Open Peer Review on Qeios

Scholarly Paper Impact

Xiaomei Bai, Fuli Zhang, Jie Hou, Ivan Lee, Xiangjie Kong, Amr Tolba, Feng Xia

Source

Xiaomei Bai, Fuli Zhang, Jie Hou, Ivan Lee, Xiangjie Kong, Amr Tolba. (2018). <u>Quantifying</u> <u>the impact of scholarly papers based on higher-order weighted citations.</u> PLoS ONE, vol. 13 (3), e0193192.

Based on the observation that citations are inversely related to the geographical distance following an exponential distribution, the impact of each scholarly paper is defined as its average higher-order weighted quantum PageRank value:

$$S(P_i) = \langle P_{i,m} \rangle := \frac{1}{M} \sum_{m=1}^{M} P_{i,m}$$

where $S(P_i)$ represents the prestige score of a scholarly paper, $\Box P_{i,m} \Box$ represents the average value of higher-order weighted quantum PageRank scores, *M* represents the iteration number of the algorithm, and $P_{i,m}$ indicates the *m*-th value of higher-order weighted quantum PageRank scores. The concept of the prestige score is inherited from Quantum Google algorithm¹, with the importance of a node corresponds to the prestige score of a scholarly paper in our work.

¹ Paparo GD, Müller M, Comellas F, Martin-Delgado MA. Quantum Google algorithm. The European Physical Journal Plus. 2014;129(7):1–16.