
Qeios PEER-APPROVED

v1: 17 November 2023 Review Article

Exploiting Structure: A Survey

and Analysis of Structures and

Hardness Measures for

Propositional Formulas

Peer-approved: 17 November 2023

© The Author(s) 2023. This is an

Open Access article under the CC BY
4.0 license.

Qeios, Vol. 5 (2023)
ISSN: 2632-3834

Rick Adamy1, Elias Kuiter1, Gunter Saake1

1. Otto-von-Guericke Universität Magdeburg, Germany

The Boolean satisfiability problem (SAT) and its many variations lie at the core of

many algorithmic problems in both academia and industry. Due to being NP-

complete, general instances of SAT cannot be solved efficiently. However,

exploiting certain structures or properties of a formula can greatly accelerate the

computation of solutions or serve as a measure for the hardness of a SAT

instance. In this paper, we describe and discuss such exploitable properties and

structures. First, we describe known exploitable structures found in

propositional formulas like blocked clauses, unit clauses, pure literals,

backbones, and autark assignments. Second, we describe hardness indicators for

propositional formulas such as the variable-to-clause ratio, as well as advanced

structural measures like centrality, modularity, and self-similarity. In particular,

we give an overview on the selected structures and measures and discuss their

applications. We also identify relationships between them to clarify their

complex interactions and potential for use in solvers.

Corresponding authors: Rick Adamy,

rick.adamy@ovgu.de; Elias Kuiter, kuiter@ovgu.de;

Gunter Saake, saake@ovgu.de

1. Introduction

The Boolean satisfiability problem (SAT) is a core

problem of propositional logic with close ties to

problems important to industry. Among them are

selection problems (e.g., finding cliques or vertex covers

in graphs), separation problems (e.g., finding maximum

matchings or maximum cuts in graphs) and

arrangement problems (e.g bin packing and scheduling),

which can all be expressed or modeled as a propositional

formula. Thus, solving such problems can be reduced to

finding a satisfying assignment for the corresponding

formula [1]. In fact, any NP problem (i.e., computationally

hard problems with no efficient solving algorithm for all

instances), can be reduced to the question of whether a

formula is satisfiable or not [2]; that is, to the Boolean

satisfiability problem (SAT). In addition to the wide

applicability of SAT, it also offers an easy to handle

standard format, the conjunctive normal form (CNF),

which allows solving methods to be developed

independently from the concrete problems and their

individual format.

Due to this universality of the SAT problem, finding

efficient ways to solve it are of importance to many areas

of academia and applications in industry such as

hardware and circuit verification [3], software verification

like static driver verification [4] or the analysis of feature

models [5], which model dependencies of features in

software product lines [6]. However, due to SAT being in

NP itself it is provably not possible (if) to

construct a general solution algorithm that is efficient

for all instances.

While efficiently solving arbitrary instances is therefore

not possible, it is still possible to identify helpful

properties and structures of specific formula types,

which then allow the creation of specialized solvers, like

P ≠ NP

qeios.com doi.org/10.32388/7U1PFG.2 1

mailto:rick.adamy@ovgu.de
mailto:kuiter@ovgu.de
mailto:saake@ovgu.de
https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

[7], [8] or the theorem

prover [9], which are efficient for certain types of

formulas. In addition, there are classes of formulas with

more restrictions to their structure, such as Horn

formulas (which can be solved in linear time [10]) or

feature-model formulas [11] (which are mostly efficient to

solve in practice). In this survey, we give an overview

over a selection of such structures found in SAT formulas

and their application in specialized solving algorithms,

as well as a selection of difficulty indicating measures on

them. Furthermore, we identify connections between the

selected structures and measures and highlight their

potential use in solvers.

2. Background

In the following section we briefly introduce the most

important concepts that we use to study structures and

measures of propositional formulas, as well as methods

to solve them.

2.1. SAT and Propositional Logic

First we introduce the basics of propositional logic, the

SAT problem and their representations. For this let

 be a set of variables and let

 be the corresponding set of literals

over a set of variables. At the core of SAT are

propositional formulas in conjunctive normal form

(CNF):

Definition 2.1. A formula is called a clause

of size m if it is a disjunction of m literals. A formula

 is called a CNF formula of length n if it is

a conjunction of n clauses.

The clause of size 0 is called empty clause and is denoted

by .

The set of all formulas in CNF is denoted by . A

clause on its own is also a formula in as it is a CNF

formula of length 1. It is sufficient to only look at

formulas in CNF, as any arbitrary propositional formula

can be transformed into an equivalent formula in CNF by

repeatedly applying the axioms of propositional logic [12].

This in turn can cause a translated formula to grow

exponentially in length. For such cases, alternative

transformations into equisatisfiable CNFs like the Tseitin

transformation [13][14] can be used, which grow only

linear in length. In order to determine whether a formula

is satisfiable, we need to define truth value assignments.

Definition 2.2. A function is called truth

value assignment (henceforth just assignment). Let var(

) be the set of symbols used in . An assignment is

called fitting for if it only assigns symbols from var(

). is called partial w.r.t. if there is a var() not

assigned by it. is called complete w.r.t. if it is not

partial. We only examine fitting assignments and use

 as shorthand notation for the

assignment such that .

Based on the assigning function the notion of

satisfiability of a formula can be defined as follows:

Definition 2.3. Let be an assignment, x be a variable, C a

clause and a formula in CNF.

 satisfies x if = 1

 satisfies if = 0

 satisfies C if it satisfies at least one of the literals in

C

 satisfies if it satisfies all clauses of .

An assignment satisfying a formula is called a model for

the formula. A formula containing an empty clause is

unsatisfiable, as the empty clause is not satisfiable by

definition.

Definition 2.4. A formula is called tautology if every

complete assignment over its variables is a model.

Conversely a formula is called contradiction if it has no

models. Based on the notions of CNF and the

satisfiability of CNF formulas, the SAT problem is now

defined as follows:

Definition 2.5. The set of all satisfiable formulas in CNF is

denoted by SAT.

Adding an additional structural constraint to the shape

of the formula yields the class of k-SAT problems defined

as follows:

Definition 2.6. k-SAT is the set of all satisfiable formulas

 in CNF whose clauses are of size at most k.

The special case of k = 1 is trivial as it consists solely of

clauses of size 1. Such a formula is unsatisfiable if and

only if it contains a clause and its negation , as a

variable cant be assigned both 0 and 1 simultaneously.

