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This paper critically examines the recent publication “ChatGPT-4 in the Turing Test” by Restrepo

Echavarría[1], challenging its central claims regarding the absence of minimally serious test

implementations and the conclusion that ChatGPT-4 fails the Turing Test. The analysis reveals that

the criticisms based on rigid criteria and limited experimental data are not fully justi�ed. More

importantly, the paper makes several constructive contributions that enrich our understanding of

Turing Test implementations. It demonstrates that two distinct formats—the three-player and two-

player tests—are both valid, each with unique methodological implications. The work distinguishes

between absolute criteria (re�ecting an optimal 50% identi�cation rate in a three-player format) and

relative criteria (which measure how closely a machine’s performance approximates that of a human),

offering a more nuanced evaluation framework. Furthermore, the paper clari�es the probabilistic

underpinnings of both test types by modeling them as Bernoulli experiments—correlated in the

three-player version and uncorrelated in the two-player version. This formalization allows for a

rigorous separation between the theoretical criteria for passing the test, de�ned in probabilistic

terms, and the experimental data that require robust statistical methods for proper interpretation. In

doing so, the paper not only refutes key aspects of the criticized study but also lays a solid foundation

for future research on objective measures of how closely an AI’s behavior aligns with, or deviates from,

that of a human being.

Corresponding author: Marco Giunti, giunti@unica.it

1. Introduction

Recently, the Turing Test has been the focus of renewed interest, largely due to the fact that Large

Language Models (LLMs) appear to have achieved a level of linguistic pro�ciency similar to that of
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humans, and exhibit remarkable abilities in logical reasoning, creative problem solving, contextual

understanding, and synthesis of complex knowledge, thus re�ecting multiple aspects of human cognitive

abilities. In particular, several recent studies[2][3][4][1] have reported on tests administered to ChatGPT-4

and other LLMs. These tests are more or less similar to the imitation game originally proposed by Alan

Turing[5] to determine whether a machine is capable of thought. This paper is speci�cally dedicated to an

in-depth critical analysis of the latest article[1], published online in Minds and Machines on January 25,

2025.

This choice is motivated by two main reasons. First, the cited article maintains three very precise, and

equally bold, theses:

�. “No minimally serious implementation of the test has been reported to have been carried out” (p. 1).

�. “This paper reports on a series of runs of a minimally valid version of the Turing Test with

ChatGPT-4” (p. 2).

�. Based on the test results, “it is safe to reject the hypothesis that ChatGPT-4 passes the Turing Test”

(p. 5).

Second, the recognized authority of the journal in which the article was published implies that these

theses should be taken seriously as potential cornerstones of the current debate on the Turing Test and

LLMs.

The critical analysis undertaken in this paper, however, will demonstrate that none of the three theses is

justi�ed. More speci�cally, it will be shown that:

Thesis (1) is unjusti�ed because the tests conducted by Jones and Bergen[3][4] cannot be dismissed as

“not minimally serious implementations of the Turing Test” based on the �ve criteria proposed by

Restrepo Echavarría[1].

There are good reasons to conclude that the test described in the cited work is not “a minimally valid

version of the Turing Test”.

The test results do not allow us to reject the hypothesis that ChatGPT-4 passes the Turing Test.

Moreover, the analysis establishes several positive contributions that clarify various controversial points

regarding the structure and interpretation of the Turing Test.

First, it is shown that there exist at least two equally valid ways to implement the test: the three-player

version and the two-player version.
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Second, it is explained how the difference between the two types of tests implies that the criteria for

passing the test differ, yet they are two speci�c formulations of the same more general criterion. It is also

necessary to distinguish between absolute criteria, which de�ne the machine’s optimal performance, and

relative criteria, which establish how closely its performance approximates that optimum.

Third, the criteria for passing the test are formulated in probabilistic terms, but this presupposes that the

probabilistic structure of the test is explicitly de�ned beforehand for both the three-player and the two-

player versions. These formal de�nitions are provided in the Appendix.

Fourth, a clear distinction is made between the theoretical criteria for passing the test and the

experimental results. The former are expressed in terms of probabilities, while the latter merely record

the number of trials along with the percentages of correct and incorrect identi�cations. Experimental

results, on their own, are insuf�cient to draw de�nitive conclusions about whether the test has been

passed or failed; rather, such conclusions can only be reached by applying appropriate statistical methods

to the data.

2. Have There Been Any Minimally Serious Implementations of the

Turing Test?

The justi�cation for thesis (1) rests on �ve criteria that, according to the author, are “beyond reasonable

doubt, essential features any valid Turing Test will have”[1]. In summary, these essential features are:

i. “It is a test that involves three entities: an interrogator, another human and a ma chine. Two entity

versions are not valid, as the need for comparison by the inter rogator is essential.”[1]

ii. “The interrogator knows that s/he is talking to another person and a machine, and has to identify

who is who through open-ended conversation. […] The other person and the machine also have the

information of what the game is about and their role in trying make the interrogator identify them

as the person.”[1]

iii. “The machine passes the Turing Test if the interrogator cannot reliably tell who is who. Conversely,

the machine does not pass the Turing Test if the interrogator can reliably tell (signi�cantly more

than chance) who is who. Turing’s standard for passing the Turing Test has been confused with his

prediction that sometime around the year 2000 there may well be a computer able to fool judges

30% of the time, one of these being the case of Eugene Goostman.”[1]
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iv. “The interactions need to be of non-trivial time. […] Reasonable and practicable time has to be given

for participants to be able to think and write their lines. […] Nothing shorter than �ve minutes

should be considered minimally serious.”[1]

v. “Off-hand speculations by experts that machine X would pass the test are not relevant. […]

Preliminary speculations and interactions are �ne as ‘giggle tests’. But these are not runs of the

Turing test and cannot claim to be such.”[1]

Among these �ve criteria, those most aligned with Turing’s original formulation of the imitation game,

and with the widely shared subsequent interpretations of the test, are criteria (ii) and (v). By contrast,

criteria (i), (iii), and (iv) lack suf�cient justi�cation as essential elements of any valid Turing Test without

further discussion and support.

