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Most existing tra�c video datasets e.g. the Waymo Open Motion Dataset (WOMD)[1], are collected in

Western countries and consist of simple, structured, and predictable tra�c. Most Asian scenarios,

however, are far denser, more unstructured, and more heterogeneous, with many road-agents

routinely disobeying common tra�c rules. Consequently, state-of-the-art computer vision and

autonomous driving perception algorithms trained on existing datasets do not transfer to tra�c in

Asian countries. Addressing this gap, we present a new dataset, DAVE, designed for evaluating

perception methods with high representation of Vulnerable Road Users (VRUs: e.g. pedestrians,

animals, motorbikes, and bicycles) in complex and unpredictable environments. DAVE is a manually

annotated dataset encompassing 16 diverse actor categories (spanning animals, humans, vehicles,

etc.) and 16 action types (complex and rare cases like cut-ins, zigzag movement, U-turn, etc.), which

require high reasoning ability. DAVE densely annotates over 13 million bounding boxes (bboxes)

actors with identi�cation, and more than 1.6 million boxes are annotated with both actor

identi�cation and action/behavior details. The videos within DAVE are collected based on a broad

spectrum of factors, such as weather conditions, the time of day, road scenarios, and tra�c density.

DAVE can benchmark video tasks like Tracking, Detection, Spatiotemporal Action Localization,

Language-Visual Moment retrieval, and Multi-label Video Action Recognition. Given the critical

importance of accurately identifying VRUs to prevent accidents and ensure road safety, in DAVE,

vulnerable road users constitute 41.13% of instances, compared to 23.14% in WOMD. DAVE provides

an invaluable resource for the development of more sensitive and accurate visual perception
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algorithms in the complex real world. Our experiments show that existing methods su�er

degradation in performance when evaluated on DAVE, highlighting its bene�t for future video

recognition research.

Corresponding author: Xijun Wang, xijun@umd.edu

1. Introduction

Accurate perception of road users–including vehicles, bicycles, pedestrians, animals, and more–is a

critical challenge in autonomous driving[2][3]. Video recognition serves as the cornerstone of

perception systems in autonomous driving vehicles. Video recognition research has made signi�cant

progress in recent years, enabling successful applications such as autonomous driving[4], surveillance

systems, and human-computer interaction. At the core of these advancements lies the development of

comprehensive and challenging datasets that facilitate the training, evaluation, and benchmarking of

novel algorithms[5][6]. However, the focus has predominantly been on western tra�c[1], structured

environments[7], featuring human-centric activities[8] and relatively simplistic scenes[9]  that, while

bene�cial, do not encapsulate the breadth of complexities inherent in natural environments[7][9]. This

dissimilarity between existing training datasets and the real-world distribution hinders the

generalization capabilities of video recognition models, ultimately limiting their e�ectiveness when

applied to multifaceted and unpredictable real-world situations for autonomous driving.

Limitations of existing video recognition datasets include:

Few Vulnerable Road Users: As shown in Table  1, low representation of vulnerable road users in

terms of both quantity and diversity.

Lack of Unstructured Environments: Most existing tra�c video datasets are structured, focusing

predominantly on Western tra�c, which hinders global applicability. This lack of real-world

complexity, such as cluttered scenes, occlusions, and the variety of interactions, hinders the

development of robust perception models.

Limited Scope: For behavior recognition, most existing datasets primarily focus on human actors

performing isolated actions (one action in one clip) in simplistic and controlled settings. This

narrow scope restricts the ability of models to generalize to diverse scenarios with varying object

categories, environmental factors, and complex interactions.
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Sparse Annotations: As shown in Table  2, the lack of �ne-grained information about object

locations, interactions, and temporal relationships hinders the evaluation of various tasks like

Spatiotemporal Action Localization and Video Moment Retrieval, which require detailed temporal

and spatial annotations.

Name VRUs Category
Geographical

Location
VRUs # Total #

DoTA[10] Person, Bike, Rider, Motor
Various Countries

(YouTube)
22,117 170,739

ROAD[11] Pedestrians, Cyclist United Kingdom 92,347 122,908

TITAN[12] Pedestrians, 2-wheeled vehicles Tokyo 498,544 645,384

Waymo[1] Pedestrians, cyclists United States 1,808,771 7,817,150

DAVE (Ours)
Animal, Bicycle, MotorBike,

MotorizedTricycle,
     

MultiWheeler, Pedestrian,

Scooter, TriCycle
India 5,352,711 13,012,635  

Table 1. The existing tra�c datasets with Vulnerable Road Users and bbox. Total # includes all labeled

instances.
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Dataset

Action Annotation Tube Annotation

Pedestrain Vehicle O-VRUs Pedestrain Vehicle O-VRUs

SYNTHIA[13] - - - - - -

SemKITTI[14] - - - - - -

Cityscapes[15] - - - - - -

A2D2[16] - - - - - -

Waymo[1] - - - ✓ ✓ -

Apolloscape[17] - - - ✓ ✓ -

PIE[18]
✓ - - ✓ - -

TITAN[12]
✓ ✓ - ✓ ✓ -

KITTI360[19] - - - - - -

A*3D[20] - - - - - -

H3D[21] - - - ✓ ✓ -

Argoverse[22] - - - ✓ ✓ -

NuScense[23] - - - ✓ ✓ -

DriveSeg[24] - - - - - -

ROAD[11] ✓ ✓ - ✓ ✓ -

Spatiotemporal action detection datasets

UCF24[25]
✓ - - ✓ - -

AVA[7] ✓ - - ✓ - -

Multisports[26]
✓ - - ✓ - -

DAVE (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 2. Comparison of datasets with respect to pedestrian, vehicle, and other Vulnerable Road Users (O-

