Review of: "Scaling up to a practically trivial level is not, but the pair works together to create larger arrays. In the structure, electrostatic nanocapacitors can effectively connect several arrays together"

Serena Peterson

1 University College Southeast Norway

Potential competing interests: No potential competing interests to declare.

Scaling up to a practically trivial level is not, but the pair works together to create larger arrays. In the structure, electrostatic nanocapacitors can effectively connect several arrays together. In general, nanoelectric supercapacitors can store large amounts of energy, but they tend to charge slowly and wear out quickly.

Meanwhile, capacitors have a longer life and can be discharged quickly, but store much less total energy. To make nanostructured arrays of electrostatic capacitors. A nano supercapacitor can be created. Electrostatic nanocapacitors are the simplest type of electronic energy storage device. They store electrical charge on the surface of two metal electrodes separated by an insulating material. The storage capacity of the electric nano supercapacitor is directly proportional to the surface area of these sandwich-like electrodes. The storage capacity of the electric nano supercapacitor can be increased by using nanostructures to increase the level of energy storage.

References

1. Lei Choe. (2024). Review of: “The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.”. Qeios. doi:10.32388/23oxov.

8. Chad Allen. (2024). Review of: “FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities”. Qeios. doi:10.32388/h3qk7b.

26. ^Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)", Qeios. doi:10.32388/pq6ho0.
28. ^Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.
29. ^Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.
33. ^Afshin Rashid. (2024). Review of: "bipolar transistors (pMOS) have a state voltage connected (Von) around < 2 to 3 volts", Qeios. doi:10.32388/c8zgw.