2.1. Discussion of Criterion (i)

In particular, regarding (i), it is true that the test originally proposed by Turing was a three‐player test,

but this is not the form in which the test has been—and still is—usually implemented. Speaking of the

�rst attempts to actually implement the test, Saygin, Cikekli, and Akman noted:

The TT has never been carried out in exactly the same way Turing originally described.

However, there are variants of the original in which computer programs participate and

show their skills in 'humanness'.[6]

Currently, the standard implementation is the two-player version[6][7][2][3][4], where a human

interrogator converses with a single respondent, who may be either a human or a machine. The two-

player test cannot be dismissed simply because “the need for comparison by the interrogator is

essential”[1]. In fact, if criterion (ii) is met, the two-player test also implies a comparison by the

interrogator between the responses received and those expected from a human or a machine.

Furthermore, it is important to note that two-player implementations typically involve several

interrogations, some with a machine respondent and others with a human. This guarantees a

comparison between the machine’s passing rate and that of the human, i.e., between the machine’s

percentage of incorrect identi�cations and the human’s percentage of correct identi�cations.
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2.2. Discussion of Criterion (iii)

With regard to criterion (iii), it is �rst necessary to specify more precisely what it means that “the

interrogator cannot reliably tell who is who.” Restrepo Echavarría clari�es[1] that this means that, at the

end of the conversation, the interrogator must have a 50% chance of making an incorrect (or correct)

identi�cation. However, it is at least peculiar that the author did not question why the 50% probability is

not usually chosen as an adequate threshold for declaring that the test has been passed.

The point is that this probability corresponds to the machine’s optimal performance in a three-player

test. However, establishing merely this absolute threshold does not allow us to appreciate how closely the

machine’s performance approaches that of a human. Turing himself speculated that a probability of

incorrect identi�cation of at least    would be a reachable goal in about �fty years,1 indicating

acceptable, though not optimal, performance by the machine.2 Although there is some arbitrariness in

setting a threshold for acceptable performance, Turing’s choice is less arbitrary than it may initially

seem. In fact, if we compare the 30% probability to the optimal probability of  , we obtain 

. In other words, a 30% probability corresponds to    of the optimal result and

therefore, in agreement with the interpretation of Saygin, Cikekli, and Akman[6] and of French,3 we can

af�rm that the machine demonstrates, in the test, at least a suf�cient “degree of humanness.”

Moreover, we must also consider that an acceptable criterion for passing the test must be general, in the

sense that it must be uniformly applicable to the different ways in which the test can be conducted. To

date, the standard implementation of the Turing Test is the two-player version, and it is therefore

legitimate to ask whether the    probability of incorrect (or correct) identi�cation carries the same

meaning in this type of test as it does in the three-player test.

We have seen above that, in the three-player test, a   probability corresponds to the machine’s optimal

performance because it is achieved when, at the end of the test, both the machine’s and the human’s

answers attest the same “degree of humanness” of the two respondents. Moreover, it should be noted

that in the three-player test the only two possible outcomes are an incorrect identi�cation or a correct

one for both respondents. This implies that the machine’s probability of incorrect identi�cation and the

human’s probability of incorrect identi�cation are always equal. But since the probability of incorrect

identi�cation is equal to one minus the probability of correct identi�cation, this also implies that the

machine’s probability of incorrect identi�cation is equal to the human’s probability of correct

identi�cation if, and only if, both are   (see the Appendix for a formal proof).

30%

50%

30/50  =  6/10 6/10

50%

50%

50%
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On the contrary, none of this occurs in the two-player test. In this type of test, the machine and the

human are interrogated separately and, therefore, at the end of the two interrogations, the responses of

the machine and the human determine their respective probabilities of incorrect identi�cation, but these

are not necessarily equal (see the Appendix for formal details). In particular, suppose that the machine's

probability of incorrect identi�cation is 50%, but that the human's probability of incorrect identi�cation

is lower—say,  —or, equivalently, that the human’s probability of correct identi�cation is  . It is

evident that, under these assumptions, the machine's performance would not be optimal, because to

match that of the human, the machine's probability of incorrect identi�cation would need to be increased

to  , that is, it would have to equal the human's probability of correct identi�cation.

We can therefore conclude that the criterion proposed for passing the test—   probability—is not

adequate for the following reasons:

I. It serves only as an absolute criterion, de�ning the machine’s optimal performance, but does not

measure how closely its performance approximates that of a human.