VRUs) action and tube annotations.

qeios.com doi.org/10.32388/7O9XQ1 4

https://www.qeios.com/
https://doi.org/10.32388/7O9XQ1


Property Values

Basic Information Location: India (urban and semi-urban settings)

Action Types (16)

NormalDriving, Yield, Cutting, LaneChanging(m), OverSpeeding, WrongTurn, Tra�cLight,

WrongLane,

ZigzagMovement, LaneChanging, OverTaking, Keep, LeftTurn, RightTurn, UTurn,

Breaking

Action Statistics

Max action num per frame: 40, Average action num per frame: 6.7

Max unique action num per frame: 6, Average unique action num per frame: 2.0

Types of Actors

(16)

AgricultureVehicle, Animal, Bicycle, Bus, Car, ConstructionVehicle, EgoVehicle, MotorBike,

MotorizedTricycle, MultiWheeler, Pedestrian, Scooter, Tractor, TriCycle, Truck, Van

Actor Statistics

Max actor num per frame: 40, Average actor num per frame: 6.5

Max unique actor num per frame: 10, Average unique actor num per frame: 3.9

Table 3. DAVE Characteristics: We annotate 16 types of actions performed by 16 types of actors. We

highlight the maximum and average number of actions and actors per frame. LaneChanging(m) denotes

lane changing on roads with clear lane markings.

In order to address the above limitations, we introduce a new dataset, DAVE (Diverse Atomic Visual

Elements), which o�ers more scenarios with less predictable and dense environments. We collected

this dataset in India because it provides a richer variety of interactions, particularly with vulnerable

road users who share the roads with cars. DAVE introduces new challenges through its inclusion of

unique scenes (e.g., more vulnerable road users are on the road, some unique agents like motorized

tricycles, tricycles, and animals) not commonly found in datasets from the US, UK, or Europe. Our

analysis shows that the data is denser and includes more instances of road users not following tra�c

rules, occlusions, and other complexities, making it more challenging and harder to predict. These

challenges are valuable for enhancing perception models’ ability to handle unpredictable

environments[27].
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In DAVE, every visible object is annotated and considered an atomic visual element. It is speci�cally

designed to evaluate perception methods in unstructured environments that are more indicative of

real-world scenarios. The unstructured environments in DAVE cover di�erent geographical

landforms, diverse actors (not only humans but also animals, vehicles, etc.), and complex actions

(cut-in, overtaking, u-turn, etc.). As shown in Fig.  2, DAVE prioritizes replicating the richness and

complexities encountered in real-world situations. We highlight its applicability to various video

recognition tasks as shown in Fig.  1, including Tracking, Detection, Video Moment Retrieval,

Spatiotemporal Action Localization, and Multi-label Video Action Recognition. In each case, DAVE has

its distinctive features and novel challenges. Some key characteristics of DAVE include:

Vulnerable Road Users (VRUs): DAVE has a higher representation of vulnerable road users (VRUs),

constituting 41.13% compared to 23.14% in Waymo[1]. This is a precious property to prevent

accidents and ensure road safety.

Less predictable and Dense Environments: DAVE features videos captured in diverse real-world

settings, encompassing various weather conditions, times of day, road scenarios, and tra�c

densities. This inherent complexity better re�ects the challenges encountered in practical

applications.

Diverse Actor Categories: DAVE extends beyond human-centric datasets, incorporating 16 diverse

actor categories. This diversity fosters the development of models capable of generalizing beyond a

limited set of actor types.

Rich Annotations: DAVE provides dense annotations, including over 13 million bounding boxes

(bboxes) for actors and over 1.6 million bboxes encompassing both actor and action details

(Table.  3). We also o�er actors’ GPS information and the keyframe for the action. This

comprehensive annotation allows for the evaluation of a wider range of potential tasks.

Complex Actions: Compared with human-centric simple actions (e.g stand, watch, sit, walk), DAVE

has more complex actions (e.g. cut-in, overtaking, u-turn, zigzag movement), which require

higher reasoning ability for perception models.
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Figure 1. Tasks Overview. We use DAVE for various video recognition tasks, including Tracking, Detection,

Video Moment Retrieval, Spatiotemporal Action Localization, and Multi-label Video Action Recognition.

Our large-scale dataset is made up of complex environments that are densely annotated. Each bounding

box (bbox) corresponds to an actor, and the text above each bbox serves as either the tracking ID or

indicates the associated action.
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Figure 2. Challenging Characteristics of DAVE: These videos correspond to di�erent times of the day with

di�erent brightness, di�erent geographical landforms from city and rural areas, high density and

unpredictable road conditions, diverse actors including humans, animals, vehicles, etc.

We highlight the advantages of DAVE for �ve video tasks:

Tracking: Compared to datasets like MOT17[28], which primarily focus on tracking pedestrians and

vehicles in controlled settings, DAVE’s diverse actors occur under a variety of illumination conditions

and provide a more signi�cant challenge for tracking algorithms[29][30][31]. This allows for the

evaluation of robust tracking methods capable of handling occlusions, cluttered scenes, and dynamic

environments. Other large instance tracking benchmarks include GOT-10k[32]  and VastTrack[33].