Otherwise a satisfying assignment can be constructed by

assigning 0 to a variable if it occurs negated and 1

otherwise. In addition, the case k = 2 is similarly a

problem in P, meaning there is at least one polynomial-

time algorithm that can decide the satisfiability of any 2-

SAT instance. In fact, a wide variety of such algorithms

have been proposed over the years, the fastest of them

even reaching linear time complexity, like those

proposed by Krom [15] and Aspvall et al. [16]. For all cases

of k > 2 however, k-SAT is generally an NP problem. Since

SAT is reducible onto k-SAT (for k > 2), it makes any such

k-SAT equally difficult and equally expressive, or NP-

hard. Thus it can be sufficient to look at a specific case

with more restriction on the shape of the formulas, like

3-SAT. In addition to the CNF, any formula can be

encoded in an undirected graph, called variable incidence

SATZILLA HORDESAT SPEAR

S = { , , . . }x1 x2

L = S ∪ {¬x|x ∈ S}

C = ∨. . ∨l1 lm

ϕ = ∧. . ∧C1 Cn

□

CNF

CNF

α:S → {0, 1}

ϕ ϕ α

ϕ

ϕ α ϕ s ∈ ϕ

α ϕ

(= , . . , =)x1 i1 xn in
α α() = , j ∈ {1, . . ,n}xj ij

α

ϕ

α α(x)

α ¬x α(x)

α

α ϕ ϕ

ϕ

x ¬x

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 2

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

graph (VIG). The representation of a formula as a graph

puts more emphasis on the relations between the

variables which are captured by the graphs structure,

giving an additional avenue to identify structure within a

formula. Furthermore this allows to apply graph based

measures and graph theory to SAT instances. VIGs can be

defined as follows:

Definition 2.7. A VIG on a formula consists of the

variables contained in as vertices, connecting two

vertices with an edge if two variables appear together in

a clause.

VIGs may weight the edges by incorporating how often

two variables appear together and the size of their shared

clauses. Such a weight can be calculated by

, which scores each shared

clause by its size, giving higher scores to smaller clauses,

before summing over the scores of all shared clauses.

This weighting method does not consider positive and

negative literals to be different. Based on the VIG,

another useful concept are boxes over a VIG, which are

important for certain measures.

Definition 2.8. A box B of size k in a VIG is a subset of k

vertices, such that . here is the

weighted distance of the shortest path between x and y.

If is a box of size s, then there are no two vertices

 such that their shortest path distance is longer

than s. In essence this means that any two vertices of a

box are always connected by a shortest path that does

not exceed s. As a more geometrical interpretation, we

can think of a box of size s as a circle with diameter s. For

a set of s vertices , the weighted distances of the

shortest paths between them can be thought of as line

segments of length . now is a box of size s, if all line

segments can be placed inside the circle without any of

them intersecting the circle itself. In unweighted cases,

instead of using weighted distances one can simply use

the length of the shortest path, which is the number of

edges, for a similar notion of a box.

ϕ

ϕ

w(x,y) = ∑C∈ϕ∧x,y∈C
1

()|C|
2

(< k)∀x,y∈B dx,y dx,y

S

x,y ∈ S

S dx,y

dx,y S

qeios.com doi.org/10.32388/7U1PFG.2 3

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

Figure 1. Graphical depiction of a feature model M, with root feature "ConfigDB",

mandatory feature "API", optional feature "Transaction", the feature group "Get,

Put, Delete" and the cross tree constraint "Transaction Put Delete"

2.2. Applications of SAT

Propositional formulas are, for instance, applied in

software engineering for representing feature models,

which are used to model dependencies of features in

software product lines. Figure 1 depicts an example

feature model for a simple database. Such a model can be

transformed into a propositional formula that describes

its valid configurations~[6]. For the example model M, an

equivalent formula would be ConfigDB

 (ConfigDB API) (Transaction ConfigDB) (API

 Get Put Delete) (Transaction Put Delete .

This formula can further be transformed into a CNF

formula which can then be used to analyze the feature

model, including determining core-, dead features of the

model or checking for invalid feature selections.

However, in order to do such analysis on a feature model,

the underlying equivalent formula needs to be solved.

2.3. Solving SAT

Determining whether a given formula is a member of

SAT (or k-SAT, respectively) lies at the core of the SAT

problem, which can be answered by either constructing a

satisfying assignment (model finding) or by finding a

refutation proof, effectively showing the formula to be a

contradiction.

The simplest approach to model finding is the naive

search, which is simply trying all possible assignments

over the set of variables contained in a formula. This

consists of creating a complete assignment and testing if

it is a model for the formula before moving to the next

complete assignment, repeating until either a model has

been found or all possible assignments have been

checked. However, this approach is very inefficient, as it

does not retain information of prior conflicts, which

amounts to reevaluating similar assignments multiple

times. The backtracking method improves the naive

search by constructing a partial assignment step by step,

going one step back in the construction if the current

assignment cannot be extended to a model. In addition to

this it also simplifies the remaining formula by applying

the partial assignment. Those two modifications cause

the search algorithm to abandon partial assignments

that caused a simplified formula to contain the empty

clause, making it unsatisfiable, instead of further

pursuing it. Furthermore, the backtrack algorithm stops

whenever the simplified formula is empty, as the original

formula is already satisfied by the current partial

assignment.

→ ∨

ϕ(M) =

∧ ↔ ∧ → ∧

↔ ∨ ∨ ∧ → ∨)

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 4

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

Figure 2. Example search trees for naive search (left)

and backtracking (right) for the formula

. Solid arrow: assign 1,

dotted arrow: assign 0, box: satisfying assignments,

diamond: unsatisfying assignment

Figure 2 shows the different search trees for a naive

search and backtracking if both always look at assigning

1 to a variable first. The red boxes in the backtrack tree

are the places where the backtrack method has found the

empty clause in the simplified formula which caused it to

backtrack one step, thus abandoning this path. The

dotted blue box in the backtrack tree is the place where

the simplified formula became empty after assigning 0

to y, thus signaling the partial assignment constructed

up to that point being satisfying.

It is important to note that both methods' efficiency

depends on the order in which the variables are assigned.

To counter this and further accelerate the search method,

the class of DPLL algorithms [17] has emerged, which add

further heuristics to the standard backtracking, in

addition to utilizing unit clauses and pure literals.