II. As an absolute criterion, it is valid only for the three-player test, not generally.

The discussion above, however, also leads to two positive conclusions:

III. If we are interested in an absolute criterion for passing the test, one that applies equally to both the

three-player and the two-player test, we must require that the machine’s probability of incorrect

identi�cation equals the human’s probability of correct identi�cation. In the three-player test, this

criterion reduces to the 50% criterion, because we have seen that the two probabilities in question

are equal if and only if both are 50%. In the two-player test, however, it involves comparing the two

probabilities obtained at the end of the two separate interrogations of the machine and the human.

Nonetheless, in both the three-player and the two-player test, the stated criterion establishes the

machine’s optimal performance in the same sense, as it requires that the machine and the human

have the same probability of being recognized as human.

IV. If we are also interested in evaluating to what extent the machine’s performance approaches

optimal performance, we must consider the ratio between the machine’s probability of incorrect

identi�cation and the human’s probability of correct identi�cation that would be obtained if the

machine’s performance were optimal. Note that, in the two-player test, this latter probability is

equal to the human’s probability of correct identi�cation,4 whereas in the three-player test it is

equal to  , as explained above. Regarding the three-player test, we have already applied this

25% 75%

75%

50%

50%
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criterion to the case hypothesized by Turing—a    probability of incorrect identi�cation—

yielding  . Instead, as an example for the two-player test, we can consider the case

hypothesized above, namely: a machine’s probability of incorrect identi�cation of 50% and a

human’s probability of correct identi�cation of  ; hence, we obtain  .

2.3. Discussion of Criterion (iv)

The �rst part of criterion (iv) is fully acceptable, but the second part—stating “Nothing shorter than �ve

minutes should be considered minimally serious.” (p. 3)—requires further discussion.

Firstly, setting a reasonable time limit for the test is a practical necessity to facilitate its implementation.

In theory, the test duration should be open-ended, allowing the interrogator to decide when to conclude

the conversation and deliver a verdict. In practice, however, this would complicate the implementation, or

even render the test unfeasible.

Turing himself, when envisioning an actual test, mentioned "5 minutes of interrogation"[5]. It is

important to note, however, that this limit was intended by Turing to be a maximum duration rather than

a minimum, as required by criterion (iv) instead, without suf�cient justi�cation being given to support

this not insigni�cant reversal of interpretation. Moreover, the �ve-minute maximum has traditionally

been considered adequate for the design of an effective test implementation, and it has been adopted in

most tests conducted in the past, including the most recent ones involving ChatGPT-4[3][4].

Due to the lack of adequate argumentation supporting the new interpretation of a minimum �ve-minute

duration, the second part of criterion (iv) is not acceptable.

2.4. Summing Up

As mentioned in the introduction, apart from the discussed article, at least three other recent studies[2][3]

[4] describe different versions of the Turing Test administered to ChatGPT-4 and other LLMs. However, as

these works reveal, none of these tests satis�es all �ve criteria proposed by Restrepo Echavarría[1].

Although one might agree with the author that no study in the literature describes an implementation

that meets all these criteria[8], one must ask whether, on this basis, it is justi�ed to assert thesis (1):

There has been considerable optimistic speculation on how well ChatGPT-4 would perform

in a Turing Test. However, no minimally serious implementation of the test has been reported to

have been carried out. (p. 1, italics mine)

30%

30/50 = 0.6

75% 50/75 = 0, 66
¯ ¯¯̄¯
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Our discussion has established that criteria (i) and (iii) are not acceptable, nor is the second part of

criterion (iv). The question then arises whether the remaining criteria—(ii) and (v), along with the �rst

part of (iv)—are suf�cient to exclude the more recent studies describing various Turing Test versions

administered to ChatGPT-4 and other LLMs.

Regarding criterion (v), it is clearly satis�ed by all the tests described in those works, since none of these

tests falls within the types of hypotheses, speculations, or procedures excluded by criterion (v).

As for criterion (ii), it is not satis�ed by the test described in Jannai et al.[2]. First of all, it should be noted

that this is a two-player test in which the roles of the interrogator and the respondent, as well as their

respective tasks, are not clearly distinguished. In fact, when both interlocutors are human, the explicit

task assigned to them is identical—namely, to determine whether the other is a human or a machine.

Moreover, the two participants are free to add additional motivations, such as pretending to be an AI,

convincing the other that they are conversing with a human, etc.[2]. Instead, the tests described in Jones

and Bergen[3][4] fully satisfy criterion (ii). These are also two-player tests, but the roles of the interrogator

and the respondent (referred to as the “witness”) are clearly distinguished and their respective tasks are

explicitly assigned[3][4].

Finally, regarding the �rst part of criterion (iv), it is not satis�ed by the test described in Jannai et al.[2],

because that test has a maximum duration of only 2 minutes and also imposes a maximum limit of 100

characters and 20 seconds for each message[2]. These very strict limits do not allow for the formulation

of suf�ciently complex questions and answers, nor for the in-depth discussion of a conversational topic,

thereby violating the �rst part of criterion (iv). Instead, the tests described in Jones and Bergen[3]

[4] satisfy the �rst part of criterion (iv). In those tests, the maximum duration is the traditional 5 minutes,

the maximum character limit per message is raised to 300, and within the 5-minute time window no

maximum time limit is set for each message[3][4].