GOT-10k contains over 10k video segments to re�ect the diversity of real life while VastTrack contains

more than 50k videos of more than 2k object classes. But tra�c involving high numbers of VRUs is

only a small fraction of both datasets. For example, in GOT-10k there are fewer than 200 videos of

bicycles, while in VastTrack non-motor vehicles (a type of VRU) make up only 1.5% of the dataset.

From our experiments, ARTrack[34] performs 23.7% worse on DAVE than GOT-10k, which highlights

the complexity of DAVE as compared to other datasets.

Detection: Datasets like COCO[35]  and Pascal VOC[36]  have been instrumental in advancing object

detection methods[37]. While these datasets include a variety of object categories, they often lack the

contextual complexity and scene diversity found in DAVE (e.g. intricate street-scapes at di�erent

times of day, higher representation of VRUs, such as pedestrians, animals, motorbikes, and bicycles,

compared to vehicles). With its extensive annotations encompassing over 13 million bounding boxes,
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DAVE o�ers a unique challenge to detection algorithms, pushing the boundaries of what these models

can recognize and how well they can adapt to diverse and unstructured environments. In our

experiments, Swin-T[38]  outperforms by 18% on the COCO dataset, as compared to DAVE. This

highlights the complexity of DAVE.

Spatiotemporal Action Localization (STAL): Spatiotemporal action localization requires algorithms to

not only recognize speci�c actions but also pinpoint their occurrence within both the spatial and

temporal domains of video content. Datasets like AVA[7] have laid the groundwork for this task. It is,

however, a movie-human-centric dataset, meaning the video clips in AVA are sourced from movies,

which might not perfectly re�ect the full diversity of real-world scenarios. This could potentially limit

the generalizability of models trained on this dataset. In contrast, DAVE introduces a richer layer of

complexity by featuring the actions performed by di�erent actor categories in unstructured settings.

This complexity is important for developing models that can understand and interpret actions in a

manner that is similar to human perception. In our experiments, ACAR-Net[39]  gets    mAP

accuracy on DAVE versus   on AVA v2.2, which highlights the challenging scenarios in DAVE.

Video Moment Retrieval (VMR): Moment retrieval involves identifying speci�c moments within a

video that correspond to given queries, often described in natural language. While datasets such as

DiDeMo[40] are widely used for this task, DAVE consists of videos of more complicated and cluttered

environments. These scenarios not only demand accurate video understanding but also necessitates

sophisticated language processing capabilities to interpret the queries and localize the relevant

moments within real-world video content. In our experiments, CG-DETR[41]  obtains 5.1 R1@0.5 on

DAVE (versus    on Charades-STA). This implies that that video moment retrieval is still a

challenging problem in the unstructured environment.

Multi-label Video Action Recognition (M-VAR): Multi-label video action recognition is a task that

demands the identi�cation of multiple actions within a single video clip. Existing datasets like

Charades[42] have been widely used for this video task. DAVE’s video segments with multiple actions

occurring within the densely populated and unstructured scenes o�er a challenging testbed for

algorithms. In our experiments, SlowFast[43] gets 41.0 mAP accuracy on DAVE, while achieving 4.2%

higher performance on Charedes.

Overall, DAVE o�ers a valuable resource for researchers aiming to develop robust and generalizable

video recognition models that can work well in real-world scenarios. DAVE’s rich annotations make it

6.3%

33.3%

58.4
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suitable for evaluating various video recognition tasks.

2. DAVE Dataset

2.1. Data Collection

To meet the requirement, data collection was meticulously executed within a de�ned geographic

perimeter encompassing the urban and suburban zones of India. The selection of numerous suburban

locations was strategic, aiming to encompass a broad spectrum of road environments, including both

rural pathways and those lacking structured design or layout. To capture this data, our equipment

consisted of two wide-angle Thinkware F800 dashcams. These devices were installed on two vehicles,

speci�cally an MG Hector and a Maruti Ciaz, chosen for their operational reliability in diverse road

conditions. The dashcams are equipped with sensors boasting a resolution of 2.3 megapixels,

alongside a comprehensive 140-degree �eld of view, ensuring wide coverage of the surrounding

environment. Video capture was conducted at a high-de�nition quality, with a resolution of 1920

1080 pixels, and a smooth playback of 30 frames per second was maintained to accurately document

the dynamic road conditions.

An integral component of our capture system was the dashcam’s embedded positioning technology,

which provided precise GPS coordinates. This functionality was essential for the transformation of

these coordinates into world frame references, facilitating a coherent geographical mapping of the

data collected. Additionally, the system’s synchronization capability ensured seamless integration of

video and GPS data, enhancing the reliability of the spatial information.

The resulting dataset comprises   video clips, each spanning one minute in duration. These clips

are accompanied by corresponding information such as the behaviors observed, the type of road, and

the overall scene structure. For granular details at the frame level, we o�er bounding boxes, precise

GPS coordinates, and the behaviors of moving agents within the frame.

DAVE is methodically organized to support e�cient querying, facilitated by a range of �lters. Users

can re�ne searches based on criteria such as road type, tra�c density, geographic area, prevailing

weather conditions, and observed behaviors.

×

1231
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2.2. Annotations

In our research, we undertook a meticulous process of manually annotating video data using the

Computer Vision Annotation Tool (CVAT)  [44], a widely recognized tool for video and image

annotation in the �eld of computer vision. Our annotation process was comprehensive, covering a

broad spectrum of labels that are crucial for the development and evaluation of autonomous driving

systems. These labels include:

Bounding Boxes: For each agent visible in the video footage, we provided bounding boxes. These

are essential for object detection tasks, enabling algorithms to identify and track the location and

dimensions of various agents within the scene.