Another class of algorithms, which is derived from the

DPLL algorithms, is called Conflict Driven Clause

Learning (CDCL) [18]. The main difference between CDCL

and DPLL is that CDCL uses non-chronological

backtracking and can learn clauses during the search

process. Informally, clause learning adds a conflict clause

(a clause encoding the cause of a conflict found during

assignment construction) to the formula in order to

avoid the same conflict in later constructions. After

adding the conflict clause to the formula, a non-

chronological backtrack step is done, which returns to

the earliest point in the search tree where one of the

conflict-generating variables got assigned.

As mentioned before, the other possible approach to

determine if a formula is satisfiable is by refutation

proof. By using a sound and complete calculus, the

approach tries to infer the empty clause , which can not

be satisfied by definition. The naive approach is to

subsequently generate all inferences while adding the

results to the formula via conjunction, yielding a

modified but equisatisfiable formula. A common calculus

used in propositional logic is the resolution calculus,

which uses the following inference rule:

Definition 2.9. Let and

 be two clauses, then their resolvent

 over the variable b is defined as

.

Finding a refutation by resolution consists of inferring

the empty clause by repeatedly applying the resolution

rule until no new resolvent can be added to the formula.

This process similarly can be augmented by heuristics,

like linear resolution [19], for additional computational

gain.

3. Structures and Measures

In this section we introduce and examine the concrete

structures and hardness measures selected for this

survey. The selection is mostly based on their adjacency

to DPLL/CDCL algorithms, used by most state of the art

solvers.

For this section let

 be a

recurring example. Figure 3 depicts the VIG for with

and without standard weights as defined in Section 2.1.

ϕ = ¬w ∧ ¬x ∧ ¬y ∧ (¬y ∨ z)

□

C = ∨. . ∨ ∨ bl1 ln
D = ∨. . ∨ ∨ ¬br1 rm
RC,D

= ∨. . ∨ ∨ ∨. . ∨RC,D l1 ln r1 rm

□

ϕ = (x) ∧ (¬x ∨ y) ∧ (y ∨ z) ∧ (¬p ∨ p ∨ x ∨ ¬y)

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 5

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

Figure 3. Variable Incidence Graph of . Left: without weights, right: with standard

weights

To tie a more concrete meaning to the variables of ,

consider the following interpretation of the variables as

simple propositions: x = "it is raining", y = "it is cloudy", z

= "it is windy" and p = "it is noon". The formulas clauses

now encode the following: () = it is raining, () =

if it is raining then it is cloudy, () = it is cloudy or it

is windy and, () = if it is noon or cloudy

then it is noon or raining.

3.1. Structures

First we introduce the selected structures and show

where they occur in , which we summarize in Figure 4.

ϕ

ϕ

x ¬x ∨ y

y ∨ z

¬p ∨ p ∨ x ∨ ¬y

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 6

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

Figure 4. Overview of structure found in

3.1. Unit Clauses

The first and simplest structure in the selection is the

unit clause, which are clauses of size 1 [20][21]. Since all

clauses of a formula need to be satisfied in order to

satisfy the entire formula, and there is only one

possibility to satisfy a clause of size 1, they can be used as

a heuristic in constructing a satisfying assignment. As

such they play an important role in the aforementioned

class of DPLL algorithms where unit clauses are given

high priority as they allow the formula to be simplified

subsequently, which may create new unit clauses in the

process. The prioritization of unit clauses and

subsequent simplification of a formula is known as unit

propagation. Besides their important role in DPLL, they

also are of high significance for resolution refutations as

they are needed to infer the empty clause . In addition

to that, prioritizing resolutions with unit clauses only

results in small clauses, which makes it more likely to

approach a possible refutation proof. In only (x) is a

unit clause, however, if unit propagation is used as a

simplification mechanism it would turn the second

clause to , creating a new unit clause. In

terms of the concrete propositions this means that "it is

raining" has to be true if is to be satisfied.

3.1.2. Pure Literals

A literal is called pure in a formula , if its negation is not

in [20][21]. For a non pure literal, both assignments with

0 and 1 may lead to an overall satisfying assignment,

which requires both to be examined in a search tree.

Compared to that, a pure literal is guaranteed to only

benefit the search for a model by assigning the value that

satisfies it, preventing a branch in the search tree. Just

like unit clauses, pure literals are a main heuristic in the

class of DPLL algorithms as they are easy to determine.

For instance, counting both positive and negative

occurrences of each variable and updating those counters

upon simplifications would make checking for purity a

matter of checking if exactly one of the counters is zero.

Similarly to unit clauses, simplification steps may cause a

literal to become pure in a subformula. In addition, a

literal that is pure in a formula is not useful for a

resolution refutation, which therefore cannot contribute

towards inferring . In only z is (positive) pure as all

other three variables occur both positive and negative. In

the context of feature models, pure literals are always

representing optional leafs in the tree representation,

which can be freely selected or deselected. This means

that the validity of the feature selection is not dependent

on such optional leaf features.

3.1.3. Autark Assignments

A partial assignment is called autark, if all clauses that

contain a variable assigned by are satisfied by it [22][23].

This property allows to have an easier simplification step

when applying an autark assignment to a formula, as all

affected clauses can be removed while everything else is

kept as is. In essence simplification becomes a clause

filtering operation for them. In contrast to that, applying

a non-autark assignment may lead to clauses needing to

be simplified by taking out unsatisfied literals. Therefore

autark assignments capture a kind of independence of

the assigned variables w.r.t. a formula [24]. The Monien-

Speckenmeyer algorithm [25], which is a DPLL algorithm

with an additional heuristic, utilizes autark assignment

in addition to the standard unit propagation and pure

literals. An example of an autark assignment for would

be (p=0) or (p=1) as they would fulfill clause C4 while not

touching the others. Simplification thus would just

remove the last clause. Further autark assignments for

 are (x=1,y=1) and (z=1), which would cause

simplification to filter out all clauses or just the third

clause respectively.

ϕ

□

ϕ

(¬x ∨ y) (y)

ϕ

ϕ

ϕ

□ ϕ

α

α

ϕ

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 7

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

3.1.4. Backbone Variables

A variable is called backbone variable if it is assigned the

same truth value in all satisfying assignments [26]. This

means that there is no choice for these variables in a

satisfying assignment. The set of all backbone variables

is called backbone of a formula. While has 16 possible

assignments in total, only half of these need to be

considered when it comes to backbones, since the last

clause C4 is tautological and thus always true. Therefore,

looking at the remaining 8 assignments there are only

two of them that are satisfying, namely (x=1,y=1,z=0) and

(x=1,y=1,z=1). Since x and y are both assigned the same

values in all satisfying assignments they are backbone

variables of . In terms of the concrete propositions for

 this means that "it is raining" and "it is cloudy" are

both true in all satisfying assignments whereas "it is

windy" can be either true or false. In the context of

feature models, the backbone variables resemble the core

features of a model, which always need to be part of a

valid feature selection. In turn this also means that only

the non backbone variables, or the features associated

with them, are able to cause variability in a system.

