that [z,4m + 3] for some
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m € w. Then there is y, (4m + 2)-rational such that 0 < z — y < 1/24"*3 je.since 2’ (4m + 3) = 1,
0 < 24m2ytmi2 (g () - 1/27) — 2442 .y 4 1/2 4 2442 .m0 (27 (4) - 1/27) < 1/2.

A = 24m+2ydmt2 (51 (4) . 1/2%) — 24m+2 .y s an integer, and since Vm z'(4m 4+ 1) = 0, 2’ (4m + 3) = 1,

forg=24m2. 5%, ,(z'(i)-1/2") wehave 0 < ¢ < 1/2.

Thus 0 < A+1/24¢<1/2,ie. -1 < —-1/2— g < A < —g < 0, a contradiction for an integer A. So

=[x, 4m + 3] follows.

Next assume that Vm([z,4m + 1] A =[z,4m + 3]) A [z,p]. If 2/(¢) = 0 for some ¢ > 4m + 1, then by
Lemma 3 (iii) 2'(4m + 1) = 0 follows from [z,4m + 1]. Otherwise z'(¢) = 1 for every ¢ > 4m + 1. By
[z,4m + 5] there is a (4m + 4)-rational y such that 0 < z —y < 1/2*"*® and we may assume that
y =i (y'(i) - 1/2). As in the proof of Lemma 3 (iii), if j < 4m + 5 is the least index with
y'(j) # ' (4) then if y'(j) < 2’ (j) we have z —y > 1/27 — 5™ 1/2¢ > 1/2m%5, 1f y/(5) > @' (j) then
z—y<—1/2 + %, ;2'(i) - 1/28 < —1/27 +1/27 = 0, both cases contradict to 0 < z —y < 1/24m*5,
So we have that y'(j) = «/(j) forall j < 4m + 5. But then 0 < z —y = £, . -1/2" = 1/2*"™ againa

contradiction. So z'(¢) = 0 for some ¢ > 4m +1 and z'(4m + 1) = 0 follows. The same reasoning

proves that z’ (p) = 0.

If ' (4m + 3) = 0 then since 2’ (4m + 5) = 0, [z,4m + 3] follows from Lemma 3 (ii), a contradiction, so

z'(4m+3)=1.0

Definition 5. For a choice sequence £" let &' be the 0 — 1 sequence with alternating 0 and 1 at odd natural
numbers and with £"(m) = k (decidable) iff £'(2(m,k)) = 1 (decidable). Let ¢ be the corresponding real
number. The code of an atomic formula of the form £" (k) = m is the LOR-formula C (&, k,m) equivalent to

Vp([€, 4p + 1] A =€, 4p + 3]) A —[€, 2(k, m)].
A0 — 1 sequence z' is a code (CODE(z")), if it has alternating 0 and 1 at odd natural numbers, and for all
m there is a unique k such that =’ (2(m, k)) = 1, ie.

CODE(z') iff Vm([z,4m + 1] A —[z,4m + 3] A Ik —[z,2(m, k)]).

So the set of codes is definable in real algebra by a LO R-formula.

For a choice sequence « and a 0—1 sequence v/, u' is the code of «, denoted as C(a,u’) if

CODE(u') A VEVm (a(k) = m <> C(u, k,m)) where u is the real number corresponding to u'.

From the above definitions and lemmas follows that each choice sequence has a unique code and a code

corresponds to a unique choice sequence:
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Proposition 6.
i. Va3t C(a,u)
1.VE24/'(CODE(u') — 3a C(a,u'))
Proof.

i. Fix the sequence « and assume C(a, v') for some 0 — 1 sequence u'.
By Definition 5, for the real number u corresponding to u'’
VkVm (a(k) = m < C(u,k,m))
VEVm (a(k) = m < Vplu,4p + 1] A —[u,4p + 3] A —[u, 2(k,m)])
and by Lemma 4
VEVm (a(k) =m < Vp (u'(4p+1) = 0A W (4p + 3) = 1) Ad/ (2(k,m)) = 1)
Since the pairing function is 1 — 1 and onto, this determines a unique 0 — 1 sequence «’ fulfilling
the requirement.

ii. is similar using the equivalences of (z). O

A formal language for intuitionistic analysis is given in 26l 55; a more concise treatment is found in [
pp. 149-150. Formulas are built from first order atomic formulas and formulas of the form
&(t1) = to where t; and t, are terms of natural number sort, £ is of sequence short. In the following
definition and proposition we restrict ourselves to formulas built from these atomic ingredients using the
usual connectives and first and second-order quantifiers. However apart from functions that can be
explicitly defined using the usual language of arithmetic (symbols for addition, multiplication, 0, 1 and
less than) there are term-building operations used in the formal language mentioned above whose

arguments include variables of both sorts:

Yy<z0(y), Iyza(y), mina(y), maxa(y)

y<z y<z

we can exclude these using principles costumary in the axiomatic development, for example for finite

sums (.S denotes the successor function)

Va3B[B(0) = 0 AV2(B(5(2)) = B(z2) + a(2))]
soif aterm ¥, a(y) occurs in a formula ¢, ¢(3y<,a(y)) maybe replaced by

FB[B(0) = 0 AV2(B(S(2)) = B(2) + a(2)) A p(B())]
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The treatment of finite products, minima and maxima is similar.

Definition 7. For each choice sequence variable £" let £’ be a designated variable ranging over 0 — 1 sequences
and & a designated variable ranging over reals. For each L, -formula 6 we define its LOR translation () as

follows.

« If0is first order atomic, 7(6) := 6

o 7(/(t1) = tu) is the LOR-formula C (& , 1, t2)
o T(110%9) :=1(¢1) o T(3h2) foro = A, V, —

o () = 7(¢h)

o 7(3a1y) is the LOR-formula equivalent to 3" (7 (11 ))

o 7(Vxyy) is the LOR-formula equivalent to V" z(7(¢))

o 7(3¢"4y) is the LOR-formula equivalent to 3%2¢' (CODE(E") A 7(11)(€"))
( (

o 7(V¢") is the LOR~formula equivalent to V*2¢' (CODE(E') — (1) (¢"))

Proposition 8. To ease the notation we use only one free sequence (natural number) variable. With the notation

of Definition 7
VR (C(E1 ) — (0(€") < m(0)(€)

Proof. By formula induction on the complexity of 6. The interesting cases are the second-order quantifier

cases. The first order atomic case is immediate, the case for 7(£/(¢1) = t2) follows from the definitions.
The first order quantifier cases can be handled similarly as in 14,

For the universal quantifier case first assume that V¢"); and CODE(¢'). By Proposition 6 there is a
unique 7 such that C(n, ¢’) holds and from V¢"1); we also have 1; (). Then by the induction hypothesis
(1) (&), s0 VE2¢' (CODE(¢E') — 1(31)), ie. 7(V€"4); ) holds.

Next assume 7(VE"v; ), ie. VE2¢' (CODE(¢') — 7(3b1)), we have to prove V" ;. By Proposition 6 for
any &” there is a unique ¢’ such that C(¢”,¢’) and since from this CODE(¢’) follows, we have

7(11)(¢') by our assumption. We can apply the induction hypothesis to get 1 (£").

For the existential quantifier case first assume that 3¢”1); . For such £”, by Proposition 6 there is £’ with

c(¢",¢), so CODE({') holds. By the induction hypothesis 7(¢1)(¢’) and we have

372" (CODE(E') A(1)(€")) fe. 7(3¢"41).

geios.com doi.org/10.32388/7IMXXE.2


https://www.qeios.com/
https://doi.org/10.32388/7IMXXE.2

Finally assume 7(3¢"4); ), ie. 3%2¢' (CODE(E") A T(3b1)(¢")). By Proposition 6 for a witness ¢’ there is (a

unique) 7 such that C(n, £¢’) holds. By the induction hypothesis 1; () and we are done. (]

The next theorem is immediate.

Theorem 9. For an L, -sentence 6, 7(0) is an equivalent (in the axiom system & from O with R-KS added)

LOR-sentence recursively obtained from 6. [

Conclusion

In this paper we gave an axiomatic background to the high complexity of intuitionistic real algebra; the
fact that second order arithmetic is interpretable in these structures follows from intuitionistically
plausible axioms. For an argument in favor of the schema R-KS see the Appendix of 1 where its

consistency with 7 is also shown.

Further investigations might address the following questions.

1.Can the axiom system (R-KS in particular) be weakened but still result in the same level of
complexity?

2. Does R-KS have other noteworthy consequences?

3. What (if any) intuitionistically plausible strengthening of R-KS is consistent with 772

4.In §3. of Bl we showed that intuitionistic second-order structures built on a certain type of
complete Heyting Algebra (called 'nice’ in that paper) are models of R-KS. A question arises can this
sufficient condition be weakened? Can we axiomatize properties of the second-order structure on

the level of the underlying Heyting Algebra?

Footnotes

1 observation by Philip Scowcroft.
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