Actions and Maneuvers: The dataset catalogues speci�c vehicle actions and maneuvers, including

left/right turns, U-turns, overtaking, braking, etc. This is critical for predicting vehicle behavior

and for training systems in decision-making.

Actor Class IDs: We classi�ed each agent into distinct categories, assigning a unique class ID to

facilitate the di�erentiation and identi�cation of various types of agents, such as vehicles,

pedestrians, and bicycles.

Rare and Interesting Behaviors: We have speci�cally noted instances of rare and unusual behaviors

among tra�c participants. Capturing these scenarios is important for preparing autonomous

systems to handle edge cases safely.

GPS Trajectories for the Ego-Vehicle: The dataset includes precise GPS trajectories for the ego-

vehicle, providing valuable data on its movement and position over time.

Environmental Conditions: Annotations in this category encompass weather conditions, time of

day, tra�c density, and the diversity of tra�c participants. This information is crucial for testing

and developing autonomous systems that can operate under a wide range of environmental

scenarios.

Road Conditions: We have annotated various aspects of road conditions including whether the

environment is urban or rural, the presence and visibility of lane markings, and more. This aids in

assessing how di�erent road conditions a�ect the performance of autonomous driving

technologies.

Road Network Features: Detailed annotations of road network features such as intersections,

roundabouts, and tra�c signals are included. These are vital for navigation algorithms and for

understanding tra�c �ow and driving behaviors in complex road networks.
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Camera Intrinsic Matrix: For depth estimation and generating accurate trajectories of surrounding

vehicles, we include the camera intrinsic matrix. This technical detail enables the conversion of 2D

images into 3D representations, essential for spatial understanding and accurate positioning of

objects in relation to the ego-vehicle.

As shown in Fig.  3, our dataset stands out with its wide-ranging and rich taxonomy of agent and

action categories. This diversity is crucial for ensuring perception systems can operate safely and

e�ciently in varied and unpredictable environments[45][46]. Furthermore, our dataset is meticulously

designed to capture a wide variety of action categories and a high number of instances within each

category. This dual focus on the breadth of agents, action types, and depth of instances allows for

more robust and e�ective training of video recognition models.

Figure 3. Annotation Statistic. The actor and action distribution for DAVE, includes a wide-ranging and

rich taxonomy of 16 agents and 16 action categories. This dual focus on both the breadth of agent and

action types and the depth of instances allows for more robust and e�ective training of video recognition

models.

Following the popular Waymo[1] dataset, we obey the widely used data collection and use similar rules.

We collected this data for Non-commercial Purposes including the use of the Dataset to perform

benchmarking for purposes of academic or applied research publication. To protect privacy and ensure

that the identities of pedestrians and other cars are not discernible, we will blur the faces of persons

(using Retinaface[47]) and blur the license plates of vehicles[48].
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3. Datasets for Di�erent Tasks and Experiments

3.1. Tracking

Dataset Structure: DAVE contains annotations for multiple objects, so we can construct sequences of

frames in which the same object is present. Of DAVE’s 1231 videos, we can construct 44.8k frame

sequences suitable for tracking.

Experiment Setting: To assess visual object tracking on DAVE, we use Autoregressive Visual Tracking

(ARTrack)[34], which boasts SOTA performace on GOT-10k[32], TrackingNet[49], LaSOT[50], and

LaSOText
[51]. We utilize a publicly released “ARTrack-256” checkpoint, pretrained on COCO[52], GOT-

10k, LaSOT, and TrackingNet. ARTrack handles single object tracking as a coordinate sequence

interpretation task using a template region from an initial frame. ARTrack does not determine when a

tracking ID is visible, so we only use sequences of frames in which the same object is present. From the

231 videos in the DAVE validation split, we �lter 5227 frame sequences in which one tracking ID is

continuously present for at least 60 frames. This �ltering of sequences gives ARTrack a slight

advantage because it is a harder task to both detect visibility and track over time. Bounding box

predictions from ARTrack-256 are compared to ground truth using average area overlap ( ),

success rate at 0.5 IoU ( ), and success rate at 0.75 IoU ( ).

Results: We �nd that DAVE is comparable to GOT-10k in   but more challenging for both success

rate metrics. For  , ARTrack performs    worse on DAVE than GOT-10k, despite our

preprocessing to keep the same object present in each frame sequence. While ARTrack performs well

on the AO metric, the degradation in SR implies that the tracker may generate bboxes larger than the

actual object or that it has increased sensitivity to object appearance changes. For example,

illumination variations or pose changes can cause inaccurate predictions in some frames even when

average overlap remains decent. We believe DAVE becomes even more challenging when one considers

the entire video sequence, requiring the tracking of multiple objects as they move in and out of the

frame.

AO

SR0.5 SR0.75

AO

SR0.75 23.7%
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Dataset Sequence number Annotation SOTA Performance

      65.8@HOTA 81.0@MOTA 81.1@IDF1

MOT17[53] 14 Manual 65.8@HOTA 81.0@MOTA 81.1@IDF1

TAO[54] 2.9k Manual 47.2@TETA 66.2@LocA 46.2@AssocA

LaSOT[50] 1.4k Manual 74.0@AUC 82.8@PNor 81.1@P

TrackingNet[49] 30.0k Semi-auto 86.1@AUC 90.4@PNor 86.2@P

GOT-10k[32] 10.0k Manual 79.5@AO 87.8@SR50 79.6@SR75

DAVE 44.8k Manual 72.6@AO 70.2@SR50 47.2@SR75

Table 4. Comparison of Various Tracking Datasets. DAVE is comparable to GOT-10k in AO but more

challenging for both success rate metrics. For SRO.75, ARTrack performs 23.7% worse on DAVE than GOT-

10k, despite our preprocessing to keep the same object present in each frame sequence.