3.1.5. Blocked Clauses

A blocked clause is defined in terms of resolution calculus

as follows: A clause P is called blocked by a literal l if for

all other clauses C containing l, the resolvent over

l is a tautology [27][28]. The literal causing C to be blocked

is called blocking literal. A clause may be blocked by

multiple of its literals. A blocked clause cannot contribute

to finding a refutation proof, as a sound calculus cannot

infer a contradiction from tautologies, thus allowing it to

be removed from the formula, therefore reducing the

number of clauses that need to be combined through

resolution. The elimination of blocked clauses has been

studied more in depth by Järvisalo et al. [29] and

Kiesl [30]. has three clauses that are blocked by at least

one literal. Both clauses C2 and C3 are blocked by y, since

the only clause they can be resolved with over y is C4,

which result in tautologies. Conversely C4 is also blocked

by y as it can only be resolved over y with C2 and C3. In

addition to this C4 is blocked by x due to the same

reason, as the only available resolvent with C2 is also

tautological. However C2 is not blocked by x, as resolving

with C1 results in a unit clause which is not tautological,

thus having at least one non-tautological resolvent.

3.2. Hardness Measures based on Structure

Second we introduce the selected measures which can be

used as indicators of hardness. Here hardness generally

refers to the difficulty of a given instance compared to

other instances of same problem. The amount of steps a

solving algorithm like DPLL/CDCL has to take in order to

find a solution is often used as the hardness value. The

longer an algorithm will take to find a solution the more

difficult the instance.

3.2.1. Clause to Variable Ratio
ϕ

ϕ

ϕ

¬ RP,C

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 8

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

Figure 5. Phase transition plot (taken from [31]). The transition point is found at an L/N

ratio between 10 and 11.

The ratio of clauses to variables of an instance can serve

as an indicator of hardness of said instance as

determined in an experiment about phase transition by

Walsh [31]. Phase transition here describes the easy-hard-

easy pattern of randomly generated k-SAT instances that

arises from plotting the amount of branches, or number

of function calls, over the aforementioned ratio. The peak

of this plot is the transition point at which the

probability for a random instance being satisfiable is

about 0.5. This pattern captures the fact that instances

with many variables but comparably few clause are very

likely to be satisfiable as they are underconstrained on

the variables. On the other extreme end, instances with a

lot more clauses than variables are overconstrained

problems that are very likely to be unsatisfiable. The

difficulty arises somewhere in between, where there is

just the right amount of clauses to variables that neither

over- nor underconstrain the problem and where the

probability of being satisfiable is about . Figure 5 plots

the number of branches needed to solve a problem of a

certain clause to variable ratio with fixed number of

variables. The dotted line plots the probability of the

instances to be satisfiable, showing a sharp fall of

probability around the transition point while it is near

constant outside of this area. For randomized 4-SAT

problems, the phase transition point is found at a ratio

value between 10 and 12. This means that for 4-SAT

formulas with 75 variables specifically, the hardest

instances are those that have between 750 to 900

clauses. This ratio will be referred to as CVR. , which is a

4-SAT instance, has four clauses and four variables,

resulting in a CVR of 1 classifying it as an easy instance

with near 1 probability of being satisfiable, as seen by the

dotted line of Figure 5.

3.2.2. Backbone Variable to Variable Ratio

The hardness of purely satisfiable instances is dependent

on the ratio of backbone variables to regular variables. If

plotting said ratio together with the number of branches

of a solving algorithm run on only satisfiable instances,

it shows a similar relationship between the two as seen

in the branch and probability plots of Figure 5. This

relationship, as analyzed in Achlioptas et al. [32] indicates,

that instances with over 90% and instances with under

10% of variables belonging to the backbone are the easy

areas left and right of the transition zone, whereas the

peak of the branch curve is around the point where 50%

of variables belong to the backbone. Intuitively this

follows from the observation that overconstrained

instances have many backbone variables whereas

underconstrained instances have very little of them. It

also coincides with the intuition that instances that are

not over- or underconstrained, which also have roughly

equal amounts of normal and backbone variables, are the

hardest to solve.

This ratio will be referred to as BVR. This relationship of

hardness and BVR was originally discovered and

discussed in Achlioptas et al. [32] which proposed a

generator for purely satisfiable but hard instances by

0.5

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 9

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

using Latin squares, which then can be translated into

CNF formulas. has the two backbone variables x and y,

which are half of all variables found in thus resulting in

a BVR of 0.5. If trying to use the plots and numbers from

the aforementioned work, the BVR would indicate to be

in the area of hardest instances, which would contradict

the observation made with the CVR of . The problem

stems from not being comparable to the instances

generated and examined in the work, the results

therefore cannot be directly applied to general CNF

formulas.

3.2.3. Centrality

Centrality itself is a measure from graph theory to

measure the importance of a vertex within a graph [33].

There are various ways to define a centrality measure,

like using a betweenness measure or utilizing

eigenvectors and adjacency matrices. The encoding of a

formula as a graph opens it up to those graph-theory-

based measures. Applied to a VIG, the centrality of a

variable encapsulates the importance of it in a formula,

or rather, how much it contributes to its difficulty. As

mentioned above, one way to define centrality is by using

the adjacency matrix and its eigenvectors, resulting in

the equation , where A is the adjacency matrix

with if variable vertex i and j are adjacent in the

graph, otherwise , is the centrality vector, x the

variable vector, and the eigenvalue.

Another centrality definition is based on

betweenness [34]. One simple way to define the

betweenness of a vertex v is to count the number of

shortest paths between any other vertices x and y, that

contain v. An augmented version of this definition also

considers the weights of the graph which opens the

measure up to weighted VIGs. The vertex with highest

betweenness centrality in is y as it lies on two shortest

paths (i.e., path x-y-z and path p-y-z). All other shortest

paths consist of exactly one edge which do not contribute

to any vertices' betweenness, putting x, p and z at a

betweenness of 0.