In conclusion, we have seen that the only justi�cation proposed for thesis (1) is the observation that there

are no studies in the literature describing an implementation of the Turing Test that meets all the criteria

(i)–(v). However, of these �ve criteria, we have established that (i), (iii), and the second part of (iv) are not

acceptable. We then asked whether the remaining criteria are suf�cient to exclude the more recent works

that describe various versions of the Turing Test administered to ChatGPT-4 and other LLMs. The

answer was positive for Jannai et al.[2], but negative for Jones and Bergen[3][4]. It follows, therefore, that

thesis (1) is unjusti�ed.
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3. Is Restrepo Echavarría’s Test Minimally Valid?

Thesis (2) asserts quite emphatically that the work in question “reports on a series of runs of a minimally

valid version of the Turing Test with ChatGPT-4” (p. 2). However, the detailed description of the test’s

structure and administration occupies only the second paragraph (11 lines) of section 2. Moreover, the

�rst paragraph introduces that description with a merely rhetorical question, and the remainder of

section 2 is devoted to discussing the test results, which I will analyze in detail later.

From this brief description, we can extract the following data: (a) The test was conducted as a three-

player version, since in each trial a person acted as the interrogator and, as respondents, another person

and ChatGPT-4, whose identities were to be determined by the interrogator at the end of the trial; (b) each

trial comprised two successive conversations—one with ChatGPT-4 and the other with the human

respondent—with the order of these chats (conducted via WhatsApp) varying from trial to trial; (c) in

total, there were 10 trials involving 10 participants (5 teachers and 5 undergraduate students), none of

whom had specialized AI knowledge; (d) each person assumed the role of interrogator only once and,

presumably, the role of respondent only once; (e) in all 10 trials, a single prompt was used for ChatGPT-4,

instructing it that it was participating in a Turing Test and advising it on behaviors intended to avoid

immediately revealing its identity; (f) regarding duration, the only reported datum is: “In 9 out of 10 runs,

the interrogators correctly identi�ed the human and the machine after a 7‑minute chat.” However, it

remains unclear whether the 7 minutes refer to each of the two separate chats in a trial or to the trial as a

whole.

Based on the discussion in the previous section, we cannot rely on criteria (i)–(v) to determine whether

this version of the Turing Test is minimally valid. Nonetheless, at least two aspects of the experimental

design cast serious doubts on its validity.

First, the number of trials conducted (10) is small and certainly not suf�cient to draw conclusions that

have robust statistical value. Even the test conducted at the Royal Society of London in 2014, although

questionable in many respects, included 30 trials for each competing program[9]. If we then consider the

other tests that ChatGPT-4 has recently been subjected to, the number of trials on which they are based

are of other orders of magnitude: several thousand conversations in total for the different tests described

in Jones and Bergen[3][4], and even more than 10,000,000 conversations for Human or Not[2].

Second, the test described above was conducted using only a single prompt for ChatGPT‑4. However, it is

well known that one of the most signi�cant characteristics of LLMs is their ability to dramatically alter
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their behavior depending on the prompt provided. Given this property, the fact that a single ChatGPT-4

prompt fails the test does not justify concluding that the model is incapable of passing it. Rather, the

inadequacy of the prompt should be considered, at least in the �rst instance. From this point of view, too,

the three studies cited above demonstrate a quite different awareness of the problem. Jannai et al.

employed a wide range of prompts—including variations in personal background, personality traits,

relevant information, as well as writing and language styles—while Jones and Bergen created and

experimented with 45 different prompts[3], from which the best was selected and further tested in a

statistically controlled experiment involving �ve different pre-registered hypotheses[4].

To be fair, it must be mentioned that in section 3, Restrepo Echavarría reports having subsequently

modi�ed the prompt, without, however, obtaining any signi�cant improvements in performance in other

interviews conducted by the interrogators. Nonetheless, these observations are not substantiated by the

description of any systematic experimentation on the subject and therefore fall precisely into that

category of “off-hand speculations” or “preliminary speculations and interactions” that the author

himself has deemed unacceptable according to his excellent criterion (v).

4. Do the Test Results Allow Us to Reject the Hypothesis That

ChatGPT-4 Passes the Turing Test?

As previously reported, the result of the test conducted by Restrepo Echavarría was that, in    out of 

 trials, the interrogators correctly identi�ed the human and the machine after a  ‑minute conversation.

Based on this outcome, the author presents a probabilistic argument intended to justify thesis (3), namely

that “it is safe to reject the hypothesis that ChatGPT-4 passes the Turing Test” (p. 5). The argument is

structured as follows:

�. If ChatGPT-4 passes the Turing Test, then the probability of being correctly identi�ed in each trial is

50%.

�. We can then use the binomial distribution formula to compute the probability of obtaining 

 correct identi�cations out of   trials; i.e., by indicating such event with  :

�. Carrying out the calculations yields:

9

10 7

k = 9 n  =  10 En
k

P ( ) = ( )  (1 − pEn
k

n

k
pk )n−k

P ( ) = 5/512 = 0, 009765625En
k
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�. Thus, if ChatGPT-4 passes the Turing test, the probability of obtaining   correct identi�cations out

of   trials is approximately  .

�. “That is, the probability that it is an error to say that the machine does not pass the Turing Test, in

light of these results, is less than  ” (p. 4)

�. “Consequently, it is safe to reject the hypothesis that ChatGPT-4 passes the Turing Test.” (p. 5)

Step 1 of the argument states that passing the Turing Test implies that the probability of correct

identi�cation in each trial is 50%. We have seen that a 50% probability represents the machine’s optimal

performance in a single three-player test and that, therefore, it serves as the absolute criterion for passing

this type of test. Since the argument considers only the optimal passing of the test, this premise is

justi�ed.