3.2. Detection

Dataset Structure: For detection, we have 13 million annotated bounding boxes with identifying actors

in 16 categories. We prepare them in COCO format.

3.2.1. Vulnerable Road Users Detection

Experiment Setting: We used the YOLOv8[55]  for Vulnerable Road User detection, training three

models on three di�erent datasets: Waymo[1], DAVE, and a combined Waymo + DAVE dataset. The

models were trained for 30 epochs with batch sizes of 32, an image size of 640, all default on all other

parameters as in[55]. All models were evaluated on the DAVE validation set.

Results: As shown in Table 5, the model trained on our DAVE training set outperforms the one trained

on the Waymo training set by 20.8% in terms of mAP50. When combining the Waymo and DAVE

training sets, the model achieves a 24.0% improvement over Waymo alone and a 3.2% improvement

over DAVE alone. The results demonstrate that DAVE is signi�cantly more challenging than Waymo in

terms of Vulnerable Road User detection. Looking ahead, we foresee e�orts to integrate datasets like
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Waymo and DAVE to build a more globally representative tra�c dataset. DAVE is a crucial step in this

direction.

Dataset Training Instances Number Precision Recall mAP50 mAP50-95

Waymo[1] 1,808,771 0.00772 0.0236 0.00266 0.00194

DAVE 5,352,711 0.606 0.245 0.235 0.159

Dave + Waymo 7,161,482 0.604 0.261 0.267 0.179

Table 5. Comparison of VRUs Datasets. Compared with Waymo and Waymo + DAVE with the same setting,

DAVE training set outperforms the Waymo training set by 20.8% in terms of mAP50. When combining the

Waymo and DAVE training sets, the model achieves a 24.0% improvement over Waymo alone and a 3.2%

improvement over DAVE alone. The results show that our DAVE dataset is more challenging than Waymo.

3.2.2. Full Dataset Detection

Experiment Setting: For the object detection step, we use the Swin-T detector, generated by

combining a Cascade R-CNN[56] with a Swin-T[38] backbone. The model is pre-trained on ImageNet

and MS COCO, and �ne-tuned on DAVE using the same settings as Swin-T[38]: multi-scale

training[57] (resizing the input with the shorter side between   and   and the longer side at most 

), AdamW optimizer (initial learning rate of  , weight decay of  , and batch size of  ),

and   schedule (  epochs).

Results: In this paper, our objective is not to enhance object detection within the DAVE dataset.

Instead, we aim to demonstrate the decline in perception performance in unstructured situations.

Delving into the reasons behind this performance drop and identifying methods to better object

detection in these chaotic environments is not covered in our current research community. The results

show that our DAVE dataset is more challenging than the existing datasets.

480 800

1333 1e − 4 0.05 16

1× 12
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Dataset Bbox # Size Frame # Annotation Weather Country SOTA (mAP)

COCO[52] 2.5M Variable 330K images Manual Various / 66.0

Pascal VOC[36] 20K Variable 11K images Manual / / 89.3

Waymo[1] 11M Variable / Manual/Auto Various USA 41.6

COCO-Swin-T[52] 2.5M Variable 330K images Manual Various / 50.5

DAVE 13M 1920x1280 2M images Manual Has Bad weather India 32.5

Table 6. Comparison of Various Detection Datasets. Compared with COCO, with the same setting, Swin-T

performs 18% better on the COCO Dataset. The results show that our DAVE dataset is more challenging

than the existing datasets.

3.3. Video Moment Retrieval

Dataset Structure: For the Video Moment Retrieval task, we annotated 26863 queries, 21,477 for

training, and 5,386 for testing. Our query is like "Car is doing lane changing with clear lane

markings.", "MotorBike runs in the wrong lane.", "Motorized Tricycle is overtaking.". Those queries

are very challenging since some actors are not usual in most visual encoder training data. The actions

require the reasoning of the actor, the nearby agents, and the environment.

Experiment Setting: Following CG-DETR[41] on Charades-STA, we utilize slowfast and CLIP backbone

features. The model is trained with a batch size of 32 over 200 epochs, employing a learning rate of 

  without any learning rate drop. To accommodate adaptive cross-attention mechanisms, 45

dummy tokens are utilized. The selection process for moment-representative saliency involves

pooling 10 candidates, from which 2 are chosen. The architecture includes 3 transformer encoder

layers, 3 transformer decoder layers, and 2 layers each for adaptive cross-attention and dummy

encoding. Additionally, there is 1 layer each dedicated to moment and sentence encoding. The loss

function coe�cients are set uniformly to 1 for most, except for highlight detection and distillation

where they are increased to 4 and 10 respectively, to emphasize their importance in the training

process. These settings are meticulously chosen to enhance the model’s ability to understand and

generate accurate moment retrievals.

2×10−4
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Results: As shown in Table 7, R1@0.5 refers to a metric that evaluates the model’s ability to rank the

most relevant moment within the top 1 results, with a minimum overlap of 50% between the predicted

and ground-truth moment durations. The CG-DETR method only gets 5.1 R1@0.5 on DAVE, the

perception performance degrades signi�cantly illustrating that Video Moment Retrieval is still a

challenging problem in the unstructured environment.