3.2.4. Modularity

Modularity is a measure on decompositions of a graph

into communities, which are disjoint subsets of the

vertices [35]. That is to say, it serves as a kind of quality

measure for a division of vertices of a graph into

communities. Informally a community decomposition is

of good modularity, if it exhibits low coupling and high

cohesion, meaning that each community is highly

connected within itself while only having few

connections to other communities. A simple definition of

the modularity measure Q, which is to be maximized, is

defined in Newman [36] as Q = ,

Where is the fraction of edges in the graph that

connect vertices of community i with vertices of

community j. The squared sum is the expected value a

random decomposition would have. Newman [36] has

found that in practice a Q value of about 0.3 or higher is

indicating significant community structure, meaning

that decompositions with a Q value under 0.3 are as good

as a randomly picked decomposition in terms of high

cohesion and low coupling. For consider an exemplary

decomposition D into and .

Using the Q formula above, D and the VIG of , Q of D is

calculated as follows:

The chosen decomposition D has therefore significant

community structure according to the findings of

Newman, as its modularity value is above 0.3 .

Comparing this to a different decomposition E into

 and and its modularity of 0.25

shows E to have no significant community structure, as

both communities are connected by two edges while

each community itself contains only one edge. Figure 6

depicts both decompositions on the VIG of .

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

Aν = λx

= 1ai,j
= 0ai,j ν

λ

ϕ

(− ()∑i eii ∑j eij)
2

eij

ϕ

= {p,x,y}D1 = {z}D2

ϕ

Q = − + − = − + 0 −e ,D1 D1 e2
,D1 D2

e ,D2 D2 e2
,D2 D1

3
4

1
16

1
16

= 0.625

= {x,p}E1 = {y, z}E2

ϕ

qeios.com doi.org/10.32388/7U1PFG.2 10

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

Figure 6. Decompositions D and E on the VIG of

3.2.5. Self-Similarity

The property of self-similarity in general refers to a

structure or shape containing itself. In terms of graphs,

this means that groups of vertices can be replaced by

single vertices resulting in a graph of similar

structure [37]. Applying this observation to VIGs allows to

explore the self-similarity of a propositional formula.

The self-similarity of a formula can be defined over the

function which describes the minimum number of

boxes of size s needed to cover the graph of . If is

proportional to for some , meaning the function

decreases polynomially, then is called self similar,

 being its fractal dimension. Ansótegui et al. [38] have

shown that low fractal dimensions are found in crafted

and industrial instances, meaning high self similarity.

They also found that similar types of instances have

similar fractal dimensions which would allow to classify

them by their fractal dimension.

This concludes our overview of the selected structures

and measures.

4. Relationships between Structures

and Measures Figure 7. Overview of identified relationships between

selected structures/measures.

After we introduced the various structures and measures

in Section 3 we will now identify relationships between

them. Figure 7 shows the most significant relationships

that we have found. Square vertices represent the

selected metrics and structures, hexagonal vertices

represent related but not explicitly covered concepts.

Solid lines indicate certain relationships while dotted

lines symbolize uncertain relationships or speculations.

Empty box shaped arrowheads symbolize the target

ϕ

ϕ

β(s)

ϕ β(s)

s−λ λ

ϕ

λ

qeios.com doi.org/10.32388/7U1PFG.2 11

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

being used in the source of the connection while

diamond shaped arrows symbolize "is a" relations, e.g.,

modularity is a measure on SAT. The illustrated relations

are covered in more detail in this section.

Pure literals, autark assignments, and unit clauses.

The first relation that can be extracted out of their

definition is that pure literals induce an autark

assignments. As a pure literal only appears without its

negation, a satisfying partial assignment for it will

automatically satisfy all clauses containing the literal.

This in turn means that they will likely be used by the

Monien-Speckenmeyer algorithm [25] as it utilizes autark

assignments as its main heuristic. In addition, if an

assignment of a unit clause variable is autark it implies

the literal of the unit clause to be pure. If this were not

the case, there would be a clause containing the unit

clause's negated literal, which then would require

simplification of the unsatisfied clause, contradicting the

definition of an autark assignment.

Backbone, unit clauses, and pure literals.

Another notable relation is that variables of unit clauses

are backbone variables of the formula containing them.

This also extends to variables that become unit clauses

through unit propagation if no other simplification is

used beforehand. For instance, looking at the example

 again.

As has been determined in Section 3.1.4, x and y are both

backbone variables of . Another way to determine this

is by looking at the effects of unit propagation while

building a satisfying assignment. Since x is a unit in , it

is required to be assigned 1 in any satisfying assignment,

thus making it a backbone variable. Consequently

simplifying using this partial assignment reduces it to
1 which similarly requires y now to be

assigned 1, also rendering y a backbone variable. On the

contrary, the variable of a pure literal is not necessarily a

backbone variable. While pure literals can only be

assigned one value to benefit the construction of a

satisfying assignment of a formula, it does not

necessarily require them to be assigned this value. For

instance, z is pure (positive) in and , however, the

satisfying assignments for are (x=1,y=1,z=1,p=?) and

(x=1,y=1,z=0,p=?)2, hence showing that z is not a

backbone variable. Despite that, one could say they still

have backbone potential, that is if a unit clause

containing a pure literal emerges through unit

propagation the variable of a pure literal becomes a

backbone variable. For instance, if would contain

 as its third clause instead, doing two

simplifications of unit propagation would turn into a

pure unit clause, thus adding it to the backbone of .

Blocked clauses, unit clauses, and pure literals.

Another relation regarding unit clauses is one with

blocked clauses. Any literal of a clause, whose negation

exists in a unit clause, can not be a blocking literal. In

other words, if a literal x exists as a unit clause, then x

can never block a clause as a blocking literal. Since

resolving with a unit clause does not add literals to the

resolvent, the result can not become tautological by such

a resolution step, whereas resolving with a non-unit

clause will add the remaining literals, causing tautologies

to emerge whenever a literal and its negation were

present. Using already-inferred unit clauses can therefore

speed up looking for blocking literals within a clause.

Instead of having to test all literals for being blocking or

not, those with negated unit clauses can be safely filtered

as non blocking. Furthermore, if a unit clause is blocked,

it is quasi-pure, meaning it will become a pure literal

after removing all tautologies. In order to block a unit

clause x in a formula , all its possible resolvents in

 need to be tautological. This can only happen by

resolution with clauses that contain x, and for

any other variable w found in . Therefore x only

occurs in tautological clauses, thus making x pure if

removing all tautological clauses from the formula.

In addition to that, the notion of a literal blocking a

clause by only resulting in tautological resolvents can be

extended by including literals that do not produce any

resolvents at all.