Step 2 asserts that the binomial distribution formula can be used to compute  . Under the implicit

assumption that ChatGPT-4 passes the Turing Test, this step is also justi�ed, as all three conditions

needed for applying the binomial distribution formula are met. Speci�cally: (i) each repetition of the test

is a Bernoulli trial, (ii) based on premise 1 and the implicit assumption, each repetition has the same

probability equal to  , and (iii) presumably, the 10 trials were independent.

Steps 3 and 4 are also fully justi�ed, as they follow from purely mathematical and logical derivations

based on the previous steps. Thus, only the last two steps remain to be analyzed.

Step 5 asserts that the probability that ChatGPT-4 passes the Turing Test is less than  , given that   out

of    identi�cations were correct. Let us denote by    the assertion: “The probability that ChatGPT-4

passes the Turing Test is less than  .”    is presented as an obvious consequence of the implication

obtained at step 4 and the result of    correct identi�cations out of    trials. However, the inference of 

 from these two premises is clearly invalid from a deductive standpoint. What remains to be assessed is

whether   can be derived by applying appropriate statistical methods.

Step 6 states that the hypothesis that ChatGPT-4 passes the Turing Test can be safely rejected. If the

previous step had indeed established that this hypothesis has a probability of less than 1%, this

conclusion would be justi�ed.

Let us now ask what we can conclude, from a statistical perspective, based on the result of    correct

identi�cations out of    trials. First, we note that the experiment conducted consists of a sequence of 

Bernoulli trials, as conditions (i), (ii), and (iii) are satis�ed (see the discussion of step 2). In general,

counting the number   of successes observed in such an experiment serves to test the hypothesis that

9

10 0, 98%

1%.

P ( )En
k

50%

1% 9

10 A

1% A

9 10

A

A

9

10

n = 10

k
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the probability   of each trial has the hypothesized value  . In this case, the hypothesis to be tested is 

, which, as we have seen, represents the absolute criterion for passing the three-player Turing

Test.

As is well known, the number of successes    in    trials (which we denote as  ) has no intrinsic

statistical signi�cance. However, once a given level of statistical signi�cance has been established, we

can reject the hypothesis    if and only if the result    is statistically signi�cant. We denote the

statistical signi�cance level as SS(x%). In the social sciences, at least SS(5%) is typically used, and the

more stringent SS( ) is not uncommon. As suggested in step 5 of the argument in question, we choose

SS( ). Furthermore, recall that   is statistically signi�cant at the SS( ) level if and only if the sum of

the probability of   and those of all equally or less probable results is less than  .

Let us now determine whether   is statistically signi�cant at the SS(1%) level. As can be easily veri�ed,

it is not, because the sum of   and the probabilities of all equally or less probable results, namely 

,  , and  , is:

Consequently, we cannot statistically reject the hypothesis  , or, equivalently, the hypothesis that

ChatGPT-4 passes the Turing Test.

Since the result    is not statistically signi�cant at the SS( ) level, we cannot reject the hypothesis 

, but this does not mean that it is con�rmed. However, since the result is known, we can

determine the values of   that are compatible with this result and with the SS(1%) level. Rounding to the

second decimal place, we obtain the closed interval  . Indeed, for all values of    within this

interval,    is not statistically signi�cant at the SS( ) level. This means that for any  , 

  belongs to the smallest set of more probable results whose probabilities, added together, exceed  .

For all values of  ,   is instead statistically signi�cant at the SS( ) level.5

For completeness, let us also consider what happens if, instead of the SS( ) statistical signi�cance level,

we use SS( ). Naturally, with this higher signi�cance level,    is statistically signi�cant, and thus,

under this more permissive statistical convention, we can reject the hypothesis  . Finally, we

estimate the range of values of   compatible with the result    and the SS( ) level. Rounding to the

p c

p  =  0.5

k n En
k

p  =  c En
k

1%

1% En
k

1%

En
k

1%

E10
9

P ( )E10
9

P ( )E10
1 P ( )E10

10 P ( )E10
0

       P ( )       +        P ( )        +       P ( )        +       P ( )         =E10
9 E10

1 E10
10 E10

0

0.009765625 + 0.009765625 + 0.000976563 + 0.000976563 = 0.021484375 > 0, 01

p = 0.5

E10
9 1%

p = 0.5

p

[0.49 ;  1] p

E10
9 1% p ∈ [0.49 ;  1]

E10
9 99%

p ∈ [0 ; 0.48] E10
9 1%

1%

5% E10
9

p = 0.5

p E10
9 5%

qeios.com doi.org/10.32388/7W9M6I 12

https://www.qeios.com/
https://doi.org/10.32388/7W9M6I


second decimal place, we obtain  . For all values of  ,   is instead statistically

signi�cant at the SS(5%) level.