Dataset Videos # Queries # Duration Domain Source R1@0.5

DiDeMo[40] 10,464 40,543 30s Open Flickr 33.4

TACOS[58] 127 18,818 296s Cooking Lab Kitchen 41.5

ActivityNet-Captions[59] 19,209 71,957 180s Open YouTube 60.6

Charades-STA (CG-DETR)[60] 9,848 16,128 31s Daily activities Homes 58.4

DAVE (CG-DETR) 1,231 26,863 60s Open Self-collected 5.1

Table 7. Statistics of datasets for Video Moment Retrieval task. The CG-DETR method only gets 5.1 R1@0.5

on DAVE (58.4 on Charades-STA), and the perception performance degrades signi�cantly illustrating that

Video Moment Retrieval is still a challenging problem in the unstructured environment.

3.4. Spatiotemporal Action Localization

Dataset Structure: The DAVE dataset stands out as a premier choice for Spatiotemporal Action

Localization, thanks to its comprehensive provision of bounding box annotations and associated

behavior labels, encompassing more than 2 million annotated frames. For Spatiotemporal Action

Localization, we set the allocation as 1000 video clips for the training phase and 231 clips designated

for the testing process. Adhering to established benchmark protocols, our evaluation encompasses 16

distinct behavior classes, employing the mean Average Precision (mAP) as the evaluation metric,

predicated on a frame-level Intersection over Union (IoU) threshold set at 0.5.

Experiment Setting: The spatiotemporal action localization pipeline includes detections and

recognition. For the object detection, we use the Swin-T detector in Section  3.2. For recognition

network, following ACAR-Net[39], we conduct experiments using a SlowFast R-101, pre-trained on the

Kinetics-700 dataset[61], without non-local blocks. The inputs are 64-frame clips, where we sample 
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  frames with a temporal stride   for the slow pathway, and  ( ) frames for the fast

pathway. We train ACAR-Net using synchronous SGD with a batch size of  . For the �rst   epochs, we

use a base learning rate of  , which is then decreased by a factor of   at iterations   epochs and 

 epochs. We use a weight decay of   and Nesterov momentum of  . We use both ground-truth

boxes and predicted object boxes for training. For inference, we scale the shorter side of input frames

to    pixels and use detected object boxes with scores greater than    for �nal behavior

classi�cation.

Results: As shown in Table  8, ACAR-Net gets    mAP on DAVE versus    on AVA v2.2, which

shows DAVE is a very challenging dataset and has tremendous room to improve. DAVE’s complexity

arises from diverse agents (16 categories VS 1 category of other human-centric datasets), fast and

varied motion patterns, and dense tra�c. It o�ers valuable resources to improve multi-agent

behavior recognition.

Dataset Bbox # Instance # Video # Actor class Action class Resource SOTA (mAP)

UCF101-24[62] 574k 4,458 3,207 - 24 YouTube 90.3

J-HMDB[63] 32k 928 928 - 21 Movies, YouTube 83.8

AVA v2.2[7] 426k 386k 430 1 80 Movies, YouTube 45.1

AVA v2.1[7] 426k 386k 430 1 80 Movies, YouTube 41.7

MultiSports[26] 902k 37,701 3,200 1 66 YouTube 8.8

AVA v2.2 (ACAR)[7] 426k 386k 430 1 80 Movies, YouTube 33.3

DAVE 1,600k / 1,231 16 16 self-collected 6.3

Table 8. Spatiotemporal Action Localization. ACAR-Net gets   mAP on DAVE, which shows DAVE is a

very challenging dataset and has tremendous room to improve.

3.5. Multi-label Video Action Recognition

Dataset Structure: DAVE for Multi-label Video Action Recognition dataset is composed of 10,083

videos clips, involving interactions with 16 actors classes in 16 types of driving behavior action classes.

T = 8 τ = 8 αT α = 4

16 3

0.008 10 4

5 1×10−7 0.9

384 0.85

6.3% 33.3%

6.3%
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Following the standard split, it has 8,166 training video and 1,917 validation video.

Experiment Setting:

Following SlowFast[43], for the temporal domain, we randomly sample a clip from the full-length

video. For the spatial domain, we randomly crop 224×224 pixels from a video, or its horizontal �ip,

with a shorter side randomly sampled in [256, 320] pixels. Performance is measured in mean Average

Precision (mAP).

Results: As shown in Table 9, SlowFast[43] gets 41.0 mAP when using Kinetics-600 pre-trained model

on DAVE. SlowFast achieves 4.2% more performance on Charedes, which means DAVE is harder in

terms of Multi-label Video Action Recognition task.

Dataset Size
Video

#

Actions per

video

Labelled

instances
domain

SOTA

(mAP)

Charades[42] / 9,848 6.8 67k Daily Activities 66.3

Charades (SlowFast)

[42]
/ 9,848 6.8 67k Daily Activities 45.2

DAVE (SlowFast)
1920

1080
10,083 1-13 1.6M

Outdoor

Actions
41.0

Table 9. Multi-label Video Action Recognition. SlowFast achieves 4.2% more performance on Charedes

than DAVE, which means DAVE is harder.