This would notably classify pure literals as blocking

literals, as a resolvent over such a pure literal would

require its negation to be present in other clauses, which

by definition of pure literals is not possible. This

classification as being blocking is justified as resolving

with a clause containing a pure literal will at most end

with the pure literal in a unit clause, but never with the

empty clause as a resolvent. They therefore cannot

contribute to finding a refutation by resolution as all

resolvents will always contain the pure literal.

Combining the observations about pure literals and unit

clauses alters the notion that literals of unit clauses are

never blocking, as they would be considered blocking if

they are pure. It would also mean that unit clauses are

blocked clauses if they are pure.

Blocked clauses also seem to have relations to backbone

variables as suggested in Parkes [39] which use blocked

clauses to find the backbone variables of a formula.

Phase transition

The next considered relations are the ones between the

BVR and CVR, the most obvious is that both exhibit a

similar easy-hard-easy pattern, as described in

Achlioptas et al. [32]. However, the difference lies in the

fact that the BVR is a measure on exclusively satisfiable

ϕ = (x) ∧ (¬x ∨ y) ∧ (y ∨ z) ∧ (¬p ∨ p ∨ x ∨ ¬y)

ϕ

ϕ

ϕ

= (y) ∧ (z ∨ y)ϕ′

ϕ ϕ′

ϕ

ϕ

(¬y ∨ z)

(z)

ϕ

¬

ϕ

ϕ

¬ w ¬w

ϕ ¬

qeios.com doi.org/10.32388/7U1PFG.2 12

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

instances whereas CVR is a measure over both satisfiable

and unsatisfiable instances suggesting they may not be

quite comparable. In addition to that, the CVR can be

applied to any CNF formula whereas the BVR can not, as

it is an observation based on the specific formula type

used in the generator approach. A separate study on the

link between hardness and the BVR on general instances

is needed in order to directly compare it to the CVR of a

formula. However, in Zhang [40], which looked at phase

transition patterns of a variety of ratios of asymmetric

traveling salesmen problems, the authors concluded that

all examined ratios exhibited a similar phase transition

pattern.

Centrality, decision variables, and propagation variables.

Centrality is mostly indirectly related to other presented

measures and structures. In Katsirelos and Simon [41] it

was shown that decision variables, which are variables

picked by a solver after no further simplification steps

like unit propagation can be applied, have a higher

average centrality compared to the average centrality of

all variables. Their observations suggest that CDCL

procedures and their heuristics favor picking variables

with higher centrality over those with lower centrality,

which may be an explanation as to why CDCL procedures

tend to concentrate on certain parts of the search space.

Modularity and phase transition.

For the modularity measure and community structure

Ansótegui et al. [42] has found that industrial instances

have high modularity compared to randomized

instances. They also found that for random instances,

modularity only has relevance for instances with low

CVR. Similar observations have been found in Ansótegui

et al. [43] where they also show a clear decreasing trend of

the modularity for increasing CVR values of random

instances. They also found that the modularity is

smallest for those instances at the peak of the phase

transition, implying that the hardest instances have

comparably the lowest community structure. They

conjecture that CDCL methods are relatively efficient and

successful when used on industrial instances as they

utilize the community structure found within them.

Self-similarity.

For self-similarity, Ansótegui et al. [38] showed that

industrial and crafted instances exhibit a low fractal

dimension, indicating self-similarity. However, opposite

to modularity and centrality, self similarity decreases

upon clause learning. Their work also observed a

connection between the decay used to determine

fractality and the CVR of random instances, noting that

the decay is exponential at the phase transition point,

resulting in a larger value for the fractal dimension and

therefore smaller self-similarity.

5. Related Work

Besides the selection of structures and measures in this

survey, there are many other measures and structures

that could be examined, compared, and put into relation

to those already covered. Among them are further

structural properties like scale-free [44], small-

world [45] and entropy [46]. Ansótegui et al. [47] has shown

experimentally that industrial instances tend to be scale-

free, similarly Walsh [45] has found small-world topology

in SAT problems, whereas Zhang et al. [46] found the

entropy measure to be inverse proportional to problem

hardness. Besides these, a more in depth review of the

various concrete measures for centrality could lead to a

better understanding of potential relations to modularity

and the behavior of CDCL solvers. In addition examining

combined measures could be of relevance, as it has been

found in [48] that measures on their own tend to not

correlate with hardness. Combined hardness measures

also find application in portfolio type solvers like

SATzilla [7]. Here the general idea is to use multiple

solvers that are efficient for different classes of instances

and picking the best suited to solve a specific instance

according to its properties. More precisely, first a

presolver is run for a fixed amount of time. If the

presolver did not find a solution, a set of measures and

features on the instance, like the CVR or vertex degree

statistics of the VIG, are computed in order to pick the

solver best suited to finally solve the instance. HordeSat

is another portfolio approach that has been proposed by

Balyo et al. [8] which runs several CDCL type solvers in

parallel while periodically collecting conflict clauses

from each solver before passing them to all others in

order to avoid redundant inferences.

Another potential avenue to pursue is to find parallels

and differences between tree decompositions of a VIGs

and their community structures, and if their associated

measures treewidth [49] and modularity behave similar

or different. Besides that, the treewidth of industrial

instances and its relation to CDCL runtime have been

investigated by Mateescu [50]. A further topic potentially

related to those covered in this surveys are redundancy

properties and redundant clauses. Kiesl [30] has

examined the notions of locally redundant clauses,

globally redundant clauses, and proof systems that are

based on them. The work also identified blocked clauses

as a form of locally redundant clauses. In addition

Fourdrinoy et al. [51] has examined the usefulness of

eliminating unit-propagation-redundant clauses in

speeding up solution algorithms as a form of utilizing

redundancy properties. In addition to adding these other

structures and measures to the picture and finding

qeios.com doi.org/10.32388/7U1PFG.2 13

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

relations between them, a more in depth or experimental

examination of the covered structures and measures

could provide further and better insight into the

mentioned relations or potentially prove or disprove the

more speculative relations that we have identified.

6. Conclusion

SAT is a central and difficult problem, finding application

in industry and academia alike. While algorithms cannot

solve general instances efficiently, many have emerged

that can solve certain classes of instances efficiently by

exploiting structure within the formula. This is reflected

by the observation that industrial instances can be

solved more efficiently than randomized instances due to

the additional information encoded by their structure. In

this paper, we have presented a selection of structures

and measures for SAT formulas that are related or

adjacent to state of the art solvers and examined

relations between them.