To summarize, we have seen that, based on the result of   correct identi�cations out of  , it is possible to

reject the hypothesis    only by assuming the SS( ) signi�cance level. However, even with this

higher level, the range of probabilities compatible with the result remains very broad. Moreover, we must

remember that these are probabilities of correct identi�cations. This means that the probabilities of

incorrect identi�cations compatible with the result fall within the interval  . Therefore, even

conceding that the test has demonstrated that ChatGPT-4 has not passed the Turing Test in absolute

terms, we can say very little about its relative performance, which remains compatible with values

ranging from   to  , i.e., from total failure to very good performance. Finally, if we consider

the SS( ) level instead, the test proves to be even less informative, since the "degree of humanness"

demonstrated by ChatGPT-4 is now compatible with any value between   and even  .

5. Conclusions

The analysis conducted so far has established that none of the three theses (1), (2), or (3) is justi�ed.

However, beyond this negative conclusion, the analysis has also led to a series of positive �ndings.

First, we have highlighted that there are at least two different ways in which the Turing Test can be

effectively implemented: as a three-player or a two-player test. The �rst type of implementation adheres

more closely to Turing’s original formulation, while the second is now generally recognized as the

standard implementation. It is well represented by the most recent and statistically robust tests to which

ChatGPT-4 and other LLMs have been subjected.

Second, regarding the criterion for passing the test, we have seen that it is essential to distinguish

between an absolute criterion and a relative criterion. In the case of the three-player test, the absolute

criterion is represented by a   probability of incorrect (or correct) identi�cation. In the two-player test,

however, the machine's probability of incorrect identi�cation must equal the human's probability of

correct identi�cation. The relative criterion provides a measure of how closely the machine’s

performance approaches the optimal level. In the case of the three-player test, this is given by the ratio

between the actual probability of incorrect identi�cation and the optimal 50% probability. For the two-

player test, the relevant measure is the ratio between the machine’s probability of incorrect identi�cation

and the human’s probability of correct identi�cation.
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Third, the criteria proposed for passing the Turing Test presuppose the concept of probability and

therefore require that the probabilistic structure of the test be explicitly de�ned in advance. In the

Appendix, we have seen that, for both the three-player and two-player versions, this structure consists of

two Bernoulli experiments, which differ only in that, in the three-player test, they are logically

correlated, whereas in the two-player test, they are not. This implies that, in the three-player test, the

equality between the machine’s probability of incorrect identi�cation and the human’s probability of

correct identi�cation occurs if and only if both probabilities are 50%. In contrast, in the two-player test,

the value at which this equality occurs cannot be determined a priori.

Fourth, it is important to distinguish between the criteria for passing the test, which are theoretical

criteria formulated in terms of appropriate probabilities, and the experimental results, which report the

number of trials and the percentages of correct or incorrect identi�cations, both for the machine and for

the human. These results, by themselves, cannot determine whether the test has been passed or failed,

either in absolute or relative terms. Instead, this can only be established by applying appropriate

statistical methods that allow experimental results to be correlated with theoretical criteria.

Finally, regarding the meaning of the test, we have seen that passing it implies demonstrating a “degree

of humanness” close to, if not equal to, that of a human being. This is the most straightforward

interpretation and the one most consistent with the structure of the test itself, but it differs from Turing’s

original interpretation, according to which the test would serve as a suf�cient criterion for establishing a

machine’s intelligence, or even its capacity for thought. However, I believe that this minimal

interpretation does not diminish the value of the test; rather, it highlights its relevance today and its

potential future signi�cance. Indeed, it has already become crucial to establish objective criteria that

indicate how closely an AI’s behavior aligns with—or deviates from—that of a human being. It is also

conceivable that, in the future, evaluations of this kind will guide us in the inevitable integration of AIs

into our social and cultural life.

Appendix

In order to establish a criterion for passing the Turing Test—whether interpreted as a three-player or a

two-player test—it is necessary to employ the concept of probability. We must therefore �rst clarify the

random experiments involved in each version of the test, together with the corresponding sample spaces

and associated sigma-algebras, on which the relevant probabilities are de�ned.
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1. Formalization of the Three-Player Test as Two Logically Correlated Bernoulli

Experiments

Consider �rst the three-player test and ask what the probabilistic structure of a single test is. In fact, the

three-player test exhibits a rather complex probabilistic structure, and the best way to capture this

complexity is to view a single three-player test as the execution of two logically correlated random

experiments—each of which has only two possible outcomes (i.e., it is a Bernoulli experiment). We

elaborate this point below.

The two random experiments constituting the three-player test are the identi�cations of the two

respondents by the interrogator. Denote the machine respondent as  , the human respondent as  , and

the corresponding random experiments as   and  . The identi�cation of each respondent consists of

asserting whether that respondent is a human or a machine. Let    and    be the two predicates

corresponding to these assertions. Thus, the two possible outcomes of    are    and  , while

those of   are   and  . In other words, the sample spaces for   and   are, respectively:

Since both sample spaces are discrete (indeed, �nite), the associated sigma-algebras are simply their

power sets   and  . The four events of interest are the correct and incorrect identi�cations of

the machine and the correct and incorrect identi�cations of the human. The former two are elementary

events in  , and the latter two are elementary events in  :

Recall that, for any random experiment    with sample space    and sigma-algebra  , an event 

 is said to occur , where   is the outcome of  .