4. Conclusion

We present a new video dataset, DAVE, which provides a new benchmark for video recognition

research on autonomous driving tasks. It is a robust platform for developing, testing, and re�ning

algorithms capable of handling the complexity of real-world environments. DAVE provides more

e�ective/hard data points and more unpredictable scenarios for training models to better recognize

and protect vulnerable road users. We believe this contributes to improving the robustness of

perception models in complex and unpredictable environments. Through DAVE’s diverse actor

categories, range of actions, and unstructured nature of its video content, DAVE represents a

×
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signi�cant step forward in the quest for models that can truly understand and interpret the visual

world around an ego-car.

Appendix A.

A.1. More Related Datasets

A.1.1. Tra�c Dataset

In recent years, numerous tra�c datasets have been developed to address perception challenges in

autonomous driving systems. These datasets vary in focus, spanning action recognition, tracking, and

object detection tasks. Below, we highlight key datasets that contribute to the �eld, categorized by

their annotations and complexity.

SYNTHIA[13] and Cityscapes[15] focus on semantic segmentation for urban driving. SYNTHIA generates

synthetic images with pixel-level annotations, o�ering scalability for training models. In contrast,

Cityscapes provides real-world images from over 50 cities, annotated for both pixel-level and

instance-level semantic labeling, under diverse illumination and environmental conditions.

SemKITTI[14]  and A2D2[16]  are centered around 3D semantic segmentation using LiDAR data.

SemKITTI annotates dense 360° LiDAR scans for scene understanding, while A2D2 combines RGB and

LiDAR data to o�er large-scale annotations of 3D point clouds in outdoor environments. Waymo[1],

KITTI-360[19], and H3D[21] are notable multimodal datasets for object detection and tracking. Waymo

includes synchronized LiDAR and camera data with bounding box annotations for pedestrians and

vehicles. KITTI-360 extends KITTI with richer 2D and 3D semantic instance annotations, providing a

full 360° �eld of view. H3D focuses on crowded tra�c scenes with detailed annotations for multi-

object detection and tracking using LiDAR data. Apolloscape[17]  and Argoverse[22]  provide detailed

annotations and high-de�nition maps to enable self-localization and 3D scene understanding.

Apolloscape includes dense semantic point cloud labels, stereo annotations, and precise location data,

while Argoverse integrates sensor fusion data and 3D bounding boxes for tasks like tracking and

trajectory forecasting. PIE[18]  and TITAN[12]  specializes in pedestrian behavior prediction and

trajectory forecasting. PIE focuses on pedestrian crossing intentions and future motion estimation,

while TITAN includes hierarchical annotations for pedestrian and vehicle actions, o�ering insights

into interactive urban tra�c scenarios. NuScenes[23]  and A*3D[20]  are large-scale multimodal
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datasets designed for autonomous driving in challenging conditions. NuScenes includes 3D bounding

boxes for 23 object classes, with data from cameras, LiDAR, and radar under varying weather and

nighttime conditions. Similarly, A*3D addresses highly diverse environments, featuring dense

annotations with signi�cant nighttime scenes. DriveSeg[24] and ROAD[11] stand out for their focus on

dynamic scene understanding. DriveSeg provides pixel-level semantic labeling for continuous driving

scenes, capturing amorphous objects like road construction and vegetation. ROAD introduces road

event awareness by annotating agent-action-location triplets for vehicles, pedestrians, and

vulnerable road users (VRUs), supporting spatiotemporal action detection.

In comparison to these datasets, DAVE (Ours) is speci�cally designed to address the challenges of

unstructured, high-density tra�c environments, with a strong emphasis on vulnerable road users. By

annotating complex interactions, rare behaviors, and diverse actor categories, DAVE provides a

benchmark for developing robust and generalizable perception models for autonomous driving

systems.

A.1.2. Tracking

The �eld of object tracking has signi�cantly advanced with the development and introduction of

various benchmark datasets, which are crucial for evaluating the performance of tracking algorithms.

One of the earliest and most widely used datasets is the OTB dataset, introduced by Wu et al.[64], which

has played a pivotal role in benchmarking the accuracy and robustness of trackers. The OTB dataset

provides comprehensive ground truth for various objects across numerous videos, allowing for a

detailed analysis of tracking algorithms under di�erent conditions. Following the OTB, the

VOT[65]  challenge has introduced datasets annually since 2013, with each iteration presenting new

challenges and advancements over the previous versions. The VOT challenge datasets are known for

their rigorous annotation protocols and have introduced several innovations in evaluation

methodologies, such as the no-reset evaluation protocol and real-time tracking evaluations. Another

signi�cant contribution to the �eld is TrackingNet[49], which provides a large-scale dataset covering

a wide variety of objects and scenarios. The LaSOT dataset by Zhan et al.[50]  further extends the

boundaries by o�ering a large-scale, high-quality dataset with lengthy video sequences and is aimed

at evaluating the long-term capabilities of tracking algorithms. LaSOT provides detailed annotations

and a diverse set of challenges, making it an invaluable resource for developing and testing long-term

trackers. The GOT-10k dataset by Huang et al.[32] introduces a unique approach by focusing on a wide
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variety of object classes with a zero-shot evaluation protocol. This dataset challenges trackers to

perform well on previously unseen objects, pushing the boundaries of generalization in object

tracking. PoseTrack[66]  and GDTM[67]  focus more on specialized datasets. PointOdyssey[68]  is a

synthetic dataset speci�cally designed for long-term point tracking, addressing the limitation of

short temporal context in existing datasets.

Compared with those datasets, DAVE’s diverse actors allow for the evaluation of robust tracking

methods capable of handling occlusions, cluttered scenes, and dynamic environments. It broadens the

scope of tracking scenarios, facilitating the development of algorithms capable of operating under a

wider range of real-world conditions.