Among those are pure literals inducing autark

assignments, autark assignments over unit clauses

implying their purity and the relationship of blocked

literals to unit clauses and pure literals. In addition, we

highlighted the similarity of CVR and BVR and the

general relationship of easy-hard-easy pattern exhibiting

ratios, industrial instances exhibiting properties like

modularity and self-similarity more than randomized

instances, as well as high-centrality variables being

favored by CDCL procedures. In addition to identifying

relationships between the selected measures and

structures, we also gave an overview over other related

concepts and their application. For instance, portfolio

type solvers like SATzilla or HordeSat select the solver

method best-suited for an instance according to

measures on them.

Footnotes

1 p=? being shorthand for that both assignments with

p=1 and p=0 are satisfying

2 has been assumed removed by

simplification as it is tautological

References

1. ^Richard M. Karp. 1972. Reducibility among Combinato

rial Problems. Springer US, Boston, MA, 85–103. https://

doi.org/10.1007/978-1-4684-2001-2_9

2. ^Stephen A. Cook. 1971. The complexity of theorem-pro

ving procedures. Proceedings of the third annual ACM s

ymposium on Theory of computing (1971).

3. ^Armin Biere and W. Kunz. 2002. SAT and ATPG: Boole

an engines for formal hardware verification. IEEE/ACM

International Conference on Computer-Aided Design, D

igest of Technical Papers, 782– 785. https://doi.org/10.11

09/ICCAD.2002. 1167620

4. ^Thomas Ball, Byron Cook, Vladimir Levin, and Sriram

Rajamani. 2004. SLAM and Static Driver Verifier: Tech

nology Transfer of Formal Methods inside Microsoft. In

tegrated Formal Methods, Volume 2999 of Lecture Note

s in Computer Science 2999, 1–20. https://doi.org/10.100

7/978-3-540-24756-2_1

5. ^Kyo Chul Kang, Sholom Cohen, James A. Hess, William

E. Novak, and A. Spencer Peterson. 1990. Feature-Orient

ed Domain Analysis (FODA) Feasibility Study.

6. a, bSven Apel, Don Batory, Christian Kästner, and Gunte

r Saake. 2013. FeatureOriented Software Product Lines.

Springer-Verlag.

7. a, bLin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyt

on-Brown. 2011. SATzilla: Portfolio-based Algorithm Sel

ection for SAT. CoRR abs/1111.2249 (2011). arXiv:1111.224

9 http://arxiv.org/abs/1111.2249

8. a, bTomas Balyo, Peter Sanders, and Carsten Sinz. 2015.

HordeSat: A Massively Parallel Portfolio SAT Solver. htt

ps://doi.org/10.1007/978-3-319-24318-4_12

9. ^Domagoj Babic and Frank Hutter. 2008. Spear theore

m prover. (01 2008).

10. ^William F. Dowling and Jean H. Gallier. 1984. Linear-Ti

me Algorithms for Testing the Satisfiability of Propositi

onal Horn Formulae. J. Log. Program. 1 (1984), 267– 28

4.

11. ^Marcílio Mendonça, Andrzej Wasowski, and Krzysztof

Czarnecki. 2009. SATbased analysis of feature models i

s easy. SPLC, 231–240. https://doi.org/10.1145/1753235.17

53267

12. ^Martin Kreuzer and Stefan Kühling. 2006. Logik für In

formatiker.

13. ^Elias Kuiter, Sebastian Krieter, Chico Sundermann, Tho

mas Thüm, and Gunter Saake. 2022. Tseitin or not Tseit

in? The Impact of CNF Transformations on Feature-Mo

del Analyses. 110:1–110:13.

14. ^G. S. Tseitin. 1983. On the Complexity of Derivation in

Propositional Calculus. Springer Berlin Heidelberg, Berli

n, Heidelberg, 466–483. https://doi.org/10.1007/978-3-6

42-81955-1_28

15. ^Melven R. Krom. 1967. The Decision Problem for a Clas

s of First-Order Formulas in Which all Disjunctions are

Binary. Mathematical Logic Quarterly 13 (1967), 15–20.

16. ^Bengt Aspvall, Michael F. Plass, and Robert Endre Tarj

an. 1979. A Linear-Time Algorithm for Testing the Truth

of Certain Quantified Boolean Formulas. Inf. Process. Le

tt. 8 (1979), 121–123.

(¬p ∨ p ∨ x ∨ ¬y)

qeios.com doi.org/10.32388/7U1PFG.2 14

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

17. ^J. A. Robinson. 1967. Martin Davis, George Logemann,

and Donald Loveland. A machine program for theorem

-proving. Communications of the ACM, vol. 5 (1962), pp.

394–397. The Journal of Symbolic Logic 32, 1 (1967), 118

–118. https: //doi.org/10.2307/2271269

18. ^J. Marques-Silva and Karem Sakallah. 2003. GRASP -

A New Search Algorithm for Satisfiability.

19. ^Robert Kowalski and Donald Kuehner. 1971. Linear Res

olution with Selection Function. Artificial Intelligence 2

(12 1971), 227–260. https://doi.org/10.1016/0004-3702(7

1)90012-9

20. a, bArmin Biere, Marijn Heule, Hans van Maaren, and T

oby Walsh (Eds.). 2009. Handbook of Satisfiability. Fron

tiers in Artificial Intelligence and Applications, Vol. 185. I

OS Press. http://dblp.uni-trier.de/db/series/faia/faia185.h

tml

21. a, bJacobo Torán Uwe Schöning. 2013. The Satisfiability

Problem, Algorithms and Analyses. Lehmanns Media G

mbH, Berlin.

22. ^Oliver Kullmann. 2001. On the use of autarkies for sati

sfiability decision. Electronic Notes in Discrete Mathem

atics 9 (06 2001), 231–253. https://doi.org/10.1016/S1571-

0653(04)00325-7

23. ^Mark Liffiton and Karem Sakallah. 2008. Searching fo

r Autarkies to Trim Unsatisfiable Clause Sets. In Theory

and Applications of Satisfiability Testing – SAT 2008, H

ans Kleine Büning and Xishun Zhao (Eds.). Springer Ber

lin Heidelberg, Berlin, Heidelberg, 182–195.

24. ^Mark Liffiton and Karem Sakallah. 2008. Searching fo

r Autarkies to Trim Unsatisfiable Clause Sets. In Theory

and Applications of Satisfiability Testing – SAT 2008, H

ans Kleine Büning and Xishun Zhao (Eds.). Springer Ber

lin Heidelberg, Berlin, Heidelberg, 182–195.