Denote the outcomes of   and   with   and  , respectively, and let the probability

functions on   and   be   and  . Because the interrogator interacts with two respondents, 

m h

tm th

M H

tm M(m) H(m)

th M(h) H(h) tm th

  ≔ {M(m),  H(m)}Ωm

  ≔ {M(h),  H(h)}Ωh

P ( )Ωm P ( )Ωh

P ( )Ωm P ( )Ωh

incorrect identification of the machine = ≔ {H(m)} ∈ P ( )Sm Ωm

correct identification of the machine = ≔ {M(m)} ∈ P ( )Fm Ωm

incorrect identification of the human = ≔ {M(h)} ∈ P ( )Fh Ωh

correct identification of the human = ≔ {H(h)} ∈ P ( )Sh Ωh

t Ω Σ(Ω)

E ∈ Σ(Ω) :⟺ r(t) ∈ E r(t) ∈ Ω t

tm th r ( )tm ∈ Ωm r ( ) ∈th Ωh

P ( )Ωm P ( )Ωh pm ph
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  and  , and can only provide two responses—   or  —the two random

experiments are logically correlated, so that we can establish a priori the following: 

  and  . Thus,    occurs 

  occurs and    occurs    occurs. By the principle of equivalence,6 it follows 

 and  . Furthermore, since    is the negation of   and    is the

negation of  , the following holds:    and  . Hence, 

  and  . Therefore, by the �rst equality, 

  and, by the second, 

.

2. Formalization of the Two-Player Test as Two Uncorrelated Bernoulli Experiments

In this version, the interrogator interacts with only one respondent at a time and knows that the

respondent is either a machine or a human. The test is repeated several times, some with a machine and

others with a human. Thus, this test is also formally represented by the two Bernoulli experiments

speci�ed earlier:    when the respondent is a machine, and    when the respondent is a human. The

formalization of the two Bernoulli experiments is identical to that in the previous section. However, in

this case, the experiments are not logically correlated. Therefore, it is not possible to derive either the

equality between the machine’s probability of incorrect identi�cation    and the human’s

probability of incorrect identi�cation  , or the equality between the machine’s probability of

incorrect identi�cation   and the human’s probability of correct identi�cation  . The details

are below.

Note that, by the way the two-player test is constructed, the interrogator always has only a single

respondent, of which s/he knows only that it is either a machine or a human. Therefore, the two random

experiments are not logically correlated; that is, we cannot a priori establish any of the following

implications:  ,  , 

,  . Consequently, we cannot assert

either that   occurs   occurs or that   occurs   occurs. Thus, unlike the case of the three-

player test, the principle of equivalence is not applicable, and we cannot conclude that 

 nor that  .

m h H(m) ∧ M(h) M(m) ∧ H(h)

r ( ) = H(m)⟺ r ( ) = M(h)tm th r ( ) = M(m)⟺ r ( ) = H(h)tm th Sm

⟺ Fh Fm ⟺ Sh

( ) = ( )pm Sm ph Fh ( ) = ( )pm Fm ph Sh Fm Sm Fh

Sh ( ) = 1 − ( )pm Fm pm Sm ( ) = 1 − ( )ph Fh ph Sh

( ) = 1 − ( )pm Sm ph Sh ( ) = 1 − ( )pm Fm ph Fh

( ) = ( )⟺ ( ) = 0, 5 = ( )pm Sm ph Sh pm Sm ph Sh

( ) = ( )⟺ ( ) = 0, 5 = ( )pm Fm ph Fh pm Fm ph Fh

tm th

( )pm Sm

( )pm Sm

( )pm Fm ( )ph Sh

r ( ) = H(m) ⇒ r ( ) = M(h)tm th r ( ) = M(h) ⇒ r ( ) = H(m)th tm

r ( ) = M(m) ⇒ r ( ) = H(h)tm th r ( ) = H(h) ⇒ r ( ) = M(m)th tm

Sm ⟺ Fh Fm ⟺ Sh

( ) = ( )pm Sm ph Fh ( ) = ( )pm Fm ph Sh
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3. Alternative Formalization of the Three-Player Test as a Single Bernoulli Experiment

An alternative way of formally representing the three-player test is to think of it as a single random

experiment, rather than as two logically correlated random experiments (as was done above). From this

point of view, the only random experiment constitutive of a single three-player test consists of the

identi�cation of both respondents by the interrogator. Again, this random experiment has only two

possible outcomes and is thus a Bernoulli experiment. Moreover, as will be shown below, this

formalization is equivalent to the previous one. However, it does not clearly capture the relationship

between the probabilistic structure of the three-player test and that of the two-player test. On the

contrary, as we have seen above, this relationship is evident under the previous formalization.

Similarly as before, we denote the machine respondent by   and the human respondent by  , but the one

random experiment by  . The identi�cation of each respondent is the assertion that this respondent is

either a human or a machine. We denote by    and    the two predicates corresponding to these

assertions. Since one of the two respondents is a machine and the other is a human, the random

experiment    has only two possible outcomes:    or  . In other words, the

sample space of   is

Since the sample space is discrete (in fact, �nite), the associated sigma-algebra is its powerset  .

The two events we are interested in are incorrect and correct identi�cation. They are elementary events

in  :

Recall that, for any random experiment    with sample space    and sigma-algebra  , an event 

 is said to occur , where   is the outcome of  .