A.1.3. Detection

In the realm of object detection, except for Pascal VOC challenge[36]  and the MS COCO dataset[52],

there are some speci�c applications such as autonomous driving[1][69], and dedicated datasets have

been created to address the unique challenges of this domain. Waymo Open Dataset[1]  represents a

signi�cant leap forward in scale and diversity for autonomous driving datasets. It encompasses a vast

array of sensor data, including high-resolution LiDAR and camera footage, across a wide range of

driving conditions and scenarios. This dataset has been instrumental in pushing the boundaries of

perception algorithms in terms of scalability, robustness, and accuracy. The NuScenes dataset[23]  is

another pivotal dataset for autonomous vehicle perception, o�ering a rich set of sensor modalities,

including RADAR, which is less common in other datasets. NuScenes provides detailed annotations for

a variety of object classes in complex urban environments, making it a valuable resource for multi-

modal perception systems.

Compared with those datasets, DAVE has more challenges in terms of the mixture of agents, area, time

of the day, tra�c density, and weather conditions.

A.1.4. Spatiotemporal Action Localization

Spatiotemporal action localization is a crucial task in computer vision that involves identifying both

the temporal and spatial boundaries of actions within videos. This task enables the understanding of

complex video content by pinpointing where and when speci�c actions occur. Over the years, several

datasets have been introduced to facilitate research and development in this area. Here, we review

some of the key datasets that have signi�cantly contributed to advancing spatiotemporal action
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localization research. UCF101-24[62]  is one of the earliest datasets tailored for spatiotemporal action

localization. Derived from the UCF101 dataset, it includes 24 sports categories with temporal

annotations and bounding boxes around the action instances. Despite its relatively small size, UCF101-

24 has been pivotal in early methodological developments. The J-HMDB dataset[63]  is another

fundamental resource that consists of 21 di�erent action classes with 928 video clips. Each action

instance is annotated with a bounding box across all frames, providing detailed spatial and temporal

information. The dataset’s focus on human actions makes it particularly valuable for human-centered

action localization research. Furthermore, MEVA[70] and VIRAT[71] focus on unmanned aerial vehicles

and surveillance activity detection.

More recently, the MultiSports dataset[26] has been introduced, focusing on multi-person and multi-

action scenarios within sports videos. It contains annotations for 133 action classes across more than

20 di�erent types of sports, with precise spatiotemporal bounding boxes for each action instance. This

dataset is particularly challenging due to the dynamic nature of sports, which include frequent

occlusions and interactions between athletes. Our DAVE dataset makes the progression from relatively

simple, single-action instances in constrained environments to complex, multi-action scenarios in

uncontrolled environments and challenging scenarios.

A.1.5. Video Moment Retrieval

The task of Video Moment Retrieval (VMR) involves identifying speci�c moments within a video that

correspond to a textual query. This area has seen signi�cant interest due to its applications in video

understanding, search, and interaction. Various datasets have been introduced to facilitate research in

VMR, each with its unique characteristics and challenges. This section reviews some of the key

datasets that have been in�uential in advancing VMR research. One of the earliest and most widely

used datasets in this domain is the Charades dataset by Sigurdsson et al.[60]. It consists of videos of

daily activities annotated with descriptions and temporal intervals. The dataset has been instrumental

in developing early VMR models due to its rich annotations and the naturalistic setting of the videos.

Building on the foundations laid by Charades, the ActivityNet Captions dataset[72] o�ers a larger scale

and diversity of activities. This dataset features dense temporal annotations with corresponding

natural language descriptions, making it a staple for training and evaluating VMR systems. Another

signi�cant contribution to the �eld is the TVR dataset[73]. This dataset stands out for its focus on

television show episodes, providing a mix of dialogue, action, and interaction that is more complex
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than daily activities. The TVR dataset is particularly noted for its challenging queries that require deep

understanding of both the video content and the textual descriptions. The DiDeMo dataset[40] o�ers a

di�erent approach by focusing on describing distinct moments in a video with a single sentence. Its

unique structure facilitates research into more granular moment retrieval and alignment between

video content and textual descriptions. These datasets have collectively contributed to the progress in

VMR by providing diverse challenges and enabling the development of advanced models capable of

understanding complex video-text relations. However, the unstructured videos in DAVE add more

sophistication and increase the complexity of tasks that models are expected to perform.

A.1.6. Multi-label Video Action Recognition

In the �eld of computer vision, multi-label video action recognition has become increasingly

important for applications ranging from surveillance to content analysis and retrieval. Unlike single-

label action recognition, where each video is associated with a single action, multi-label video action

recognition involves identifying multiple actions that occur simultaneously or sequentially within a

video.

The Charades dataset by Sigurdsson et al.[42]  is the most popular and is speci�cally designed for

multi-label video action recognition. It contains 9,848 videos with an average length of 30 seconds,

annotated with 157 action labels. The dataset stands out for its focus on everyday activities, with

videos featuring multiple actions performed by the actors. Charades facilitates the development and

evaluation of models capable of recognizing multiple simultaneous actions, making it a cornerstone in

multi-label video action recognition research.

Given that Charades focuses on daily activities, it primarily includes indoor scenarios. This focus may

limit the applicability of derived models for outdoor activities or other contexts not covered by the

dataset. Our DAVE dataset makes up for the indoor limitation and introduces more complex actions,

leading to the advancement of more sophisticated and accurate recognition models.
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