25. a, bBurkhard Monien and Ewald Speckenmeyer. 1985. S

olving satisfiability in less than 2n steps. Discrete Applie

d Mathematics 10 (03 1985), 287–295. https://doi.org/10.

1016/0166-218X (85)90050-2

26. ^Philip Kilby, John Slaney, Sylvie Thiebaux, and Toby W

alsh. 2005. Backbones and Backdoors in Satisfiability. P

roceedings of the National Conference on Artificial Intel

ligence 3, 1368–1373.

27. ^Tomas Balyo, Andreas Fröhlich, Marijn Heule, and Ar

min Biere. 2014. Everything You Always Wanted to Kno

w about Blocked Sets (But Were Afraid to Ask). https://d

oi.org/10.1007/978-3-319-09284-3_24

28. ^Matti Järvisalo, Armin Biere, and Marijn Heule. 2010. B

locked Clause Elimination. 129–144. https://doi.org/10.1

007/978-3-642-12002-2_10

29. ^Matti Järvisalo, Armin Biere, and Marijn Heule. 2010. B

locked Clause Elimination. 129–144. https://doi.org/10.1

007/978-3-642-12002-2_10

30. a, bBenjamin Kiesl. 2019. Structural Reasoning Methods

for Satisfiability Solving and Beyond. Ph. D. Dissertatio

n. Technische Universität Wien.

31. a, bIan P Gent and Toby Walsh. 1994. The SAT phase tra

nsition. In ECAI, Vol. 94. PITMAN, 105–109.

32. a, b, cDimitris Achlioptas, Carla Gomes, Henry Kautz, an

d Bart Selman. 2000. Generating Satisfiable Problem In

stances. Proceedings of the Seventeenth National Confe

rence on Artificial Intelligence (AAAI-00) (05 2000).

33. ^Phillip Bonacich. 1987. Power and Centrality: A Family

of Measures. Amer. J. Sociology 92 (1987), 1170 – 1182.

34. ^Sima Jamali and David G. Mitchell. 2017. Improving SA

T Solver Performance with Structure-based Preferential

Bumping. In Global Conference on ArtificialIntelligence.

35. ^Mark E. J. Newman. 2006. Modularity and community

structure in networks. Proceedings of the National Acad

emy of Sciences of the United States of America 103 23

(2006), 8577–82. https://api.semanticscholar.org/Corpu

sID:2774707

36. a, bM Newman. 2004. Fast algorithm for detecting com

munity structure in networks. Phys. Rev. E Stat. Nonlin.

Soft. Matter. Phys. 69(6 Pt 2), 066133. Physical review. E,

Statistical, nonlinear, and soft matter physics 69 (07 20

04), 066133. https: //doi.org/10.1103/PhysRevE.69.066133

37. ^Kiran Chilakamarri, M. Khan, C. Larson, and Cj Tymcz

ak. 2013. Self-Similar Graphs. (10 2013).

38. a, bCarlos Ansótegui, Maria Bonet, Jesús Giráldez-Cru, a

nd Jordi Levy. 2013. The Fractal Dimension of SAT Form

ulas. https://doi.org/10.1007/978-3-319-08587-6_8

39. ^Andrew J. Parkes. 1997. Clustering at the Phase Transit

ion. In AAAI/IAAI. 340– 345. http://www.aaai.org/Libra

ry/AAAI/1997/aaai97-053.php

40. ^Weixiong Zhang. 2004. Phase Transitions and Backbo

nes of the Asymmetric Traveling Salesman Problem. J.

Artif. Intell. Res. (JAIR) 21 (04 2004), 471–497. https://do

i.org/10.1613/jair.1389

41. ^George Katsirelos and Laurent Simon. 2012. Eigenvect

or Centrality in Industrial SAT Instances. 348–356. http

s://doi.org/10.1007/978-3-642-33558-7_27

42. ^Carlos Ansótegui, Maria Bonet, Jesús Giráldez-Cru, an

d Jordi Levy. 2016. Community Structure in Industrial S

AT Instances. Journal of Artificial Intelligence Research

66 (06 2016). https://doi.org/10.1613/jair.1.11741

43. ^Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. 2

012. The Community Structure of SAT Formulas. 410–4

23. https://doi.org/10.1007/978-3-642-316128_31

44. ^Rita Albert, Hawoong Jeong, and Albert-Laszlo Baraba

si. 1999. Diameter of the World-Wide Web. Nature 401 (0

9 1999), 130–131. https://doi.org/10.1038/43601

45. a, bToby Walsh. 2002. Search in a Small World. IJCAI Int

ernational Joint Conference on Artificial Intelligence 2

qeios.com doi.org/10.32388/7U1PFG.2 15

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

(04 2002).

46. a, bZaijun Zhang, Daoyun Xu, and Jincheng Zhou. 2021.

A Structural Entropy Measurement Principle of Proposit

ional Formulas in Conjunctive Normal Form. Entropy 2

3 (03 2021), 303. https://doi.org/10.3390/e23030303

47. ^Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. 2

009. On the Structure of Industrial SAT Instances. In Int

ernational Conference on Principles and Practice of Con

straint Programming.

48. ^Edward Zulkoski, Ruben Martins, Christoph M. Winter

steiger, Jia Hui Liang, K. Czarnecki, and Vijay Ganesh. 2

018. The Effect of Structural Measures and Merges on S

AT Solver Performance. In International Conference on

Principles and Practice of Constraint Programming.

49. ^Neil Robertson and P. D. Seymour. 1983. Graph minors.

I. Excluding a forest. Journal of Combinatorial Theory. S

eries B 35, 1 (Aug. 1983), 39–61. https://doi.org/10.1016/0

095-8956(83)90079-5

50. ^Robert Mateescu. 2011. Treewidth in Industrial SAT Be

nchmarks. Technical Report MSR-TR-2011-22. https://w

ww.microsoft.com/en-us/research/publication/treewidt

h-in-industrial-sat-benchmarks/

51. ^Olivier Fourdrinoy, Eric Gregoire, Bertrand Mazure, an

d Lakhdar Sais. 2007.Eliminating Redundant Clauses in

SAT Instances. 71–83. https://doi.org/10.1007/978-3-540

-72397-4_6

Declarations

Funding: No specific funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/7U1PFG.2 16

https://www.qeios.com/
https://doi.org/10.32388/7U1PFG.2