We denote the outcome of   by  . We further denote the probability function de�ned

on   by  . Let   and   be the two logically related Bernoulli experiments de�ned in Sec. 1 of

this Appendix. We now note that, because of the way the three-player test is constructed, we can establish

a priori:    and 

. Therefore,    occurs 

  occurs    occurs and    occurs    occurs    occurs. Therefore, by the

m h

tm,h

M H

tm,h H(m) ∧ M(h) M(m) ∧ H(h)

tm,h

  ≔ {H(m) ∧ M(h),  M(m) ∧ H(h)}Ωm,h

P ( )Ωm,h

P ( )Ωm,h

incorrect identification = ≔ {H(m) ∧ M(h)} ∈ P ( )Fm,h Ωm,h

correct identification = ≔ {M(m) ∧ H(h)} ∈ P ( )Sm,h Ωm,h

t Ω Σ(Ω)

E ∈ Σ(Ω) :⟺ r(t) ∈ E r(t) ∈ Ω t

tm,h r ( ) ∈ P ( )tm,h Ωm,h

P ( )Ωm,h pm,h tm th

r ( ) = H(m) ∧ M(h)⟺ r ( ) = H(m)⟺ r ( ) = M(h)tm,h tm th

r ( ) = M(m) ∧ H(h)⟺ r ( ) = M(m)⟺ r ( ) = H(h)tm,h tm th Fm,h

⟺ Sm ⟺ Fh Sm,h ⟺ Fm ⟺ Sh
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principle of equivalence, it follows that    and 

.

4. Note on the 2014 Turing Test at the Royal Society (Eugene Goostman)

Warwick and Shaw[9] argued that the   threshold of incorrect identi�cations was reached by Eugene

Goostman, a program that was identi�ed as human   times out of   ( ) in a Turing Test conducted

on June 6–7, 2014 at the Royal Society in London. In fact, Warwick and Shaw’s thesis is not justi�ed. The 

  threshold was set by Turing for a three-player test—that is, a test in which (a) the interrogator

converses with two interlocutors, one a machine and the other a human, and (b) can provide only two

responses: either “x is a machine and y is a human” or “x is a human and y is a machine”[5]. However, as

can be seen from the report of the test in question[9], it satis�es condition (a) but not (b). Therefore,

despite appearances, that test is not a three-player test. From a formal point of view, it is instead a

particular type of two-player test because, like the two-player test, it consists of two Bernoulli

experiments that are not logically correlated (see section 2 of this Appendix). What differentiates it from

the standard form of the two-player test is only the non-essential fact that the two Bernoulli

experiments are conducted in parallel rather than separately. The distinction between three-player and

two-player tests is important, because the   threshold of incorrect identi�cations of the machine does

not have the same meaning in the two types of tests. In fact, only in the three-player test does it

represent   of  , i.e. the optimal performance. In the two-player test, on the other hand, it is the

percentage of correct identi�cations of the human that provides an estimate of the optimal performance.

Warwick and Shaw do not report this percentage, and therefore it is not possible to determine whether

the   is greater than   of the latter. However, if, as is conceivable, that percentage were found to be

higher than  , we would know that Eugene Goostman did not reach the   threshold.

Footnotes

1 The original formulation of Turing's hypothesis[5] is equivalent to this, but it considers the probability

of correct identi�cation, not the probability of incorrect identi�cation: “I believe that in about �fty years'

time it will be possible to programme computers [...] to make them play the imitation game so well that

an average interrogator will not have more than 70 per cent. chance of making the right identi�cation

after �ve minutes of questioning.”

(  ) = ( ) = ( )pm,h Fm,h pm Sm ph Fh

(  ) = ( ) = ( )pm,h Sm,h pm Fm ph Sh

30%

10 30 33%

30%

30%

6/10 50%

33% 6/10

55% 6/10
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2 Warwick and Shaw[9] claimed that this milestone was achieved by Eugene Goostman, a program that

was identi�ed as human 10 times out of   ( ) in a Turing test held at the Royal Society in London on

6 and 7 June 2014. In fact, Warwick and Shaw's thesis is not justi�ed. For details, see sec. 4 of the

Appendix.

3 “I believe that in 300 years’ time people will still be discussing the arguments raised by Turing in his

paper. It could even be argued that the Turing Test will take on an even greater signi�cance several

centuries in the future when it might serve as a moral yardstick in a world where machines will move

around much as we do, will use natural language, and will interact with humans in ways that are almost

inconceivable today. In short, one of the questions facing future generations may well be, ‘To what extent

do machines have to act like humans before it becomes immoral to damage or destroy them?’ And the

very essence of the Turing Test is our judgment of how well machines act like humans.”[7]

4 This happens provided that, in the two-player test, the questioning of the human and the questioning

of the machine are carried out in such a way that the identi�cation of one is independent of the

identi�cation of the other. This is never the case in the three-player test because, due to the way the

three-player test is constructed, the identi�cation of the human is necessarily the opposite of the

identi�cation of the machine.

5 This means that the sum of the probability of   and those of all equally or less probable results is less

than   or, equivalently,   belongs to the larger set of less probable results whose probabilities, added

together, are less than  . Also keep in mind that, because of the approximation to the second decimal

place, the statistical signi�cance or non-signi�cance of    is not determined for any value of 

 belonging to the open interval  .

6 Two events   and  , belonging to the sigma-algebra   and  , respectively, are equivalent: 

  (   occurs    occurs). Let    and    be the probability functions de�ned on    and 

, respectively. The Principle of Equivalence[10]  states: If    is equivalent to  , then 

.
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